Supplementary Information

Developmental self-reactivity determines pathogenic Tc17 differentiation potential of naive CD8⁺ T cells under inflammatory conditions

Gil-Woo Lee, Young Ju Kim, Sung-Woo Lee, Hee-Ok Kim, Daeun Kim, Jiyoung Kim, You-Me Kim, Keunsoo Kang, Joon Haeng Rhee, Ik Joo Chung, Woo Kyun Bae, In-Jae Oh, Deok Hwan Yang, and Jae-Ho Cho

Supplementary information includes:

Supplementary Figures 1–7 Supplementary Figure legends 1–7 Supplementary Tables 1 and 2

Supplementary Fig. 1

Pathologic symptoms induced by different CD8⁺ T_N subsets in *Rag1^{-/-}* mice.

a, Sorting purity of naive CD8⁺ T cells subsets. **b**, Representative H & E staining images (magnification, 40×). **c**, Representative immunofluorescence images (magnification, 200×). **d**, Representative photo images for day 14 LI. **e**, Body weight changes of $Rag1^{-/-}$ recipients after adoptive transfer with CD8⁺ T_N subsets (n=6). Data is representative of three independent

experiments and presented as the mean \pm SD (**d**). Statistical significance by Mann-Whitney test. *, P < 0.05; **, P < 0.01; ****, P < 0.001; ****, P < 0.0001. Source data and exact P value are provided as a Source Data file.

Supplementary Fig. 2

Proliferation, colonic infiltration, and IL-17/IFN- γ production of adoptively transferred CD8⁺ T_N subsets in *Rag1^{-/-}* mice.

a, CTV-labeled CD5^{lo}, Ly6C⁻, and Ly6C⁺ CD8⁺ T_N subsets were adoptively transferred into $Rag1^{-/-}$ recipients and the proliferation of donor cells were analyzed at day 7 by measuring CTV dilution. Representative histograms (left) and FACS plots (right) show CTV dilution and IL-17A/IFN-y production, respectively, for fast and slow proliferative donor cells. **b**, CD5¹⁰, $Ly6C^{-}$, and $Ly6C^{+}CD8^{+}T_{N}$ subsets were stimulated with plate-bound anti-CD3 and anti-CD28. and analyzed for expression patterns of various activation markers (CD25, CD69, CD44, and CD62L) at different time points. c, T_N subsets were labeled with CTV and then cultured on plates coated with anti-CD3 and anti-CD28. Cell proliferation was analyzed by flow cytometry at 24, 48, and 72 h after TCR stimulation. d, Percentage of IL-17A⁺IFN- γ^- , IL-17A⁺IFN- γ^+ , and IL-17A⁻IFN- γ^+ cells for fast (left) and slow (right) proliferative donor subsets in day 7 mLN (CD5^{lo} n=24, Ly6C⁻ n=23 and Ly6C⁺ n=22). e-j, Immunofluorescence images for Thy 1.1^+ donor cells (e; scale bar, 25 µm), the percentage and number of total donor (f, CD5^{lo} n=30, Ly6C⁻ n=28 and Ly6C⁺ n=26), IL-17A⁺IFN-γ⁻ (g, CD5^{lo} n=30, Ly6C⁻ n=28 and Ly6C⁺ n=26), IL-17A⁺IFN- γ^+ (h, CD5^{lo} n=30, Ly6C⁻ n=28 and Ly6C⁺ n=26) IL-17A⁻IFN- γ^+ (i, CD5^{lo} n=30, Ly6C⁻ n=28 and Ly6C⁺ n=26), and Rorgt⁺ (j, n=29) cells from day 14 LI. k. Percentage of BrdU⁺ cells in donor cells from LI (left; CD5^{lo} n=10, Ly6C⁻ n=8 and Ly6C⁺ n=9, right; $CD5^{lo} n=8$, Ly6C⁻ n=8 and Ly6C⁺ n=9). I. In vivo gut permeability assay from mice receiving individual CD8⁺ T_N subsets (left; CD5^{lo} n=16, Ly6C⁻ n=16 and Ly6C⁺ n=14, right; CD5^{lo} n=12, $Ly6C^{-}$ n=11 and $Ly6C^{+}$ n=11). Data are pooled from three (d), two independent (k,l), and four (f-i,j) independent experiments and presented as the mean \pm SEM (d-j). Statistical significance by two-way ANOVA Multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.001; *****, P < 0.001; *****, P < 0.001; *****, P < 0.001; ****, P < 0.001; **** 0.0001. Source data and exact P value are provided as a Source Data file.

Supplementary Fig. 3

The impact of CCR6 deficiency on IL-17/IFN- γ production of adoptively transferred CD8⁺ T_N subsets in *Rag1^{-/-}* mice.

a, Expression levels (as the mean fluorescence intensity, MFI) of $\alpha 4\beta 7$ of transferred donor subsets from day 7 mLN (n=8). **b**, Experimental design for **c**. **c**, Chemotactic migration was analyzed for transferred CD5^{lo} and Ly6C⁺ cells collected from day 7 mLN of *Rag1^{-/-}* recipients (Media; n=6, CCL4 and CCL20; n=12). Data were pooled from two independent experiments (**c**, n=3–6 mice/experiment). **d**–**j**, Percentage and number of IL-17A⁺IFN- γ^- (**d**,**h**), IL-17A⁺IFN- γ^+ (**e**,**i**), and IL-17A⁻IFN- γ^+ (**f**,**j**) cells, were analyzed at day 14 after adoptive transfer with either $Ccr6^{+/+}$ or $Ccr6^{-/-}$ CD8⁺ T_N subsets. **k–n**, Number of donor cells (**k**) and the percentage of IL-17A⁺IFN- γ^- (**l**), IL-17A⁺IFN- γ^+ (**m**), and IL-17A⁻IFN- γ^+ (**n**) cells analyzed in mLN and LI at day 21 after transfer with $Ccr6^{-/-}$ CD8⁺ T_N subsets (**d**–**j**, n=4–5; **k**–**n**, n=5). Data are representative of two independent experiments and presented as the mean \pm SD (**a**–**l**). Statistical significance by two-way ANOVA Multiple comparisons. *, P < 0.05; **, P < 0.01; ****, P < 0.001; ****, P < 0.001. Source data and exact P value are provided as a Source Data file.

Supplementary Fig. 4

Differential Tc17-skewing potential of CD8⁺ T_N subsets under various Tc17-polarizing conditions *in vitro*.

a, Representative FACS plots for IL-17A/IFN-y production after *in vitro* culture with B6 CD8⁺ T_N subsets under various Tc17-polarizing conditions. **b**, Percentage of IL-17A⁺ and IFN- γ^+ cells after Tc17-polarizing culture with B6 CD8⁺ T_N subsets in the presence of various concentrations of IL-6 and TGF-β (n=3 per experiment). c, Representative FACS plots for IL-17A/IFN- γ production from P14 CD8⁺ T_N subsets stimulated with GP33 peptide-pulsed dendritic cells under Tc17-polarizing condition. d, qRT-PCR data for Il17a, Rorc,, Irf4, Ifng, *Eomes*, and *Tbx21* after Tc17-polarizing culture with B6 CD8⁺ T_N subsets (n=3 per experiment). e, Expression levels of IL-6Rα, GP130, TGFβRI, and TGFβRII on B6 CD8⁺ T_N subsets (n=6-8 mice/group). f, Levels of p-STAT3, p-SMAD2, and p-SMAD3 (shown in representative blot images, top, and intensity relative to β -actin, bottom) (n=3 per experiment). g, Representative FACS plots for IL-17A/IFN- γ production (left) and the percentage of IL-17A⁺ and IFN- γ ⁺ cells (right) after Tc17-polarizing culture with B6 CD8⁺ T_N subsets in the presence or absence of rmIL-2 (n=3 per experiment). h, Representative FACS plots for IL-17A/IFN-γ production after Tc17-polarizing culture with B6 CD8⁺ T_N subsets in the presence (middle) or absence of anti-IL-2/CD122 (top) or with $Cd122^{-/-}$ CD8⁺ T_N subsets (bottom). i, Percentage of IL-17A⁺ and IFN- γ^+ cells after Tc17-polarizing culture of B6 CD8⁺ T_N subsets with various concentrations of anti-CD3 and rmIL-2 (n=3 per experiment). Data is representative of two (a-d,e) to three independent experiments ($\mathbf{f}, \mathbf{g}, \mathbf{i}$) and presented as the mean \pm SD ($\mathbf{b}-\mathbf{g}, \mathbf{i}$). Statistical significance by two-way ANOVA Multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.001; *****, P < 0.001; ******, P < 0.001; *****, P < 0.001; *****, P < 0.001; ***** 0.0001. Source data and exact *P* value are provided as a Source Data file.

Supplementary Fig. 5

a, Histograms (left) and percentages (right) for p-ERK expression among $CD8^+ T_N$ subsets stimulated with either anti-CD3 in the presence or absence of TGF- β (left) or with various concentrations of anti-CD3 (right) (n=3 per experiment). **b**, Representative blot images of p-ERK after 20 min stimulation with anti-CD3. **c**, B6 CD8⁺ T_N subsets were activated under Tc17-polarizing conditions for 72 h and subjected to ChIP using IRF4 antibody. Eluted DNA was analyzed by qPCR (n=3 per experiment). **d**, Endogenous levels of SMAD2 and p-SMAD2 in *ex vivo* B6 CD8⁺ T_N subsets shown in histogram (left) and MFI (right) (n=5 mice/group). **e**, B6 CD8⁺ T_N subsets were activated under Tc17-polarizing conditions for 72 h and subjected to ChIP using SMAD3 antibody. Eluted DNA was analyzed by qPCR (n=3 per experiment). **f**, Expression levels of SMAD3 from Tc17-polarized CD8⁺ T_N subsets transduced with either MigR-1 control (empty) or MigR-1 encoding *SMAD3* (over) (n=3 per experiment). **g**,

Percentage of IL-17A⁺ and IFN- γ^+ cells in GFP⁻ and GFP⁺ cells transduced with MigR-1 empty vector control (n=3 per experiment). **h**, Expression levels of SMAD3 for Tc17-polarized CD8⁺ T_N subsets transduced with LMP empty vector control or LMP vector containing *SMAD3* shRNA. **I** (n=3 per experiment), Percentage of IL-17A⁺ and IFN- γ^+ cells in GFP⁻ or GFP⁺ cells transduced with LMP empty vector control. Data are representative of two (**b**) to three independent experiments (**a**, **c**–**i**) and presented as the mean ± SD (**a**,**c**–**i**). Statistical significance by two-way ANOVA Multiple comparisons. *, P < 0.05; **, P < 0.01; ****, P < 0.001. Source data and exact *P* value are provided as a Source Data file.

Supplementary Fig. 6

Inverse relationship between CD5 and SMAD3 expression and Tc17 differentiation potential in mice and humans.

a, Expression levels of CD5 shown in histogram for HY and OT-1 *ex vivo* (left), and representative FACS plots for IL-17A/IFN- γ production (right) after Tc17-polarizing culture.

b, qRT-PCR data for *Il17a, Rorc, Irf4, Ifng, Eomes*, and *Tbx21* analyzed for Tc17-polarized HY and OT-1 CD8⁺ T_N cells (n=3 per experiment). **c**, Relationship between CD5 and SMAD3 levels *ex vivo* in CD4⁺ T_N populations from healthy human bloods (n=17). **d**, Relationship between CD5 (left) or SMAD3 (right) levels *ex vivo* and the percentages of IL-17A⁺ cells after Tc17-polarizing cultures with human CD4⁺ T_N populations (n=11). **e**,**f**, *IL17A* and *SMAD3* expression profiles in *CD3*⁺ cells (**e**) and heatmap of differentially expressed genes of *IL17*⁺*CD8*⁺, *IL17*⁺*CD4*⁺, *IL-17*⁻*CD8*⁺, and *IL17*⁻*CD4*⁺ T cells (**f**) in public scRNA-seq dataset performed with inflammed tissues from UC patients (GSE162335). **g**, *IL17A* and *SMAD3* expression of *CD3*⁺ cells that are either *IL17A*⁺ or *SMAD3*⁺ in public scRNA-seq datasets (GSE163314), Spondyloarthritis (GSE163314), and Psoriasis (GSE151177), respectively. Data are representative of (**a**,**b**) or pooled (**c**,**d**) from two independent experiments and presented as the mean ± SEM (**b**–**d**). Statistical significance by simple linear regression two-way ANOVA Multiple comparisons. *, *P* < 0.05; **, *P* < 0.01; ****, *P* < 0.001; ****, *P* < 0.0001.

m

Supplementary Fig. 7

Gating strategies for flow cytometry data.

a, Gating strategy for Fig. 2b,c, and Supplementary Fig. 2a,b. **b**, Gating strategy for Fig. 2e,g,h,i, and Supplementary Fig. 2d–f,g. **c**, Gating strategy for Fig. 3a, and Supplementary Fig. 3a. **d**, Gating strategy for Fig. 3e,g,h, and Supplementary Fig. 3b–l. **e**, Gating strategy for Fig. 4e–h. **f**, Gating strategy for Supplementary Fig4. e. **g**, Gating strategy for Fig. 5b,c,e,g,h,j, Fig. 7c,d, and Supplementary Fig. 4a–c,g–i. **h**, Gating strategy for Fig. 5d. **i**, Gating strategy for Fig. 5a,d. **j**, Gating strategy for Fig. 6e,f, and Supplementary Fig. 5f–i. **k**, Gating strategy for Fig6. g–j. **l**, Gating strategy for Fig. 7a. **m**, Gating strategy for Fig. 7h, and Supplementary Fig. 6c. **n**, Gating strategy for Fig. 7i, and Supplementary Fig. 7j.

Antibodies	Manufacturer	Catalog #	Applications	Dilution
anti-CD16/32	ebioscience	14-0161-82	Flow cytometry	1:300
anti-CD3ε (PB); clone 145-2C11	Biolegend	100334	Flow cytometry	1:300
anti-CD5 (PE); clone 53-7.3	Invitrogen	12-0051-83	Flow cytometry	1:300
anti-CD44 (eF450); clone IM7	Invitrogen	48-0441-82	Flow cytometry	1:300
anti-CD62L (PE); clone MEL-14	Biolegend	104408	Flow cytometry	1:300
anti-CD45.1 (BUV395); clone A20	BD Bioscience	565212	Flow cytometry	1:300
anti-CD45.2 (PB); clone 104	Biolegend	109820	Flow cytometry	1:300
anti-CD90.1 (FITC); clone HIS51	Invitrogen	11-0900-85	Flow cytometry	1:300
anti-CD90.2 (PE) (53-2.1)	ebioscience	15298609	Flow cytometry	1:300
anti-Ly6C (PE-cy7) (HK1.4)	ebioscience	15518606	Flow cytometry	1:300
anti-CD8α (APC) (53-6.7)	Tonbo	20-0081-U100	Flow cytometry	1:300
anti-CD126 (APC) (D7715A7)	Biolegend	115812	Flow cytometry	1:300
anti-GP130 (APC); clone KGP130	ThermoFisher	17-1302-82	Flow cytometry	1:300
anti-TGFBRI (APC); clone 141231	R&D biosystems	FAB5871A	Flow cytometry	1:300
anti-TGFBRII (PE); polyclonal	R&D biosystems	FAB532P	Flow cytometry	1:300
anti-α4β7 (APC); clone DATK32	ThermoFisher	17-5887-82	Flow cytometry	1:300
anti-CD195 (PE); clone HM-CCR5	ebioscience	12-1951-81	Flow cytometry	1:300
anti-CD196 (PE); clone 29-2L17	Biolegend	129804	Flow cytometry	1:300
anti-IFN-v (APC): clone XMG1.2	Invitrogen	17-7311-82	Flow cytometry	1:200
anti-ll -17A (PE-Cv7): clone TC11-18H10.1	Biolegend	506922	Flow cytometry	1.200
anti-II -17A (PE): clone eBio17B7	Invitrogen	12-7177-81	Flow cytometry	1.200
anti-Fomes (APC)	ehioscience	50-4875-82	Flow cytometry	1.200
anti-Borgt (PE): clone B2D	Invitrogen	12-6981-82	Flow cytometry	1.200
anti-Rorat (PE-eE610): clone B2D	Invitrogen	61-6981-82		1.200
anti-RE4 (APC): clope IPE4 3E4	Riologond	646408		1.200
anti-INT4 (AFC), clone INT4.324	Invitragen	12 7331 82		1.200
anti-Give CST (PE); clone by 204		612566		1.200
	Biologond	200218		1.200
	Biologond	300318		1:100
	Biologond	357408		1.100
	Diologend	304014		1:100
	Biolegend	344704	Flow cytometry	1:100
	Biolegend	304123	Flow cytometry	1:100
anti-hCCR7 (PE-cy7); clone G043H7	Biolegend	353225	Flow cytometry	1:100
anti-hIFN-γ (APC); clone B27	Biolegend	506510	Flow cytometry	1:100
anti-hiL-17A (BV421); cione BL168	Biolegend	512322	Flow cytometry	1:100
anti-hIL-17A (PE); clone BL168	Biolegend	512306	Flow cytometry	1:100
anti-pSMAD2; clone 138D4	Cell Signaling Technology	3108	Flow cytometry and Western blot	1:500
anti-pSMAD3: clone C25A9	Cell Signaling Technology	9520	Flow cytometry	1:500
		15100	and Western blot	1.100
anti-IRF4; cione D9P5H	Cell Signaling Technology	15106	Unip assay	1:100
anti-ps rATS, clone DSA7	Cell Signaling Technology	5339	Flow cytometry	1.1000
anti-Smad3: clone C67H9	Cell Signaling Technology	9523	Flow cytometry	1:500
anti-β-actin; clone AC-15	Sigma-Aldrich	A1978	Western blot	1:5000
goat anti-rabbit IgG (AF647)	Invitrogen	A21245	Flow cytometry	1:300
m-lgG _κ BP-HRP	Santa Cruz Biotechnology	sc-516102	Western blot	1:1000
goat anti-rabbit IgG-HRP	Santa Cruz Biotechnology	sc-2004	Western blot	1:1000
anti-CD3ɛ (Purified); clone 145-2C11	ebioscience	16-0031-86	In vitro cell culture	
anti-CD28 (Purified); clone 37.51	ebioscience	16-0281-86	In vitro cell culture	
anti-IFN-γ (Purified); clone XMG1.2		16-7311-85	In vitro cell culture	
anti-hIFN-y (Purified): clone R27	Biolegend	506501	In vitro cell culture	
anti-hIL-4 (Purified); clone MP4-25D2	Biolegend	500802	In vitro cell culture	

Supplementary Table. 1

Antibodies.

Primers	Manufacturer	Catalog #		
TaqMan probe_ <i>Rorc</i>	Applied Biosystems	Mm01261022_m1		
TaqMan probe_ <i>II17a</i>	Applied Biosystems	Mm00439618_m1		
TaqMan probe_Irf4	Applied Biosystems	Mm00516431_m1		
TaqMan probe_ <i>lfnγ</i>	Applied Biosystems	Mm01168134_m1		
TaqMan probe_Tbx21	Applied Biosystems	Mm00450960_m1		
TaqMan probe_Eomes	Applied Biosystems	Mm01351984_m1		
TaqMan probe_Rn18sRn45s	Applied Biosystems	Mm03928990_g1		
Rorc region (IRF4)	Sense primer		Antisense primer	
N.C1576 ~ -1737	TGAGCACACTATCACTCTCTTCAG		GACCCTTGGGTAGGAGAGA	
Target_+10747 ~ +10824	GGGCCCTGAGATGGTAAGTT		GGGTGCTGAGTAATCACAGGA	
<i>ll17a</i> region (IRF4)	Sense primer		Antisense primer	
N.C3387 ~ -3523	CTCCCATGTGGTCATTATTGC		GTGTCCTTAGGTCCTAAATGTAGG	
Target1592~-1815	AATCCATGGAGCTG	GAGAGA	TTTTTATACAACATAGGTCTTCATGG	
Rorc region (Smad3)	Sense primer		Antisense primer	
N.C727 ~ -881	GGTTGTTGGGTAAGCAGGAA		ACGACCCCGTAATTCTGTT	
Target862 ~ -1181	CAACGGTGGAGAATGGAATG		TTCCTGCTTACCCAACAACC	
			· · · · · · · · · · · · · · · · · · ·	
II17a region (Smad3)	Sense primer		Antisense primer	
N.C1211 ~ -984	CAGGGATAATGCCAAGGGTA		GCATGAGGTGGACCGATAG	
Target11~ -185	AACTTCTGCCCTTCCCATCT		GCTCCTTTCTCTCTTTTTATACGG	

Smad3 overexpression

Forward	GACTCGAGATGTCGTCCATCCTGCCC
Reverse	GAGAATTCCTAAGACACACTTTAACAGCG

shRNA sequence for	TGCTGTTGACAGTGAGCGAACGCAGAACGTGAACACCAAGTAG
Smad3	TGAAGCCACAGATGTACTTGGTGTTCACGTTCTGCGTGTGCCTAC

Supplementary Table. 2

Primers.