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Supplementary Information 2: Statistical analysis of time 
variance  
 
Here, we present the data and methodological approach supporting the results presented in 
Section 4.2. 
 

Data source 
 
The data enabling the analysis in Section 4.2 stem from a representative survey of the German 
population dealing with perceptions and attitudes related to the COVID-19 pandemic [1]. The 
survey was implemented by the opinion research center forsa in 48 waves between March 18, 
2020, and April, 27, 2022, by computer-assisted telephone interviews (size of the overall 
sample: n = 72,214). Respondents were randomly sampled from the German-speaking 
population aged 14 and above. Demographic information collected from survey participants 
includes sex, age, employment status, school-leaving qualification, household net income 
(grouped), preferences for the next federal election and past voting behavior. In the main 
survey, participants were asked to evaluate COVID-19 measures taken by the German 
government as well as other topics, varying with each wave.  Frequently, this included questions 
on credibility of information provided on the pandemic by the German government and 
questions related to risk perception. 
 

Statistical analysis of diminishing risk perception 
 
In three recurring questions of the survey, respondents were asked to rank the risk of infection 
for themselves, for their family members as well as the risk of spreading the disease to others. 
Surveyed individuals could respond to this question on a four-point rating scale. For our 
analysis of a potentially diminishing risk perception, these were matched with available data on 
7-day incidence. The smallest possible geographic unit for matching both data was found to be 
the German state level. As no information on state of origin is available in [1] before August 
2020, we only include data from thereafter. This results in 21 dates for which risk perception 
and incidence levels can be matched for each German state (n = 336). While the individual risk 
assessments in individual responses are on an ordinal scale, we assume that these can be treated 
as metric after calculating averages across the sample of each wave. To simplify the analysis 
and interpretation of results, we combine the data from three risk perception related questions 
into a composite variable. We calculate the arithmetic mean of the three variables for each state 
and date, which may also somewhat correct for the optimism bias common when merely the 
perceived infection risk for oneself is considered. Note, however, that we also repeated the 
analysis documented below for the three individual variables and the results proved robust, 
albeit with slight differences in effect sizes.  

Statistical models 

Let 𝑦!,# represent the dependent variable, perceived risk, in state j at time t. Further, 𝑥!,# 
represents incidence level in state j at time t and, and 𝑑# denotes a numeric representation of 
the date [2, 3]. For ease of interpretation, we convert this so that the first date in our data is 
represented by the number 1 and increases by 1 each day.  
 
As a first step, we estimate a simple linear model (Model A): 
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Model A 𝑦!,# =	𝛽$ +	𝛽% ∙ ln+𝑥!,#, +	𝛽& ∙ 𝑑# + 𝜖 

 
 
Note, however, that linear regression models have a number of relevant limitations with respect 
to time series due to, among other things, the assumption that observations are independent 
from one another [3]. We thus proceed to estimate two linear mixed effect models, which can 
handle clustered and hierarchical data in small sample sizes and provide more flexibility in 
modeling the data's underlying structure [4]. In Model B and C, we assume incidence and the 
numeric time variable as fixed effects. Model B includes a state-level random effect 𝑏'#(#) to 
account for unobserved heterogeneity among the 16 German federal states. 
 
Model B 𝑦!,# =	𝛽$ +	𝛽% ∙ ln+𝑥!,#, +	𝛽& ∙ 𝑑# + 𝑏'#(#) + 𝜖 

 
To investigate whether there are temporal patterns in the data beyond the linear progression of 
time (such as seasonal variations due to weather changes) we estimate a random effect 𝑏*(#), 
allowing the model intercept to vary for each observed date. 
 
Model C 𝑦!,# =	𝛽$ +	𝛽% ∙ ln+𝑥!,#, +	𝛽& ∙ 𝑑# 	+ 𝑏*(#) + 𝜖 

 
The results of the regression analyses are presented in S2 Table 1. Across all models, both 
predictor variables are significant and show the hypothesized sign: Perceived risk increases 
with incidence and decreases with the passage of time. While the effect size of 𝑑# may seem 
small at first glance, note that the distribution of the response variable is relatively small, with 
a mean of 2.14 (min: 1.50; max: 2.69), whereas 𝑑# covers 610 days. In Fig 6 in Section 4.2.1, 
we present a partial effects plot depicting the impact of 𝛽& over time at a given level of 
incidence. We used AIC to support model selection and find that the Model C indicates the 
overall best model fit, explaining about 60% of the variance in the data, with fixed effects 
accounting for 36%. 
 
 

S2 Table 1. Regression results supporting Section 4.2.1 
 

  Model A Model B Model C 

   Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept 1.96 1.90 –  
2.01 

<0.001 1.95 1.89 –  
2.00 

<0.001 2.06 1.96 –  
2.16 

<0.001 

ln#𝑥!,#% 0.11 0.09 –  
0.12 

<0.001 0.11 0.09 –  
0.12 

<0.001 0.07 0.05 –  
0.10 

<0.001 

𝑑# -0.001 -0.001 –  
-0.001 

<0.001 -0.001 -0.001 –  
-0.001 

<0.001 -0.001 -0.001 –  
-0.001 

<0.001 

Random effects 

𝑏$#%#& / 𝑏'%#&   0.02 0.01 

τ00   0.00 state 0.01 date 

N   16 state 21 date 

Observations 336 336 336 



 3 

R2 / R2 adjusted 0.479 / 0.476 0.485 / 0.517 0.358 / 0.591 

AIC -347.69 -351.93 -417.18 

Notes: The table with model outputs was generated using the R package sjPlot [5]. The package calculates marginal and 
conditional R-squared values based on [6]. 
 
 
Model diagnostic plots 
 
Models B and C were subjected to standard goodness-of-fit tests for mixed effect models. We 
tested for multicollinearity through the calculation of variance inflation factors, which were 
found to be between 1.4 and 2.2 and thus in an acceptable range. In S2 Fig 1, we present a 
number of diagnostic plots for Model C that were used to assess the validity of all models.  
 
 

 
 

S2 Fig 1. Diagnostic plots for Model C 
 
Panel A of S2 Fig 1 visualizes the overall model fit by plotting predicted against actual values. 
Panel B depicts model residuals, which do not show discernible patterns or signs of 
heteroscedasticity. In Panel C, the model residuals are plotted over the observed time period, 
exhibiting no visible pattern of temporal autocorrelation. Notably, the random effects plot in 
Panel D indicates a weak seasonal pattern introduced through the inclusion of date as a random 
effect, where the intercepts tend to increase slightly during most winter months.  
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Statistical analysis of eroding trust and compliance 
 
The data used in the analysis on trust in government information and assessment of containment 
measures also stem from [1]. All variables pertinent to the following analysis are listed in S2 
Table 2, whereas the core interest is placed on (i) perceived credibility of government 
information and (ii) assessment of containment measures. Considering only survey waves for 
which data on both questions are available, 36 waves between April 2, 2020, and April 27, 
2022, remain for analysis. For simplicity, we exclude responses from further analysis with the 
answer “I don’t know”, which correspond together with NA values to 2.0% and 0.9% for 
assessment and credibility, respectively.  
As S2 Table 2 indicates, the data is collected through rating items with differing levels. For 
ordinal response variables, ordinal logistic regression methods are considered the standard and 
more robust than metric approaches [7, 8]. Traditional regression methods, however, 
incorporate ordinal predictors by treating these as nominal or numerical variables, with the risk 
of under- or overestimating their effects [9]. We thus employ a Bayesian approach using the R 
package brms [10], which allows for the inclusion of monotonic ordered predictors [9, 11]. We 
estimate two ordinal regression models with weakly informative priors, running four chains for 
2,000 iterations. Algorithm convergence was confirmed through visual checks (“traceplots”) 
and the Rhat statistic. In the basic, univariate model, assessment is the dependent variable, with 
credibility as predictor. We extend this to a multivariate model by controlling for a number of 
socio-demographic variables. While we treat most other predictors as nominal, we also include 
income as a monotonic ordered predictor. 
S2 Table 3 contains the summary of model results. It indicates that the thresholds for response 
variable categories as well as the effect of credibility are significant and robust across both 
model specification. The direction of effects is as expected: An increase in the credibility 
variable leads to an increase in assessment (note the levels of each variable in S2 Table 2). 
Another significant effect in the multivariate model is age above 60 years, which is consistent 
with this age group having a higher risk of mortality and thus less inclination to consider 
containment measures “go too far”. A comparison of both models was carried out using the 
leave-one-out information criterion (LOOIC), a Bayesian information criterion based on out-
of-sample predictive performance. The comparison of LOOIC values (see S2 Table 3) indicated 
that the multivariate model has an overall better model fit, with a difference of more than two 
standard errors, indicating substantial improvement in large data sets [7]. We thus use this 
model to develop the conditional effect plot (Fig 8) presented in Section 4.2.2. 
 
 

S2 Table 2. Model variables: Government credibility and assessment of response. 
 

Variable name Description Levels 

assessment 
How do you assess the current 

political measures to contain the 
coronavirus? 

1: Not far enough 
2: Adequate 
3: Go too far 

credibility 

How credible do you consider 
information from the German 

government on the corona crisis to 
be? 

1:Very credible 
2: Rather credible 
3: Less credible 
4: Not credible 

sex Sex 
1: male 

2: female 

age Age 
1: 14-29 
2: 30-44 
3: 45-59 
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4: 60+ 

education School leaving certificate 
1: secondary school 

2: middle degree 
3: university / Abitur 

income Household net income 
1: below 1,500 Euro 

2: 1,500 – 3,000 Euro 
3: 3,000 Euro or more 

Note that the original coding of the data from [1] were changed here so that the order of categories used for 
analysis is reflected in this Table. 
 
 

S2 Table 3. Results of ordinal regression. 
 

Variable 
 Univariate model Multivariate model 
 Posterior mean 95% CI Posterior mean 95% CI 

Thresholds 
Insufficient| 
adequate 

 -0.32 [-0.34; -0.30] -0.31 [-0.35; -0.27] 

adequate| 
excessive 

 1.24 [1.22; 1.27] 1.26 [1.22; 1.31] 

Predictors 
credibility  0.45 [0.43; 0.46] 0.45 [0.44; 0.47] 

sex 
male - - Reference value 
female - - -0.02 [-0.04; 0.00] 

age 

14-29 - - Reference value 
30-44 - - 0.04 [-0.00; 0.08] 
45-59 - - -0.04 [-0.08; -0.00] 
60+ - - -0.24 [-0.27; -0.19] 

education 
secondary school - - Reference value 
middle degree - - 0.13 [0.10; 0.17] 
university / Abitur - - 0.12 [0.09; 0.16] 

Income  - - 0.02 [-0.00; 0.04] 
Simplex Parameters 

credibility 

Very credible Reference 
Rather credible 0.12 [0.10; 0.14] 0.14 [0.12; 0.16] 
Less credible 0.29 [0.27; 0.31] 0.29 [0.27; 0.32] 
Not credible 0.59 [0.57; 0.61] 0.57 [0.55; 0.59] 

LOOIC    82598.6  82044.3 
SE   203.5  203.4 

Notes: The values in parentheses refer to 95% credible intervals, with bold letters indicating CI do not include 0. 
For a detailed description of monotonic ordered predictors and simplex parameters in brms see [9]. The simplex 
parameters for the income predictor were not included as there was no significant effect. 
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