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Abstract

Background

Dyslipidemia, a significant risk factor for atherosclerotic cardiovascular disease
(ASCVD), is influenced by genetic variations, particularly those in the low-density
lipoprotein receptor (LDLR) gene. This study aimed to elucidate the effects of LDLR
polymorphisms on baseline serum lipid levels and the therapeutic efficacy of
atorvastatin in an adult Han population in northern China with dyslipidemia.
Methods

In this study, 255 Han Chinese adults receiving atorvastatin therapy were examined
and followed up. The 3’ untranslated region (UTR) of the LDLR gene was sequenced
to identify polymorphisms. The associations between gene polymorphisms and serum
lipid levels, as well as changes in lipid levels after intervention, were evaluated using
the Wilcoxon rank sum test, with a P<(0.05 indicating statistical significance.
Assessment of linkage disequilibrium patterns and haplotype structures was
conducted utilizing Haploview.

Results

Eleven distinct polymorphisms at LDLR 3’ UTR were identified. Seven
polymorphisms (rs1433099, rs 14158, rs2738466, rs5742911, rs17249057,
1s55971831, and rs568219285) were correlated with the baseline serum lipid levels

2/30




45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

(P<0.05). In particular, four polymorphisms (rs14158, rs2738466,rs5742911, and
rs17249057) were in strong linkage disequilibrium (r*=1), and patients with the
AGGC haplotype had higher TC and LDL-C levels at baseline. Three polymorphisms
(rs1433099, rs2738467, and rs7254521) were correlated with the therapeutic efficacy
of atorvastatin (P<0.05). Furthermore, carriers of the rs2738467 T allele demonstrated
a significantly greater reduction in low-density lipoprotein cholesterol (LDL-C) levels
post-atorvastatin treatment (£=0.03), indicating a potentially crucial genetic influence
on therapeutic outcomes. Two polymorphisms (rs751672818 and rs566918949) were
neither correlated with the baseline serum lipid levels nor atorvastatin’s efficacy.
Conclusions

This research outlined the complex genetic architecture surrounding LDLR 3’ UTR
polymorphisms and their role in lipid metabolism and the response to atorvastatin
treatment in adult Han Chinese patients with dyslipidemia, highlighting the
importance of genetic profiling in enhancing tailored therapeutic strategies.
Furthermore, this investigation advocates for the integration of genetic testing into the
management of dyslipidemia, paving the way for customized therapeutic approaches
that could significantly improve patient care.

Keywords

Pharmacogenetics, LDLR polymorphisms, Atorvastatin, Dyslipidemia, Han Chinese
Trial registration

This multicenter study was approved by the Ethics Committee of Xiangya Hospital

Central South University (ethics number K22144). It was a general ethic. In addition,
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this study was approved by The First Hospital of Hebei Medical University (ethics

number 20220418).

Background

Dyslipidemia, characterized by abnormal lipid levels, emerges from complex
interactions among genetics, lifestyle factors, metabolic stress, and autophagy [1-7].
Dyslipidemia is a major risk factor for atherosclerotic cardiovascular disease
(ASCVD) which is the leading cause of death among Chinese urban and rural
residents, and it accounts for more than 40% of deaths [8]. Epidemiological, genetic,
and clinical intervention studies have identified low-density lipoprotein cholesterol
(LDL-C) as a causal factor in ASCVD [9].

Statins, widely used to manage dyslipidemia, primarily mitigate ASCVD risk by
effectively lowering LDL-C levels [10-12]. Despite widespread statin use, response
varies due to multiple factors, including variations at the low-density lipoprotein
receptor (LDLR) [13-15]. Numerous studies [16-39] have focused primarily on
patients with familial hypercholesterolemia (FH) and have mostly examined coding
regions and promoters of the LDLR gene. However, polymorphisms in the LDLR 3’
UTR have seldom been reported in the context of patients with dyslipidemia. A recent
study revealed that variations in the LDLR 3° UTR interfere with miRNA: mRNA
interactions, which may impact gene expression and could be linked to FH [40].

This study investigated the impact of LDLR 3" UTR polymorphisms on lipid levels
before and after atorvastatin treatment in adult Chinese Han patients with
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dyslipidemia, offering significant insights into the genetic factors influencing serum
lipid regulation and the potential effects on atorvastatin treatment outcomes. On one
hand, this study provides an evidence for screening potential dyslipidemia population;
on the other, it could help to identify the patients who benefit the most from taking
atorvastatin, providing a strong guidance for clinical individualized precision

treatment.

Methods

Study Population

This study enrolled 255 adult Chinese Han patients admitted to The First Hospital of
Hebei Medical University between June 2022 and July 2023. All participants were
prescribed a daily 20 mg dose of atorvastatin and underwent quarterly follow-up
evaluations conducted by a skilled investigative team. Written informed consent
confirming voluntary participation was obtained from each patient. This multicenter
dy was approved by the Ethics Committee of Xiangya Hospital Central South
University (ethics number K22144). Ethical approval was also obtained from The
First Hospital of Hebei Medical University (20220418).

Data Collection

Baseline demographic characteristics, such as sex and age, were collected via
interviews using a uniform questionnaire administered by trained researchers.
Measurements of height and weight were taken at the nurse's station by experienced

nurses, and the body mass index (BMI) was determined by dividing the weight (in
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kilograms) by the square of the height (in meters).The blood of the participants was
drawn from the antecubital vein in a fasting state by skilled nurses to measure
triglyceride (G), total cholesterol (TC), LDL-C, and high-density lipoprotein
cholesterol (HDL-C) levels. All clinical investigations were conducted in accordance
with the principles of the Declaration of Helsinki. At each follow-up, TG, TC, LDL-C
and HDL-C levels were measured.

DNA Sequencing

From each enrolled patient, 2 ml of peripheral venous blood was collected for
genomic DNA extraction using the Magnetic Blood Genomic DNA Kit (DP329,

Tiangen Biotech Co., Ltd., Beijing, China). The DNA concentration was quantified

with the Qubit® dsDNA HS Assay Kit (Yeasen Biotechnology Co., Ltd, Shanghai,
China) according to the manufacturer's protocol. The DNBSEQ-T7 sequencer (MGI
Tech Co., Ltd, Shenzhen, China) was used for high-throughput sequencing of the

DNA captured from a pharmacogenetics panel with reads of 150 bp in length.

SNP Calling and Genotyping

High-quality sequencing reads were derived by filtering out adapters, unknown bases,
and low-quality bases with Trimmomatic (v0.36) [41]. The high-quality reads were
aligned to the human reference genome hg19 using the Burrows-Wheeler Aligner
(BWA, v0.7.15) with the default parameters [42]. The Genome Analysis Toolkit
(GATK, v3.8) was used for indel realignment, quality score recalibration,
polymorphism calling, and genotyping (using Haplotype Caller) [43].

Statistical Analysis
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Changes in serum lipid levels were quantified by calculating the difference from
baseline to follow-up. The A%TG, A%TC, A%LDL-C, and A%HDL-C, represented
the percentage changes in TG, TC, LDL-C and HDL-C, respectively. Associations
between gene polymorphisms and serum lipid levels, including changes post-
intervention, were evaluated with the Wilcoxon rank sum test. A P threshold of less
than 0.05 indicated statistical significance. Assessment of linkage disequilibrium

patterns and haplotype structures was conducted using Haploview software [44].

Results

Baseline Characteristics of the Study Cohort

The baseline demographics of the 255 study participants are outlined in Table 1. The
cohort predominantly comprised males (approximately 69%), and the majority of
patients (over 78%) were aged between 50 and 80 years. A significant proportion of

the patients (more than 70%) had a BMI greater than 24 kg/m?.

Table 1 Baseline characteristics of the patients in this study

Characteristics All patients (n = 255)
Sex Male 177 (69.41%)
Female 78 (30.59%)
Age, years 20~29 2(0.78%)
30~39 12 (4.71%)
40~49 27 (10.59%)
50~59 62 (24.31%)
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60-69 75 (29.41%)

70~79 63 (24.71%)
>=80 14 (5.49%)
BMI, kg/m? <18.5 3 (1.18%)
18.5~24 73 (28.63%)
24-28 120 (47.06%)
>=28 59 (23.14%)

Note: Values are presented as numbers (percentages).

Distribution and Frequency of LDLR Polymorphisms

Eleven distinct LDLR polymorphisms within the 3’ UTR were identified across the
study population, as detailed in Figure 1 and Supplemental Table 1. The
polymorphisms rs14158, rs2738466, rs5742911, and rs17249057 were identified
concurrently in 255 patients, indicating an inheritance pattern. The genotype
distribution for these four polymorphisms was that 94 patients (36.86%) were wild,
125 (49.02%) were heterozygous, and 36 (14.12%) were homozygous. The rs1433099
mutant allele was common, occurring in heterozygosity in 38.04% and in
homozygosity in 53.73% of patients. The rs2738467 mutant allele was found in
heterozygous form in 25.88% of patients and in homozygous form in 2.75% of
patients. The 155971831 mutant allele was present in 26.67% of patients, all of
whom were heterozygous for the mutation. The rs751672818 mutant allele occurred
in 3.53% of patients, exclusively in heterozygous form. The mutant alleles of
rs568219285, rs7254521, and rs566918949 were rare, being detected in only one or
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two individuals.
The identified polymorphisms, especially those exhibiting multiple genotype
occurrences, warrant further investigation as potential markers for dyslipidemia in the

Chinese population.

3004
250
200 .y
150 1
100

Homozygous
[ Heterozygous
m Wild

Number of Samples

50 1

Figure 1 Polymorphisms in the LDLR 3’ UTR identified in this study

Comparison of Allele Frequencies to those in Public Databases

The allele frequencies (AFs) of the identified polymorphisms were compared with
those reported in public genomic databases, as detailed in Figure 2 and Supplemental
Table 2. Except for rs55971831, the AFs of the other ten identified polymorphisms
closely matched those observed in East Asian populations within the August 2015
release of the 1000 Genomes Project (1000g2015aug) and the Genome Aggregation
Database (gnomAD). The AF for rs55971831 was 0.13 in this cohort, lower than that
reported for East Asian populations in both 1000g2015aug and gnomAD. The AFs for

1814158, rs2738466,rs5742911, and rs17249057 were 0.39 in this study. They were
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slightly lower than the highest recorded AF of 0.41 in East Asian populations, but
significantly higher than the AFs observed in American (ranging from 0.21 to 0.29)
and African populations (ranging from 0.15 to 0.19). This disparity in AFs suggests a
genetic predisposition within the Chinese population for these specific LDLR
polymorphisms, underscoring their potential as markers of dyslipidemia in this ethnic
group. The AF of 151433099 was observed to be 0.73 in this study. In contrast, in the
1000g2015aug and gnomAD databases, the AF was reported at 0.79 in American
populations, and it ranged between 0.38 and 0.46 in African populations. This
indicates that rs1433099 is a common polymorphism across different cthnicities. The
AF for rs2738467 was 0.16 in this study, and it was 0.40 to 0.47 in American
populations and 0.03 to 0.08 in African populations. This significant variation
indicates that the rs2738467 polymorphism exhibits considerable diversity in different
populations. The AF of rs7254521 was 0.004 in this study, and this value was
0.003~0.132 in the East Asian population in the public database. However, the AF of
rs7254521 was 0.08 in the American population, and approximately 0.15 in the
African population. This indicates that rs7254521 has a high ethnic diversity. The
polymorphisms rs751672818, rs566918949, and rs568219285 exhibited low AFs in
all populations studied, each being less than 0.02. This suggests that these are rare

polymorphisms.
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Figure 2 The AFs of the identified polymorphisms in this study and public

databases

1000g2015aug: August 2015 release of the 1000 Genomes Project, gnomAD:
Genome Aggregation Database, All: All populations, EAS: East Asian, AMR:
American, AFR: African.

Linkage Disequilibrium and Haplotype Analysis

The polymorphisms rs14158, rs2738466, rs5742911, and rs17249057, cooccurring in
patients, were subjected to linkage disequilibrium analysis. The results, depicted in
Figure 3, revealed strong linkage disequilibrium among these polymorphisms (r>=1).
The identified haplotypes, GAAT and AGGC, had population allele frequencies of

0.614 and 0.386, respectively, in this study cohort.
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Figure 3 Linkage disequilibrium of LDLR polymorphisms and haplotypes

Impact of LDLR Polymorphisms on Serum Lipid Levels at Enrollment

The impact of identified polymorphisms on serum lipid levels at enrollment was
assessed, with findings summarized in Table 2. Significant associations were observed
between polymorphisms rs14158, rs2738466, rs5742911, and rs17249057 and
baseline levels of TC and LDL-C (P<0.05). Individuals carrying the A allele of
1314158, the G allele of rs2738466, the G allele of rs5742911, and the C allele of
rs17249057 displayed elevated TC and LDL-C levels compared to carriers of
alternative alleles. This indicates that such polymorphisms, especially when inherited
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as a haplotype, could impact LDL-C metabolism. A recent study [40] showed that
rs5742911 enhances or eates a binding site for three miRNAs (miR-3190-5p, miR-
4435, and miR-4717-5p) and disrupts a binding site for miR-1587-5p, influencing
gene expression and potentially contributing to FH, underscoring the significance of
the findings in this study. Polymorphism rs 1433099 was strongly associated with
baseline TC and LDL-C levels (P<0.05). Those who carry the C allele had higher
levels of TC and LDL-C. Polymorphism rs55971831 was significantly associated
with TG levels (P=0.002), carriers of the A allele exhibiting higher TG levels than
those with the C allele. Polymorphism rs568219285 exhibited a significant correlation
with baseline TG and TC levels (P<0.05). However, due to its rarity, further validation
in a larger cohort is necessary. No significant correlations were observed between
polymorphisms rs2738467, rs751672818, rs7254521, or 18566918949 and baseline
serum lipid levels.

Influence of of LDLR Polymorphisms on Atorvastatin Treatment Efficacy

The relationship between LDLR polymorphisms and the relative change in serum
lipid levels after atorvastatin therapy was evaluated and was showed in Table 3.
Participants carrying the rs2738467 T allele showed a more significant reduction in
TC, LDL-C, and HDL-C levels than did those with the C allele (P<0.05). This novel
discovery suggests that the rs2738467 T allele might augment the cholesterol-
lowering efficacy of atorvastatin. The relative changes in lipid levels in patients with
different genotypes at locus rs2738467 after atorvastatin therapy were shown in

Figure 4. TC and LDL-C levels reduced 20% in patients carrying the rs2738467 T
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allele and 10% in those with the C allele. Although HDL-C levels also decreased in
patients with the rs2738467 T allele, the median change was under 5%, with some
patients even experiencing an increase in HDL-C levels. This suggests that the
rs2738467 T allele may specifically enhance atorvastatin's efficacy in lowering LDL-
C levels. The rs1433099 showed a significant correlation with change in HDL-C
levels post-atorvastatin treatment (#=0.02). Although patients carrying the rs1433099
C allele presented with greater TC and LDL-C levels at baseline, they showed a
greater improvement in HDL-C levels following atorvastatin treatment. The
rs7254521 was strongly associated with LDL-C levels post-atorvastatin treatment
(P=0.03); however, this observation was limited to only two patients. Verification in
larger cohorts is necessary in future studies. No significant correlations were observed
between polymorphisms rs14158, rs2738466, rs5742911, rs17249057, rs55971831,

rs751672818, rs566918949, or rs568219285 and atorvastatin's efficacy.
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Discussion

This study not only provided a comprehensive analysis of the correlation between
polymorphisms in the LDLR 3 UTR and baseline serum lipid levels, but also
revealed an association between these polymorphisms and the therapeutic efficacy of
atorvastatin in a cohort of adult Chinese Han patients with dyslipidemia. The
identification of 11 polymorphisms in the LDLR 3’ UTR of these patients underscored
the genetic diversity within this population and highlighted the potential of these
polymorphisms to serve as biomarkers for the treatment of dyslipidemia.

The polymorphisms rs14158, rs2738466, rs5742911, and rs17249057 which were
in strong linkage disequilibrium, were significantly correlated with baseline serum
lipid levels. Patients with the AGGC haplotype had higher LDL-C levels at baseline.
Although an investigation within a southern Chinese population has not established a
correlation between polymorphisms rs14158 and rs2738466 and the incidence of
coronary heart disease [45], data from a black South African cohort indicated that
carriers of the rs14158 A allele have elevated LDL-C levels, increasing the risk for FH
[46]. In addition, research conducted in a Spanish population revealed that subjects
with hypercholesterolemia harboring the rs14158 A allele and the rs2738466 G allele
exhibit a diminished response to the lipid-modulating agent Armolipid Plus,
suggesting that these specific SNPs may exacerbate hypercholesterolemia
susceptibility [47]. Furthermore, according to a Mexican study, the rs14158 A allele
and the rs2738466 G allele were associated with an increased risk of acute coronary
syndrome and concomitantly lower HDL-C levels [48]. Additionally, rs5742911 was
potentially associated with FH by disrupting interactions with miRNAs and altering

gene expression in a recent Dutch study [40]. Collectively, these findings underscore
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the potential for the rs14158, rs273846606, rs5742911, and rs17249057 polymorphisms
to influence cholesterol metabolism in various ways between distinct populations.

In this study, polymorphisms rs14158, rs2738466, rs5742911, and rs17249057 were
not correlated with the therapeutic efficacy of atorvastatin. This finding was
consistent with a study in Brazilian cohorts in which the allelic polymorphism
rs14158G had no discernible influence on the therapeutic efficacy of atorvastatin [49].
However, a study in the United States showed that rs5742911 was associated with
poor simvastatin response in black patients but not in white patients [50].

The rs2738467 T allele was associated with a more pronounced reduction in LDL-
C levels after atorvastatin therapy but was not associated with baseline lipid levels.
This finding suggests a potential role for this polymorphism in improving the efficacy
of atorvastatin. This finding supports the precision medicine approach, which
emphasizes customizing treatment plans according to individual genetic profiles.

The allele frequencies of the identified polymorphisms in this study were consistent
with them in East Asian populations as documented in public genomic databases. This
reinforces the validity of the findings and suggests a genetic predisposition among the
Chinese population to these specific LDLR polymorphisms. The findings in this study
have profound implications for population-specific genetic screening and therapeutic
interventions.

Study strengths and limitations

This research presents several strengths, notably its investigation into the effects of
LDLR 3’ UTR polymorphisms on lipid levels both pre- and post-atorvastatin therapy
in a population of adult Chinese Han individuals with dyslipidemia. The study
provides valuable insights into the genetic factors that regulate serum lipids and how

the factors impact the efficacy of atorvastatin treatment. This study not only supports
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the stratification of potential dyslipidemia cases for targeted screening but also aids in
pinpointing individuals most likely to benefit from atorvastatin therapy. As a result,
this work lays a foundation for the implementation of personalized, precision
medicine in clinical settings.

This study still has several limitations. Firstly, focusing exclusively on adult
Chinese Han patients with dyslipidemia might restrict the applicability of the findings
to other ethnicities or demographics. Secondly, the infrequent presence of certain
polymorphisms, like rs568219285, necessitates further exploration in more extensive
and varied populations to verify their links to lipid profiles and medication effects.
Lastly, while this study concentrated on the relationship between LDLR
polymorphisms and lipid levels alterations post-atorvastatin treatment, other
contributory factors and underlying mechanisms remain unexamined.

Conclusions

In conclusion, this investigation has uncovered a significant link between LDLR gene
3’ UTR polymorphisms and lipid levels, as well as their impact on atorvastatin
response. These insights open new pathways for advanced studies and clinical
applications, highlighting the importance of genetic profiling in tailoring treatment for
dyslipidemia. By adopting a personalized approach to therapy, it can enhance
treatment precision and effectiveness, ultimately alleviating the cardiovascular disease

burden associated with dyslipidemia.

List of abbreviations
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LDLR Low-density lipoprotein receptor
FH Familial hypercholesterolemia
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