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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this manuscript entitled "Development of a novel non-invasive biomarker panel for 

hepatic fibrosis in MASLD," the authors explored novel fibrosis markers in MASLD. They 

used HFD-fed LDLr-/-, Leiden mice as MASH mice model and measured gene expression 

levels in the liver. Besides, they also determined the fractional collagen synthesis rate using 

the D2O-labeling method, and extracted a group of genes that correlated strongly with the 

fractional collagen synthesis rate. On the other hand, using liver tissue from MASLD 

patients, they identified genes whose expression varied in cases of fibrosis development, 

narrowed down the candidate proteins that overlapped with the gene groups identified in 

mice, and further examined proteins that could be detected in blood, resulting in 11 

candidate biomarkers. In the validation cohort, they confirmed that these candidate 

proteins fluctuate with fibrosis progression and that the combination of the three proteins 

can predict the stage of liver fibrosis well by machine learning. 

MASLD is assumed to be the largest chronic liver disease, so it is clinically very important to 

find useful non-invasive fibrosis markers in MASLD. And use of D2O-labeling for marker 

search is a novel approach. However, as the authors also stated in the manuscript, there are 

no data on whether the combination of these three proteins is really clinically significant, so 

it is difficult to conclude that their marker panel is useful clinically. In addition, there are 

many points should be clarify as to why this method was taken in each step of the 

refinement of marker candidates. 

1. The authors used the HFD-fed LDLr-/-, Leiden mice, which exhibits the steatohepatitis 

phenotype. Why did the authors use the mice first? Is it not possible to use an alternative 

model such as Western diet for wild-type mice? 

2. In this study, the fractional collagen synthesis rate by D2O labeling was measured in the 



process of narrowing down the genes involved in fibrosis. However, it is unclear why D2O-

labeling is chosen. It is well known that long-term HFD increases collagen production in the 

liver. Since the amount of collagen production in the liver correlates well with mRNA 

expression of fibrogenic genes such as Col1a1 and Col1a2, if we want to search for genes 

that increase with fibrosis progression, we can narrow down the genes that are correlated 

with Col1a1 and Col1a2. 

3. MASLD is a new concept, and diagnostic criteria have been proposed by AASLD. This 

diagnostic criterion requires the presence of cardiometabolic risk factors, but there is no 

clinical information on these factors in this manuscript. Without this information, they 

cannot state that samples are from MASLD patients. 

4. After identification of genes whose expression changed by fibrosis progression, they 

narrowed down the candidate proteins that overlapped with the gene groups identified in 

mice. As mentioned above, the degree of fibrosis progression correlates with the expression 

of fibrogenic genes. If they want to search for genes that fluctuate according to fibrosis 

progression, why not pick up genes that are strongly correlated with fibrogenic genes mRNA 

expression in human liver tissue? In fact, the expression levels of SSC5D, SEMA4D, and 

IGMP7 which were finally picked up as candidate proteins, are not that high in HFD-fed LDLr 

-/- mice, giving the impression that the mice may not have been necessary to narrow down 

the markers. 

5. When machine learning is used to determine the diagnostic performance of fibrosis 

progression, it is not possible to determine whether the extracted protein groups are useful 

or whether the machine learning has increased the diagnostic performance. If they would 

like to state that these marker proteins are clinically useful, how well the candidate proteins 

predict fibrosis compared to existing fibrosis markers without machine learning should be 

described. 

6. In order to examine clinical utility, an appropriate cutoff value should be established for 

fibrosis diagnosis and validated in a separate cohort using the cutoff value to analyze 

positive predictive and false positive rates. 

7. The main clinical problem in MASLD is not so much the development of fibrosis itself, but 

the development of cirrhosis, decompensated events, and liver cancer. If this group of 

marker proteins is clinically important, its association with the incidence of these events 

should also be examined. 



Reviewer #2 (Remarks to the Author):

The authors attempt to establish a novel panel of blood-based biomarkers that is 

mechanistically linked to the fibrogenic process: transcriptomics + proteomics -> a nice 

approach of selection 

General comments 

-Manuscript well written and easy to read. 

-This concept is not completely novel, as there have previously been studies using ML tools 

to integrate clinical and 'omics data such as Perakakis et al, 

https://doi.org/10.1016/j.metabol.2019.154005; Moolla et al, 

https://doi.org/10.1111/apt.15710; Castane et al, https://doi.org/10.3390/biom11030473. 

The authors should have referenced these studies, and placed theirs in the context of these 

studies. Some of these also examine fibrosis associated with MASH as outcome. 

-It would also benefit from a head-to-head comparison with current non-invasive 

biomarkers 

-Also, it would have been best to have an external clinical validation set 

-Why was the LDLr-/- chosen as MASLD mouse model? It is not as reflective of human 

MASH, and was used here as the training set which in my mind is a bit problematic. By using 

the LDLR-/- model, they are likely to have missed out on truly biologically relevant 

biomarkers 

-In the gene set enrichment analysis, F3+F4 groups were compared to F0. However, in the 

modelling, F3+F4 groups were compared to F0+F1. Based on Figure 4A, there are clearly 

DEGs between F1 vs. F0. It would be good to comment on this. 

-It is unclear whether the fibrosis biomarker candidate list is based on the overlap of 645 

DEGs chosen based on transcriptomics + proteomics in the mouse experiment (correlating 

with collagen synthesis) and the human liver transcriptomics data (Line 309-312) 

-The 3 final biomarkers do not seem to be the most significant/changed biomarkers based 



on Figure 4D-E. It would be good to highlight the 21 candidate blood-based biomarkers (line 

323) or at least the 11 biomarkers that meet the criteria (328) on Figure 4D-E to show how 

significant their changes are and comment on this 

-Although Sema4D was one of the three best performing features, it does not seem to 

change much in the serum of the independent validation cohort (supplementary figure 1), 

comment? 

-Line 385-387: I do not see the direct correlation of all 3 biomarkers with dynamics of 

collagen deposition especially in the liver, except for IGFBP7 and Sema4D. Further, SSc5D is 

lowly expressed in the liver, comment? 

Methods-associated Comments: 

-How was the data normalized before presenting it to the LightGBM model? 

-The full list of features used to train the models is not clearly specified. If both clinical and 

gene expression were used as features, how were they integrated? 

- Fig. 5: - How were the features' importance computed? 

- The ML model used 10-fold CV. How well do the feature importance hold up across the 10-

folds? 

- Fig. 6 

- The confusion matrix reports the model's performance on the test set. However, this is a 

randomly selected subset of 38 samples and performance on this subset may not be 

indicative of the overall performance on the full 128 samples. Also, it is not clear why an 

unbalanced set of 8-8-22 samples were used in the test set. 

- It would be good to provide additional performance metrics such as, NPV, PPV and F1-

score (given that it is an unbalanced test set) 



-Suppl Fig. 2 

- It is very surprising that adding sex and BMI reduces the model's performance so 

significantly. Given that this is a decision tree-based ensemble model, shouldn't the model 

be able to pick the right features even when some additional features are provided? 

- The fig. states that 20-fold CV was used whereas in the Methods section (Line 254) it is 

mentioned as 10-fold cross validation is used. 

- Line 252: It is unclear how the LDA features were computed and used. Were they 

computed independently per fold? While the LDA features were deemed important they do 

not show up in Fig. 5. It is surprising the LightGBM model were unable to learn the features 

learnt using LDA. What was the performance without using LDA? 

- Line 254: Given the 10-fold CV the validation set had 9 samples per fold, i.e., 3 samples per 

class per fold. Having such a small validation set can lead to the selection of a biased model. 

It would be good if the variability in performance across folds is reported. In general, in 

addition to providing the model's performance on the test set, it's performance on the 

training and validation set must also be reported. 

Minor comments 

- Suggestion: Since there are multiple sources of data (murine, human) and several methods 

of measurement (transcriptome, liver lipid analysis, proteomics etc.) as well as several 

analysis (DEG analysis, correlation analysis, ML-based modelling etc.), it would be good to 

have a block diagram that describes the connections between these. 

-The AUC value for F0/F1 reported in Abstract Line 53 is 0.87 whereas the same value 

reported in Line 351 in the Results is 0.82. 

-Line 247: The F0-F4 described in the ML analysis section are assumed to correspond to the 

Stage 0-4 of fibrosis described in Line 235. 



-Figure 3c, 4c are not legible 

-Inconsistency in writing the fibrosis stage 

What are the triangles (inverted or not) depicting on Supplemental Figure 1? 

-GSE data should be available, but did not receive the secure token



Dear reviewers,  

We value your insights and constructive feedback. This gave us the opportunity to improve our 

manuscript. We are delighted to inform you that we have thoroughly addressed your comments as 

highlighted in this rebuttal. Our revised manuscript now includes additional results that not only 

address the your comments but also substantiate our previously reported findings. 

REVIEWER COMMENTS

Reviewer #1: 

In this manuscript entitled "Development of a novel non-invasive biomarker panel for hepatic 

fibrosis in MASLD," the authors explored novel fibrosis markers in MASLD. They used HFD-fed 

LDLr-/-, Leiden mice as MASH mice model and measured gene expression levels in the liver. 

Besides, they also determined the fractional collagen synthesis rate using the D2O-labeling 

method, and extracted a group of genes that correlated strongly with the fractional collagen 

synthesis rate. On the other hand, using liver tissue from MASLD patients, they identified genes 

whose expression varied in cases of fibrosis development, narrowed down the candidate proteins 

that overlapped with the gene groups identified in mice, and further examined proteins that could 

be detected in blood, resulting in 11 candidate biomarkers. In the validation cohort, they 

confirmed that these candidate proteins fluctuate with fibrosis progression and that the 

combination of the three proteins can predict the stage of liver fibrosis well by machine learning. 

MASLD is assumed to be the largest chronic liver disease, so it is clinically very important to find 

useful non-invasive fibrosis markers in MASLD. And use of D2O-labeling for marker search is a 

novel approach. However, as the authors also stated in the manuscript, there are no data on 

whether the combination of these three proteins is really clinically significant, so it is difficult to 

conclude that their marker panel is useful clinically. In addition, there are many points should be 

clarify as to why this method was taken in each step of the refinement of marker candidates.

1.1. . The authors used the HFD-fed LDLr-/-, Leiden mice, which exhibits the steatohepatitis 

phenotype. Why did the authors use the mice first? Is it not possible to use an alternative model 

such as Western diet for wild-type mice?

We have selected this mouse model based on several years of studying and comparing different 

mouse models. The chosen model seemed to be comprehensive in terms of mimicking complex 

human pathophysiology and its translatability on multiple levels including histology, pathways, and 

plasma metabolome (e.g. van Koppen et al., Cell Mol Gastroenterol Hepatol 2017; Morrison et al., 

Hepatol Communic 2018; Morrison et al., Frontiers of Physiology 2018; Martinez-Arranz et al., 

Hepatology, 2022) as well as in its responses to exercise, nutritional and pharmaceutical treatments 

(e.g. van den Hoek et al., Metabolism, 2021; van den Hoek et al. Cells 2020 and unpublished data with 

a.o. selective agonists of thyroid hormone receptor‐β).  

Our choice for the LDLr-/-.Leiden model was strengthened by a study published by Teufel et al. (Teufel 

et al. Gastroenterology. 2016), which compared various mouse models of MAFLD/MASH with human 

pathophysiology on the gene expression and pathway level. This study demonstrated minimal gene 

expression overlap when comparing liver tissues from patients representing different stages of the 

disease and nine MAFLD/MASH mouse models, including C57BL/6 mice on a Western-type diet. Using 

their open access datasets, we compared longitudinal gene expression datasets from various 

experimental models (including the HFD-fed LDLr-/-.Leiden mouse) with the same human gene 



dataset as Teufel et al. (GSE48452). This comparison revealed that the LDLr-/- .Leiden model exhibits 

approximately a 50% similarity on the gene-level and 66% similarity on pathway level (see also van 

Koppen et al., Cell Mol Gastroenterol Hepatol. 2017), i.e. the highest overlap from all experimental 

models analyzed. Moreover, we have demonstrated that specific experimental conditions in the LDLr-

/-.Leiden model can recapitulate human disease at the molecular level, including disease pathways 

and upstream regulators (Morrison et al. Front. Physiol. 2018), and extensive head-to-head 

comparisons on the metabolome level with N=535 MAFLD/MASH patients (Morrison et al., Hepatol. 

Communic. 2018) and N=1099 patients (Martínez‐Arranz et al., Hepatology 2022) further 

substantiated the translational character of experimental conditions in HFD-stimulated LDLr-/-.Leiden 

mice. Because of these studies and other (longitudinal) studies in which we tested different diet-

inducible MASH models including LDLr-/-.Leiden mice, C57BL/6 mice, ob/ob mice and KKay mice (e.g. 

Abe et al. Biology Open 2019; van Koppen et al., Cell Mol Gastroenterol Hepatol 2017; Gart et al., 

Heliyon 2023), we were confident that the experimental model conditions being used in this study 

optimally reflect the MASLD and MASH-associated molecular pathways evoked in humans and would 

enable us to identify genes that correlate with collagen formation and that may serve as candidate 

biomarkers. 

We followed the advice of the reviewer to include an alternative model based on wild-type mice, i.e. 

Western-type diet-fed C57BL/6 mice. We conducted a series of additional analyses to compare 

differential gene expression in LDLr-/-.Leiden and C57BL/6 mouse models with the human gene 

expression relevant for liver fibrosis. To do so, we used livers from  LDLr-/-.Leiden mice (HFD vs. Chow) 

and, as suggested by the reviewer, livers from a new study with C57BL/6 mice fed a Western-type diet 

(WTD vs. Chow).  The C57BL/6 mice developed hepatic fibrosis after 24 weeks on a WTD indicating 

successful disease induction. Using RNAseq analysis, we compared (head-to-head and using the same 

statistical criteria) the differential gene expression in these mouse models with that in human liver 

biopsies (i.e. patients characterized with biopsy-confirmed F4 fibrosis vs F0/1).  Figure 1 in this rebuttal 

presents a proportional Venn diagram illustrating the overlap of gene expression between the HFD-

fed LDLr-/-.Leiden mice and WTD-fed C57BL/6 mice (all Padj<0.001), and patients with F4. The analysis 

demonstrates that mouse models only partially reflect the human gene expression profile and that 

the LDLr-/-.Leiden mouse was more comprehensive and had greater overlap with humans and 

captured most of the genes identified in WTD-treated C57BL/6 mice. Only a small proportion of genes 

(30 genes) were uniquely found in WTD-treated C57BL/6 mice, most of which encoding for 

intracellular proteins that are not suitable as plasma biomarkers. By contrast, the HFD-fed LDLr-/-

.Leiden mice expressed much more human genes that were not identified in WTD-treated C57BL/6 

mice (915 genes) which supports our initial choice to use the HFD-treated LDLr-/-.Leiden mouse as a 

model. Thus the use of Western-type diet-fed C57BL6 mice instead of LDLr-/-.Leiden mice would have 

resulted in a much lower set of candidate biomarkers.   

We added a section in the discussion on the mouse model as well as a supplement figure 4 of the 

manuscript.  



Figure 1. Venn diagram showing the overlap of DEGs in the Western-type diet-treated C57BL/6 mice 

and High fat diet-treated LDLr-/-.Leiden mice as compared to respective chow fed controls. The 

DEGs of the mouse studies were compared to DEGs (all Padj<0.001) in human liver (comparison of 

biopsy confirmed F4 vs. F0/1 livers  from MASLD patients).  

1.2.  In this study, the fractional collagen synthesis rate by D2O labeling was measured in the 

process of narrowing down the genes involved in fibrosis. However, it is unclear why D2O-labeling 

is chosen. It is well known that long-term HFD increases collagen production in the liver. Since the 

amount of collagen production in the liver correlates well with mRNA expression of fibrogenic 

genes such as Col1a1 and Col1a2, if we want to search for genes that increase with fibrosis 

progression, we can narrow down the genes that are correlated with Col1a1 and Col1a2.  

It is correct that in some cases, the genes Col1a1 and Col1a2 exhibit a regulatory mRNA expression 

pattern that aligns with that of the translated protein. However, it has also been demonstrated that 

mRNA and protein concentrations can deviate  because there are distinct regulatory mechanisms for 

these genes compared to their protein counterparts (Mia & Bank, Cell Tiss Res (2016); Schwarz, 

Biochem Biophys Rep (2015); Namba et al., Circulation (1997)). Our approach circumvents this issue 

and concentrates on D2O-labeled collagen protein and is thus independent of a potential mismatch 

between mRNA and protein or MAFLD/MASH-associated changes in Col1a1 and Col1a2 mRNA 

transcription or mRNA stability. In addition: collagen, known for its complexity, undergoes a range of 

post-translational modifications, including lysyl hydroxylation, prolyl hydroxylation, and crosslinking. 

These modifications significantly influence the final protein product and a stable deposition of 

collagen. Given this complexity, our research has focused on correlating biomarkers directly with 

deposited (newly synthesized) collagen. To understand the dynamics of collagen protein synthesis, we 

used D2O (heavy water) labeling. This method was a great tool for differentiating the newly formed 

collagen from the collagen already present in the tissue. While other dynamic markers could be used, 

D2O labeling was preferred due to its ease of administration in mice via drinking water, as opposed to 

more laborious methods needing daily injections. 

1.3.  MASLD is a new concept, and diagnostic criteria have been proposed by AASLD. This 

diagnostic criterion requires the presence of cardiometabolic risk factors, but there is no clinical 



information on these factors in this manuscript. Without this information, they cannot state that 

samples are from MASLD patients. 

The reviewer is right, these data were not included in the manuscript although the information was 

available to us. The patients in the testing cohort met the diagnostic criteria for MASLD as outlined by 

the AASLD (Ref. Rinella et al. Ann Hepatol 2024 Jan-Feb;29(1):101133). The distribution of patients 

was as follows: 8 patients met 1 criterion; 25 patients met 2 criteria; 33 patients met 3 criteria; 21 

patients met 4 criteria; and 41 patients met all 5 criteria. In the material and methods section of the 

manuscript it now has been addressed that the patients included in the cohort are MASLD patients.  

1.4. After identification of genes whose expression changed by fibrosis progression, they narrowed 

down the candidate proteins that overlapped with the gene groups identified in mice. As 

mentioned above, the degree of fibrosis progression correlates with the expression of fibrogenic 

genes. If they want to search for genes that fluctuate according to fibrosis progression, why not 

pick up genes that are strongly correlated with fibrogenic genes mRNA expression in human liver 

tissue? In fact, the expression levels of SSC5D, SEMA4D, and IGMP7 which were finally picked up 

as candidate proteins, are not that high in HFD-fed LDLr -/- mice, giving the impression that the 

mice may not have been necessary to narrow down the markers. 

The reviewer is right that it would have been less laborious to identify potential biomarker genes by 

directly comparison to the expression of fibrotic genes in human liver tissue. This has been done by a 

number of other research groups. However, our focus was to identify the novel biomarkers based 

their relation to the dynamic process of new collagen formation. Since dynamic labeling studies are 

not easy to perform in humans, we chose an alternative route and conducted the dynamic labeling 

study in a relevant mouse model. As already indicated in the previous question of the reviewer, there's 

a noteworthy observation that Col1a1 and Col1a2 genes do not always exhibit the same regulatory 

patterns at the gene level as they do at the protein level.  

1.5.  When machine learning is used to determine the diagnostic performance of fibrosis 

progression, it is not possible to determine whether the extracted protein groups are useful or 

whether the machine learning has increased the diagnostic performance. If they would like to 

state that these marker proteins are clinically useful, how well the candidate proteins predict 

fibrosis compared to existing fibrosis markers without machine learning should be described. 

Thank you for raising the interesting discussion on the role of machine learning (ML) in diagnosis. It is 

important to understand the diagnostic performance in fibrosis in relation to the levels of the protein 

biomarkers. As always, the diagnosis is depending on the biomarker levels in serum. A Machine 

Learning model uses these levels to define classifications; it can only increase the diagnostic 

performance if the biomarkers, individually or in combination, have sufficient predictive information 

about the fibrotic stage. In our view, a machine learning model is therefore eminently suitable to make 

predictions based on multi biomarker analyses.  

To further show and validate the predictive value of the machine learning-based model, we conducted 

a second validation study in an independent patient cohort. This also gave us the opportunity to 

compare the performance of our model to that of other existing NITs. The study confirmed the power 

of the model (Figure 7 in the manuscript), the data regarding the NITs comparison are shown in figure 

3 in this rebuttal and are added to the manuscript as supplemental figure 3. By providing these 

additional analyses, we aimed to demonstrate the clinical relevance of our findings.  



1.6.  In order to examine clinical utility, an appropriate cutoff value should be established for 

fibrosis diagnosis and validated in a separate cohort using the cutoff value to analyze positive 

predictive and false positive rates.  

As commented above in our view the diagnostic value is not solely restricted to the absolute cutoff 

values of the biomarker proteins but is based on the intrinsic power of machine learning models to 

make decisions based on multiple biomarker concentrations. To underline the importance we have 

now validated the model generated from one study in a completely independent patient cohort, 

including the accuracy, specificity, sensitivity and prediction. These data are shown in Figure 7F and 

supplemental figure 3 of the manuscript.   

1.7. The main clinical problem in MASLD is not so much the development of fibrosis itself, but the 

development of cirrhosis, decompensated events, and liver cancer. If this group of marker proteins 

is clinically important, its association with the incidence of these events should also be examined.  

It is a known and valid point that the main clinical burden of MASLD is the presence of cirrhosis with 

decompensated events, and increased risk of liver cancer. However, all these complications start with 

fibrosis, or fibrosis increases the risk of complications. Fibrosis is therefore accepted as a proxy for 

metabolic dysfunction-associated liver end points. In this study we therefore first focused on the non-

invasive diagnosis of liver fibrosis, which itself is a clinical challenge, but we agree completely with the 

reviewer  that it is highly interesting and informative to also study the association of the biomarker 

set with the clinical end-points. We hope to perform this analysis in future studies. 

Reviewer #2: 

The authors attempt to establish a novel panel of blood-based biomarkers that is mechanistically 

linked to the fibrogenic process: transcriptomics + proteomics -> a nice approach of selection 

General comments 

-Manuscript well written and easy to read.

2.1 -This concept is not completely novel, as there have previously been studies using ML tools to 

integrate clinical and 'omics data such as Perakakis et al, 

https://doi.org/10.1016/j.metabol.2019.154005; Moolla et al, https://doi.org/10.1111/apt.15710; 

Castane et al, https://doi.org/10.3390/biom11030473. The authors should have referenced these 

studies, and placed theirs in the context of these studies. Some of these also examine fibrosis 

associated with MASH as outcome.

We thank the reviewer for the positive comments on the manuscript. The reviewer is right that other 

studies have been performed that use ML to integrate clinical and omics data. However, as far as we 

know these studies are based on combining omics data with pathological phenotypes such as fibrosis 

associated with MASH. The novel approach of our study is that we include dynamics of the 

pathological process in the identification of new biomarkers. So directly relate the novel biomarkers 

to the process of fibrosis formation. To address that ML models have been used before for the 

identification of new biomarkers we have referred to the Castane et al review- paper in the discussion 

section.  

2.2 It would also benefit from a head-to-head comparison with current non-invasive biomarkers 

We agree with the reviewer that comparing our novel biomarker-based model, hereafter referred to 

as the TLM3 model (TNO LGBM MASLD model, based on three biomarkers) with existing non-invasive 

tests (NITs) could yield significant insights. To perform a relevant head-to-head comparison all NITs 

https://doi.org/10.1016/j.metabol.2019.154005;
https://doi.org/10.1111/apt.15710;
https://doi.org/10.3390/biom11030473.


should be analyzed in one identical cohort. Therefore, we initiated a new collaboration with professor 

in hepatology, Prof. Dr. Lise Lotte Gluud from the Copenhagen University and Hospital Hvidovre in 

Denmark. She provided us with 156 serum samples and non-invasive biomarker data from their 

prospective cohort study of patients with biopsy-proven MASLD and fibrosis (NCT04340817). We have 

used the data from this independent cohort to compare the performance of our novel model with 

three established NITs, i.e. FIB-4, APRI and FibroScan. The patients were divided into 3 groups F0/F1 

(66 patients), F2 (30 patients) and F3/F4 (60 patients). The data obtained from this independent 

validation study has been added to the manuscript (Results section and Figure 7) and a description of 

the clinical characteristics of the patients in the validation cohort has been added to Table 3 of the 

manuscript and the Material and Methods section. 

We first assessed the accuracy of our TLM3 model in predicting all Fibrosis score subgroups (see also 

response to reviewer’s next question 2.3) and compared it with the aforementioned non-invasive 

tests. Furthermore, a detailed head-to-head comparison was conducted focusing on the Sensitivity, 

Specificity, and Precision of each NIT and their predictive value. 

Our findings indicate that in the independent validation cohort from Denmark, our model, 

demonstrates superior accuracy over the other NITs, FIB4, FibroScan and APRI (Figure 3F in this 

rebuttal; Figure 7F in the manuscript). In terms of Sensitivity, Specificity, and Precision, TLM3 proved 

to be more robust compared to its counterparts. All NITs, including TLM3 are less predictable for the 

F2 subgroup versus the other subgroups. Among the tests, FIB4 and APRI show effectiveness in 

predicting F0/F1 stages, while FibroScan demonstrates the ability in predicting F3/F4 stages. However, 

FIB4 and APRI are found to be poor predictors for F3/F4 stages, and FibroScan is not effective in 

predicting F0/F1 stages. TLM3 stands out for its ability to accurately predict both F0/F1 and F3/F4 

stages, as reflected in its highest overall accuracy. (Figure 2 in this rebuttal; Supplemental Figure 3 in 

the manuscript). 



Figure 2: Overview of model performances of different NITs in Sensitivity, Specificity, and Precision of 

A) Fibrosis stages F0/F1, B) Fibrosis stage F2, and C) Fibrosis stages F3/F4. 

2.3 – Also, it would have been best to have an external clinical validation set  

We agree with the reviewer that an additional independent cohort for predicting biomarker 

performance would be very informative. As mentioned above, we initiated a collaboration with Prof. 

Dr. Lise Lotte Gluud (MD) from the Copenhagen University and Hospital Hvidovre in Denmark. The 

patients of this additional validation cohort were divided into 3 groups F0/F1 (66 patients), F2 (30 

patients) and F3/F4 (60 patients). The data obtained from this independent validation study has been 

added to the manuscript (results section and Figure 7) and a description of the clinical characteristics 

of the patients in the validation cohort has been added to the Material and Methods section. 

We analyzed serum protein levels for the identified potential biomarkers in an independent Danish 

prospective MASLD cohort, in a similar way as performed in the testing cohort. Following these 

measurements, we applied the TLM3 model on the protein data to predict the F-stage of these 

patients. The new data confirmed the predictive accuracy of our initial study, with an AUC of 0.84 for 

both the F0/F1 and F3/F4 subgroups (see Figure 3 in this rebuttal; Figure 7 in the manuscript). The 

prediction of the F2 subgroup was more modest in this Danish external validation cohort than in the 

Dutch cohorts from the initial study.  



Figure 3: Serum levels of A) IGFBP7, B) SSc5D, C) SEMA4D as measured in samples from patients 

from the Danish validation cohort. Values represent mean ± SD. *indicates P<0.05. D) AUROC curve 

to show the predictive value of this set of biomarkers to distinguish the individual MASLD fibrosis F-

scores (F0/F1 versus F2 versus F3/F4). E) Confusion matrix of the hold-out set of predicted and true 

classes. F) Overview of model performances (accuracy) of different NITs in predicting fibrosis. 



2.4 Why was the LDLr-/- chosen as MASLD mouse model? It is not as reflective of human MASH, 

and was used here as the training set which in my mind is a bit problematic. By using the LDLR-/- 

model, they are likely to have missed out on truly biologically relevant biomarkers. 

We understand this concern because the identification of our biomarkers is primarily based on gene 

expression changes and deuterated water labeling analyses in high fat diet-treated fed LDLr-/-.Leiden 

mice developing MAFLD and fibrosis. We address this concern and checked for potentially missed 

biomarkers by a head-to-head comparison of a Western diet fed mouse model (C57BL/6+WTD) and 

HFD-fed LDLr-/-.Leiden mouse (fed LDLr-/-.Leiden) using human gene expression profiling as ground 

truth to estimate the overlap of each model with human gene expression changes. See also data in 

figure 1 in this rebuttal and supplemental figure 4 in the manuscript. 

Figure 1 in this rebuttal demonstrates that the chosen experimental conditions (HFD-fed LDLr-/-

.Leiden mice) reflects the human gene expression profile that is characteristic for F4 patients better 

than a WTD-treated C57BL/6 mouse model which is a conventional MAFLD/MASH model. The new 

comparative data also demonstrate that the chosen model expresses many (915) human genes that 

are not expressed in the C57BL/6 mouse, while only a few (30 genes) were uniquely expressed by HFD-

treated C57BL/6 mice. The vast majority of these 30 genes encoded for intracellular proteins, such as 

transcription factors (NR1I3, GLIS2), membrane proteins (CXCR4, GPNMB, PRLR, SDCBP2) and 

intracellular kinases (CKB, MAPK15, PPM1K), excluding the potential use as plasma biomarkers. In 

contrast to C57BL/6, a large proportion of DEGs in HFD-fed LDLr-/-.Leiden mice were unique (915 

genes) and overlapped with human DEGs and were not affected in the WTD-fed C57BL/6 mice. Among 

these genes were 3 (SSc5D, FBN and PLAU) out of 11 of the biomarkers described herein. These data 

demonstrate that the use of WTD-fed C57BL/6 mice instead of HFD-treated LDLr-/-.Leiden mice would 

have resulted in a much lower set of overlapping DEGs with humans, and would have resulted in 

missing at least 3 of the described biomarkers. Altogether, we believe that our initial decision to use 

the HFD-fed LDLr-/-.Leiden mouse for this study was the best possible because it was selected on data 

indicating high translatability to human disease which was confirmed by the new results from WTD-

fed C57BL/6 mice. For details regarding the choice of the mouse model please see our response to 

question 1.1 of reviewer 1.  

Since we had, in our view, a relevant mouse model for MASLD we used this as a starting point for novel 

biomarker identification. The advantage of this mouse model is that it enabled us to use the  dynamics 

of fibrogenesis for the identification of novel biomarkers which, for obvious reasons, is not possible to 

do in a human study.  

2.5 In the gene set enrichment analysis, F3+F4 groups were compared to F0. However, in the 

modelling, F3+F4 groups were compared to F0+F1. Based on Figure 4A, there are clearly DEGs 

between F1 vs. F0. It would be good to comment on this. 

The reviewer is right, it seems to be inconsequent to use different comparisons in the gene set 

enrichment analysis and the modeling part of the biomarkers. We decided to use F0 as a control to 

include all potential biomarkers and prevent missing out on relevant ones. However, since 

pathologists explained that in clinical practice it is difficult to discriminate between F0 and F1 fibrosis,  

we chose to use F0/F1 for the modeling phase to make the model more robust and relevant. 

To analyze the potential effect of these choices, we also performed the gene set enrichment analysis 

compared to F0/F1 instead of F0 (See Table 1 below). This analysis showed that as compared to F0, 

the  comparison to F0/F1 did not have consequences for the significance of the biomarkers in human 

biopsies.  



Table 1. Statistical significance of biomarkers on gene level if compared vs F0 or as compared to 

F0/F1.   

2.6 -It is unclear whether the fibrosis biomarker candidate list is based on the overlap of 645 DEGs 

chosen based on transcriptomics + proteomics in the mouse experiment (correlating with collagen 

synthesis) and the human liver transcriptomics data (Line 309-312) 

We apologize for not being clear. The reviewer is right that we have performed correlation analysis of 

the mouse transcriptome with the mouse proteome to select the 645 signature genes. This was 

followed by an overlap analysis of these genes with the DEGs from human liver tissue samples (F3 and 

F4 relative to F0). See figure 4D and E in the manuscript. We have adapted the text in the manuscript 

to clarify this procedure.  

2.7 The 3 final biomarkers do not seem to be the most significant/changed biomarkers based on 

Figure 4D-E. It would be good to highlight the 21 candidate blood-based biomarkers (line 323) or 

at least the 11 biomarkers that meet the criteria (328) on Figure 4D-E to show how significant their 

changes are and comment on this 

It is correct that for the selected biomarkers at gene level (fold induction) they are not the most 

significantly changed ones. However, gene expression and protein expression levels are not always 

directly correlated. We therefore chose to do the selection based on significance (p-value) rather that 

fold induction. This resulted in a human relevant blood based biomarker set which is not one-to-one 

reflected by the strongest regulation at gene level in mouse. Figures 4D-E have been adjusted 

according the reviewer’s suggestion; the 11 biomarkers that met the criteria are marked in red, for 

clarity reasons we kept the marking of three biomarker names instead of marking all 11 biomarkers.  

2.8 Although Sema4D was one of the three best performing features, it does not seem to change 

much in the serum of the independent validation cohort (supplementary figure 1), comment?

We are sorry for the confusion due to having used various cohorts for different purposes. 

The first selection of biomarkers was based on a preclinical study in which genes were identified that 

were related to new collagen deposition in the liver. A next step in the selection procedure was to 

check whether the identified mouse genes were also present in human, and whether these genes 

were translated in soluble secreted proteins which could be detected in the circulation. The following 

step was whether commercial ELISAs were available and to validate whether these ELISAs were 

applicable in human serum samples. The data in Supplemental Figure 1 was used as a qualitative check  

whether the resulting selection of biomarkers could be measured in human serum of MASH patients. 

The number of samples was very low. For clarity we have now added the number of samples in the 

figure legend. The conclusion of this analysis was that finally 11 biomarkers passed the selection for 

further analysis in the testing cohort (128 samples). Sema4D was one of these 11 selected biomarkers. 

It showed upon analysis, including ML modelling,  that together with IGFBP7 and SSC5D, Sema4D was 

in the top 3 of the feature selection, as shown in Figure 5. 

F3/F0 F4/F0 F3/F01 F4/F01

Entrez Gene Name pval pval pval pval

IGFBP7 insulin like growth factor binding protein 7 3,1E-06 4,6E-13 6,3E-08 3,6E-16

SSC5D scavenger receptor cysteine rich family member with 5 domains 1,9E-07 6,0E-09 3,9E-11 2,5E-12

SEMA4D semaphorin 4D 2,5E-04 2,5E-08 3,8E-09 3,6E-14



We have adapted the text in the manuscript to prevent the observed confusion.  

2.9 -Line 385-387: I do not see the direct correlation of all 3 biomarkers with dynamics of collagen 

deposition especially in the liver, except for IGFBP7 and Sema4D. Further, SSc5D is lowly 

expressed in the liver, comment?

The correlation of the gene expression of the three biomarkers with the dynamics of collagen 

deposition has been shown in Supplemental Table 1. The reviewer is right that the gene expression 

level for SSc5D is low in mouse liver (column F), however, all three genes are significantly upregulated 

in HFD fed LDLr-/-.Leiden mice as compared to control chow (columns G and H). Moreover, the three 

genes are directly and strongly correlated with the collagen protein deposition in the liver tissue 

(columns I-M), showing correlation coefficients between 0.86 and 0.98. This result led to taking also 

these three biomarkers (as well as others) as potential candidates to further selection whether they 

are regulated in human and present in the circulation. The study described in this manuscript shows 

that all three biomarkers are well detectable in the circulation of MASH patients and correlated to the 

development of fibrosis. 

Methods-associated Comments: 

2.10 How was the data normalized before presenting it to the LightGBM model?

The dataset was not subjected to normalization (scaling) prior to its application in the LightGBM 

algorithm. It is important to note that, in contrast to linear regression models, decision tree-based 

algorithms—such as Random Forest and Gradient Boosting Machines—do not necessitate data 

normalization. This is because their operational focus is on the segmentation of data rather than its 

variance. Consequently, normalization of the data would merely alter the threshold values utilized by 

the decision trees within the algorithm, without significantly impacting the model’s performance. 

2.11 -The full list of features used to train the models is not clearly specified. If both clinical and 

gene expression were used as features, how were they integrated? 

The features included to train the model were the 3 biomarkers selected from the discovery cohort, 

viz. "IGFBP7 (ng/ml)", "SSC5D (ng/ml)", "SEMA4D (ug/ml)", along with two additional engineered 

features, LD1 and LD2. These latter features were derived through a transformative process utilizing 

a Linear Discriminant Analysis (LDA) model. The generation of LD1 and LD2 involved applying the LDA 

model to the aforementioned biomarkers - "IGFBP7 (ng/ml)", "SSC5D (ng/ml)", and "SEMA4D 

(ug/ml)". Initially, we fitted the training data into the LDA model. This model is designed to learn a 

transformation that maximizes the variance between classes (in our case, the classes refer to different 

fibrosis stage groups) while minimizing the variance within each class. The result of this transformation 

is a dataset with reduced dimensionality, specifically two dimensions, following the principle that the 

number of dimensions is N-1 for N classes. 

Subsequently, the transformed dataset, now encompassing these two new dimensions (LD1 and LD2) 

along with the original biomarker features, was utilized as a five-feature input for the LightGBM model. 

This method was previously performed in a paper described by Chen et al. Sensors 2019, 19(7), 1631. 

This approach allowed us to leverage the enhanced discriminative power of the LDA-transformed 

features in conjunction with the original biomarkers to improve the predictive performance of our 

LightGBM model in the context of MASLD. 

2.12- Fig. 5: - How were the features' importance computed? 



The feature importance is computed as described (ref. Ke et al. Adv Neural Inf Process Syst. 2017;2017-

Decem(Nips):3147–55  and  Ayyanar et al. 6th Int. Conf. Trends Electr. Informatics (ICOEI). 2022. p. 

117–22). To compute feature selection using the LightGBM model, we first trained the model on the 

complete dataset and obtained the feature importance using the Genie index. Next, we selected the 

three most relevant features (SSc5D, Sema4D and IGFBP7) by choosing the top 3 features. Thereafter 

we retrained the LightGBM model with the selected features and evaluated its performance to ensure 

the effectiveness of the feature selection. We have added the feature selection procedure in the 

material and methods section. 

2.13 - The ML model used 10-fold CV. How well do the feature importance hold up across the 10-

folds?

In Figure 5, we have illustrated the distribution of feature importances using box plots to represent 

how the features hold up across 10 folds. Each box plot shows the variance in importance scores for 

a particular feature throughout the cross-validation folds.  

2.14 - The confusion matrix reports the model's performance on the test set. However, this is a 

randomly selected subset of 38 samples and performance on this subset may not be indicative of 

the overall performance on the full 128 samples. Also, it is not clear why an unbalanced set of 8-8-

22 samples were used in the test set. 

The reviewer is right that the test set was relatively small and unbalanced. This is due to the fact that 

in the training set we needed to use a balanced dataset (30-30-30) to train the model and to avoid 

bias. All remaining 38 samples of this cohort were included in the test set. The consequence of using 

a balanced training set is that the test set was unbalanced. Therefore, also in response to the 

reviewers, we used an additional independent validation cohort of 156 patients with biopsy proven 

MASH and fibrosis and performed analyses of the three biomarkers. The performance of the model in 

predicting fibrosis in this cohort is reported in this rebuttal and added to the manuscript (Figure 7).

2.15 It would be good to provide additional performance metrics such as, NPV, PPV and F1-score 

(given that it is an unbalanced test set)

Additional performance metrics such as accuracy, specificity and sensitivity, and prediction have been 

provided for the analysis in the second validation cohort because this dataset is larger (n=156 patients) 

and completely independent. These data have been added to the text in the results section, in figure 

7F and in supplemental figure 3 in the manuscript.  

2.16 - It is very surprising that adding sex and BMI reduces the model's performance so 

significantly. Given that this is a decision tree-based ensemble model, shouldn't the model be able 

to pick the right features even when some additional features are provided?

The reviewer is right that it is surprising that some additional biomarkers reduces the model’s 

performance. On the other hand, it has been described before (e.g. Pfeifer arXiv: 2306.03702 (2023); 

Chen et al., Chemometrics Intell Lab Systems 192, 54-64 (2019); Wang et al., Infrared Physics Technol 

123,  104191(2022))  that these ML models have a tendency to overfit noisy or irrelevant features, 

which can result in decreased general performance. LGBM is a random forest model which suffers 

from similar issues in handling noisy and/or irrelevant features. So if the clinical variables should have 

contributed to the prediction, it would have been resulted in better performance outcome. Our 

results, even after 20x cross-validation, showed no better performance, concluding that the clinical 

variables such as sex and BMI did not contribute to a better model.  

https://365tno.sharepoint.com/teams/T96261/TeamDocuments/Team/Work/2.MANUSCRIPT%20BIOMARKER/submission%20Nature%20Comm/Rebuttal/resubmission%20Nature%20Comm/Ke
https://doi.org/10.1016/j.infrared.2022.104191
https://arxiv.org/pdf/2306.03702.pdf


2.17- The fig. states that 20-fold CV was used whereas in the Methods section (Line 254) it is 

mentioned as 10-fold cross validation is used. 

The reviewer is correct, we used 10-fold CV for the LGBM model performance of the biomarkers. For 

the evaluation of the clinical variables to the model, 20x cross validation was used.  We have adjusted 

this in the  methods section accordingly.  

2.18 -  Line 252: It is unclear how the LDA features were computed and used. Were they computed 

independently per fold? While the LDA features were deemed important they do not show up in 

Fig. 5. It is surprising the LightGBM model were unable to learn the features learnt using LDA. 

What was the performance without using LDA?

The reviewer is right that we did not explain the feature engineering of the method explained 

completely. Therefore we elaborate on this topic here and adjusted the Method section accordingly. 

We trained an LDA model based on the training data. Then, we transformed the training data using 

the LDA model. This resulted in 2 extra features LD1 and LD2. Using the same LDA model we 

transformed the test data such that we had the same features for the test set. These features were 

provided together with the biomarkers to the LGBM model. The same LDA model as developed with 

the training data, was also used in the same way to make prediction from the biomarker data in the 

Danish cohort. They were not computed per fold, but calculated based on the whole training set. 

Figure 5 of the manuscript was used to determine the best performing biomarkers, the LD-features 

were not taken into account in this feature selection.  

We used the LDA to optimize the final model resulting in a somewhat better performance. Without 

the LDA, overall performance was AUC 0.833 while adding the LD1 and LD2 the performance of the 

trainings set improved to AUC 0.87. Accuracy of the LDA alone on trainings set is 0.68. This model was 

used in the validation cohort with the reported performances as described in this rebuttal and the 

manuscript.  

2.19- Line 254: Given the 10-fold CV the validation set had 9 samples per fold, i.e., 3 samples per 

class per fold. Having such a small validation set can lead to the selection of a biased model. It 

would be good if the variability in performance across folds is reported. In general, in addition to 

providing the model's performance on the test set, it's performance on the training and validation 

set must also be reported. 

As indicated above, we agree with the reviewer that the validation set of the testing cohort is rather 

small. Therefore, as suggested by the reviewer, we added the performance throughout the folds. The 

training model has an overall AUC of 0.87 +/- 0.083 based on all subgroups and  its overall accuracy is 

0.744 +/- 0.071. These data have been added in the text of the results section. The deviation of the 

accuracy is not large among the folds in the CV and therefore the model performance could be 

indicated as sufficient.  The best validation of the model is to use an additional independent validation 

cohort. Therefore, 156 patients were included from an additional Danish cohort. The performance of 

our model was evaluated in this independent validation cohort which is reported in this rebuttal 

(figure 2) and in the manuscript (Figure 7).  

Minor comments: 

2.20 Suggestion: Since there are multiple sources of data (murine, human) and several methods of 

measurement (transcriptome, liver lipid analysis, proteomics etc.) as well as several analysis (DEG 

analysis, correlation analysis, ML-based modelling etc.), it would be good to have a block diagram 

that describes the connections between these. 



For clarification we generated an overview of the steps taken in the project to highlight multiple 

sources of data and methods of measurements. If the reviewer and editor like this graphical abstract, 

we can add this as a figure in the supplements.  

[editorial note: figure redacted] 

2.21 The AUC value for F0/F1 reported in Abstract Line 53 is 0.87 whereas the same value reported 

in Line 351 in the Results is 0.82. 

Thank you for observing this important typo in the abstract. We have adjusted the abstract. 

2.22 Line 247: The F0-F4 described in the ML analysis section are assumed to correspond to the 

Stage 0-4 of fibrosis described in Line 235. 

The reviewer is correct, we have adjusted the wording in the Methods section and also checked for 

consequent description of the fibrosis stage throughout the manuscript.  

2.23 Figure 3c, 4c are not legible 

We have adjusted the figures 3c and 4c to enable readability.  

2.24 Inconsistency in writing the fibrosis stage 

The reviewer is correct; we have adjusted the wording throughout the text to make it more 

consequent 

2.25 What are the triangles (inverted or not) depicting on Supplemental Figure 1? 

The reviewer is correct that Supplemental Figure 1 was not clear, we have adjusted the legend of 

Suppl Fig 1 to clarify the triangles in the figures. 

2.26 GSE data should be available, but did not receive the secure token 

For GSE240729, please find here the secure token to access the dataset: : cxqpoaakhrexbmt



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In 1.2, they responded that the reason D2O labeling was necessary was because mRNA and 

protein concentrations can deviate because there are distinct regulatory mechanisms for 

these genes compared to their protein counterparts. I understand the authors' contention 

that D2O labeling is a more appropriate model to evaluate the dynamics of collagen protein 

synthesis. The important question, however, is whether D2O labeling is useful in narrowing 

down biomarkers for MASLD. The authors have shown neither previous reports nor any data 

showing that using D2O labeling to narrow down candidate proteins is more useful than 

looking at correlations with col1a1 mRNA. It is necessary to show how much difference 

there is in the content of candidate proteins between the refinement by D2O labeling and 

the refinement by correlation with Col1a1 mRNA. In addition, the usefulness of D2O labeling 

cannot be claimed unless the final extracted protein is one that can be picked up by D2O 

labeling but not by correlation with Col1a1 mRNA. 

In 1.4, the authors replied that the reason they used mice to narrow down the candidate 

proteins was because D2O labeling was necessary. As noted above, there is concern as to 

whether D2O labeling was necessary in this study. Are the 11 proteins that ultimately 

remained and the 3 proteins used as biomarkers not correlated with Col1a1 mRNA or 

Col1a2 mRNA in human liver tissue? If they strongly correlate with Col1a1 mRNA or Col1a2 

mRNA, then this study would not be much different from the results of biomarker searches 

without D2O labeling experiments using mice, which would reduce its importance. 

In 1.5 and 1.6, I suggested that the final three remaining proteins (IGFBP7, SSc5D, SEMA4D) 

should be described in terms of their ability to diagnose fibrosis on their own (not 

combined), including cutoff values. However, the authors did not answer this question. 

There are many papers out there that use machine learning to improve the diagnostic 

performance of diseases using existing parameters. If the authors would like to argue that 

they have found a new biomarker by narrowing down the parameters using D2O labeling in 

this study, they must have sufficient fibrosis diagnostic power without machine learning. 

In addition, the validation set is small, with only 156 cases, and particularly, there are only 



30 cases of F2. While the validation results are crucial to demonstrating the usefulness of 

these findings, unfortunately, the number is not sufficient. 

In reply 1.7, the authors argued that fibrosis was an acceptable endpoint. Since there have 

been many papers claiming to have discovered novel fibrosis markers, a biomarker that 

predicts only fibrosis is not novel. If the authors do not know whether a novel fibrosis 

marker has the ability to predict liver-related events including decompensation events and 

cancers, then an extremely high level of fibrosis diagnostic ability should be required. At 

each stage, the diagnostic performance must be statistically significantly higher than that of 

existing fibrosis markers, such as FIB-4 index. 

Reviewer #2 (Remarks to the Author):

Thank you for addressing the concerns raised; this has significantly improved the overall 

consistency of the manuscript. However, there are still some issues that need to be 

addressed as follows: 

For 2.10 

2.10 How was the data normalized before presenting it to the LightGBM model? 

Reviewer Response: While it is partially true that the model’s results on the dataset used in 

this study might not be significantly altered by scaling/normalizing the data, the purpose of 

data scaling is to ensure that the methods developed here can be extended to many other 

datasets. These external datasets might have different data distributions, due to even minor 

differences in measurement techniques. The thresholds learnt by the proposed model may 

not produce the reported performance in such cases. One of the objectives of developing an 

ML model is to show that it has generalizability and data normalization is essential for that. 

Moreover, the results presented here need to consider the effect of this normalization. For 

instance, if a feature is be normalized to a standard normal distribution, the parameters for 

this transformation are estimated from the training set (independently per fold). The 

validation/test sets are transformed using the learnt parameters before inference. This 

provides a realistic estimate of how the model is likely to generalize to other datasets. 



2.11 -The full list of features used to train the models is not clearly specified. If both clinical 

and gene expression were used as features, how were they integrated? 

Reviewer Response: Thanks for the clarification. However, please address the concern 

raised in 2.18 regarding the LDA computations. 

2.16 - It is very surprising that adding sex and BMI reduces the model's performance so 

significantly. Given that this is a decision tree-based ensemble model, shouldn't the model 

be able to pick the right features even when some additional features are provided? 

Reviewer Response: This necessitates the need to show if the model is biased towards a 

particular gender. This can be clarified by reporting the model’s performance stratified by 

gender. 

2.18 - Line 252: It is unclear how the LDA features were computed and used. Were they 

computed independently per fold? While the LDA features were deemed important they do 

not show up in Fig. 5. It is surprising the LightGBM model were unable to learn the features 

learnt using LDA. What was the performance without using LDA? 

Reviewer Response: Thanks for the clarifications. In this case, the 10-fold CV results are 

biased due to leaky pre-processing, as the entire training set, including the validation sets 

used in CV, was used to compute the LDA features. This is akin to including the 

validation/test set to select (learn) features and then evaluate the feature’s performance on 

the validation/test set. 

2.20 Suggestion: Since there are multiple sources of data (murine, human) and several 

methods of measurement (transcriptome, liver lipid analysis, proteomics etc.) as well as 

several analysis (DEG analysis, correlation analysis, ML-based modelling etc.), it would be 

good to have a block diagram that describes the connections between these. 

For clarification we generated an overview of the steps taken in the project to highlight 

multiple sources of data and methods of measurements. If the reviewer and editor like this 

graphical abstract, we can add this as a figure in the supplements. 

Reviewer Response: Yes, please add the figure as it enhances clarity in the manuscript.



Dear reviewers (resubmitted 29MRT2024),  

Thank you for your additional feedback and thoughts on our replies in the previous rebuttal. We 

recognize that some of our previous answers may not have been as clear as intended. In this revised 

rebuttal, we provide more detailed clarifications and have incorporated additional analyses to 

strengthen our manuscript. These again substantiate the final manuscript. 

Reviewer #1 (Remarks to the Author): 

“In 1.2, they responded that the reason D2O labeling was necessary was because mRNA and 

protein concentrations can deviate because there are distinct regulatory mechanisms for these 

genes compared to their protein counterparts. I understand the authors' contention that D2O 

labeling is a more appropriate model to evaluate the dynamics of collagen protein synthesis. The 

important question, however, is whether D2O labeling is useful in narrowing down biomarkers for 

MASLD. The authors have shown neither previous reports nor any data showing that using D2O 

labeling to narrow down candidate proteins is more useful than looking at correlations with 

col1a1 mRNA. It is necessary to show how much difference there is in the content of candidate 

proteins between the refinement by D2O labeling and the refinement by correlation with Col1a1 

mRNA. In addition, the usefulness of D2O labeling cannot be claimed unless the final extracted 

protein is one that can be picked up by D2O labeling but not by correlation with Col1a1 mRNA.”

Author response: We agree that there are many valid ways to come to a set of candidate biomarkers. 

Correlating COL1A1 mRNA with gene transcripts of the candidate biomarkers could be one of them. It 

is a fairly simple and straight-forward approach and it is very likely that it has been tested by others, 

but did apparently not lead to the same biomarkers reported by us herein. Our biomarkers are novel 

and were identified using de novo formed COL1A1 protein as a primary metric for the correlation 

analysis.  

To address the reviewer's request for a direct comparison, we performed additional analyses to 

compare the usefulness selecting candidate biomarkers based on COL1A1 mRNA expression versus 

D2O labeling.  

1) Our additional analysis revealed that when using D2O labeling for correlation analysis, we 

identified 645 genes with significant correlation (R^2 > 0.9, as detailed in the manuscript). In 

contrast, correlating with Col1a1 mRNA instead of D2O labeling resulted in 434 correlated 

genes (R^2 > 0.9). 

2) If we zoom into the key biomarkers of our manuscript (Table 1), 5 out of 11 would also have 

been selected using COL1A1 mRNA for comparison (see Table 1, SSc5D, TNC, PLAU, VCAN and 

FBN1).  However, among the biomarkers identified, 6 out of 11 biomarkers would not have 

been identified using COL1A1 mRNA correlation (see bold and italic selection in Table1). 

Crucially, 2 of our final 3 biomarkers (SEMA4D and IGFBP7) would not have been picked up 

using COL1A1 mRNA correlation.  

These results underscore the added benefit of D2O labeling for biomarker selection in our study, 

indicating D2O labeling correlation analysis provides a significant advantage over COL1A1 mRNA 

correlation in our study, making it essential and more effective for the selection of relevant biomarkers. 



GeneExpr

Symbol COL1A1

IGFBP7 0.89 

SSC5D 0.99 

SEMA4D 0.87 

TNC 0.96 

PLAU 0.96 

CXCL10 0.78 

THBS1 0.82 

PAM 0.86 

VCAN 0.96 

ADAMTS2 0.86 

FBN1 0.95 

Table 1. Correlation coefficient of genes in the mouse study related to the expression of COL1A1. Genes 

in bold and italic would not have been selected by correlation analysis using COL1A1 mRNA expression. 

“In 1.4, the authors replied that the reason they used mice to narrow down the candidate proteins 

was because D2O labeling was necessary. As noted above, there is concern as to whether D2O 

labeling was necessary in this study. Are the 11 proteins that ultimately remained and the 3 

proteins used as biomarkers not correlated with Col1a1 mRNA or Col1a2 mRNA in human liver 

tissue? If they strongly correlate with Col1a1 mRNA or Col1a2 mRNA, then this study would not be 

much different from the results of biomarker searches without D2O labeling experiments using 

mice, which would reduce its importance”. 

Author response: As noted above, the mouse study and the selection using D2O labeling was 

essential to select the final biomarker candidates.  

To address the reviewer's request we also performed a correlation analysis on the expression of the 

11 proteins with human COL1A1 and COL1A2 expression in patient samples. The results are 

presented below in Table 2. This analysis indicates only moderate correlations between the gene 

expression of the identified biomarkers and both COL1A1 and COL1A2 expression in human liver 

tissue. Please compare this with the D2O correlations where we applied correlation cut-off >0.9, see 

manuscript. These data illustrate that compete current candidate biomarker selection would not 

have been selected if we would have used correlation with COL1A1 and COL1A2 expression.  

We trust that this expanded analysis and explanation adequately addresses the reviewer's concerns, 

further illustrating the necessity and effectiveness of our chosen methodology in unveiling novel 

biomarkers with significant potential in the diagnosis and understanding of MASLD. 



COL1A1 COL1A2 

IGFBP7 0.57 0.70 

SSC5D 0.80 0.87 

SEMA4D 0.58 0.72 

TNC 0.21 0.26 

PLAU 0.41 0.58 

CXCL10 0.28 0.37 

THBS1 0.49 0.61 

PAM 0.22 0.40 

VCAN 0.42 0.57 

ADAMTS2 0.68 0.75 

FBN1 0.56 0.72 

Table 2. Correlation coefficients of candidate biomarker genes with COL1A1 and COL1A2 expression 

in human MASLD patients.  

“In 1.5 and 1.6, I suggested that the final three remaining proteins (IGFBP7, SSc5D, SEMA4D) 

should be described in terms of their ability to diagnose fibrosis on their own (not combined), 

including cutoff values. However, the authors did not answer this question. There are many 

papers out there that use machine learning to improve the diagnostic performance of diseases 

using existing parameters. If the authors would like to argue that they have found a new 

biomarker by narrowing down the parameters using D2O labeling in this study, they must have 

sufficient fibrosis diagnostic power without machine learning”. 

Author response: We recognize that our previous answer may have been as clear as intended. The 

individual values of the biomarkers (not combined) are provided in the manuscript figure 6A, B and C 

for the testing cohort and figure 7A, B and C for the validation cohort, showing their mean values and 

the statistical differences on group level.  

To address the reviewer's remark (on the ability to diagnose fibrosis on their own) we assessed the 

predictive capability of each biomarker individually using ANOVA’s F-test in the testing cohort. The F-

test is a statistical method that yields the F-statistic (in this study not to be confused with the Kleiner 

fibrosis stage). The F-statistic is calculated as the ratio of between-group variability to within-group 

variability (Table 3A). Consequently, a higher F-statistic indicates a greater likelihood of the 

biomarker to accurately distinguish between different groups. Additionally, this test provides a p-

value for the F-statistic, offering insight into the statistical significance of the biomarker's predictive 

power.  

In addition, we determined the cut-off values per biomarker and their individual predictive power 

without machine learning (Table 3B). If the biomarker concentration is below cutoff value 1, it 

indicates that the patient is F0/F1; if the concentration of the biomarker is between cutoff value 1 

and cutoff value 2, the patient is categorized as F2; if the concentration of the biomarker is above 

cutoff value 2, the patient is categorized as F3/F4. Based on these cutoff values we calculated the 

predictive power of each of the individual biomarkers.  

This indicates that the biomarkers have individual predictive value (taking into account that an 

accuracy of 0.33 is comparable to flipping a coin in a 3-group classification). Furthermore, we wish to 

highlight that an improvement is achieved by combining the individual biomarkers using a ML model, 

which results in a much better prediction, which is described in the manuscript.  



ML models have proven to be superior in diagnosing a variety of diseases more accurately than 

traditional statistical methods. For example, Churpek et al. (Critical Care Medicine 44(2): 368-374, 

2016) found that ML methods, including random forests, outperformed logistic regression models in 

clinical disease prediction. Additionally, ML models have been effectively utilized in diagnosing and 

predicting chronic diseases, indicating their potential for integration into clinical practices to improve 

diagnostic precision and patient outcomes (Battineni et al. J. Pers. Med. 2020, 10(2), 21). This 

includes tools for predicting the development of future cardiovascular events using a multi-panel of 

four biomarkers and ML, as reported by Neumann (Biomark Med. 2020 Jun;14(9):775-784). 

 A) 

B) 

Table 3. A) F-test to calculate accuracy to distinguish groups based on biomarker. B) Cut-off values of 

the individual biomarkers and their ability to predict fibrosis based on their serum concentrations.  

“In addition, the validation set is small, with only 156 cases, and particularly, there are only 30 

cases of F2. While the validation results are crucial to demonstrating the usefulness of these 

findings, unfortunately, the number is not sufficient”.  

Author response:  We would like to emphasize that the primary focus of our current research was on 

the identification and validation of biomarkers through a translation from pre-clinical discovery to 

clinical applicability. This objective shaped our methodology and guided our selection of cohort sizes. 

Upon the reviewer’s earlier recommendation, we have incorporated an additional independent 

validation cohort. We have shown in this independent validation cohort that the sample size is well 

suited to achieve significant effects on group-level and to perform accurate patient predictions, 

which, as indicated in our results (Figure 7 of the manuscript), exceeds the predictive accuracy of 

existing NITs. 

“In reply 1.7, the authors argued that fibrosis was an acceptable endpoint. Since there have been 
many papers claiming to have discovered novel fibrosis markers, a biomarker that predicts only 
fibrosis is not novel. If the authors do not know whether a novel fibrosis marker has the ability to 
predict liver-related events including decompensation events and cancers, then an extremely high 
level of fibrosis diagnostic ability should be required. At each stage, the diagnostic performance 
must be statistically significantly higher than that of existing fibrosis markers, such as FIB-4 index”. 

Author response:  To identify effective biomarkers for fibrosis, we followed an innovative 

identification approach, different from others, leading to the discovery of novel biomarkers not 

previously identified. This was achieved by using methodology in preclinical models that directly links 

Biomarker Cutoff 

value 1

Cutoff 

value 2

Accuracy on 

training set 

(N=90)

Accuracy on 

test set 

(N=38)

Accuracy on 

validation 

cohort (N=156)

IGFBP7 (ng/ml) 204.85 265.03 0.644 0.658 0.583

SSC5D (ng/ml) 2.479 5.356 0.756 0.711 0.622

SEMA4D (ug/ml) 0.810 1.660 0.656 0.474 0.365

Biomarker F-statistics p-val 

IGFBP7 (ng/ml)  14.168 4.70E-06 

SEMA4D (ug/ml) 16.497 8.42E-07 

SSC5D (ng/ml)  4.622 1.23E-02 



the process of matrix deposition to the outcome, namely the discovery of unique biomarkers 

overlooked by previous research.

We agree that fibrosis is a known risk factor for developing liver-related complications such as 

hepatocellular carcinoma (HCC) and decompensated cirrhosis, and that stages F3-F4 are precursors 

to these serious conditions. Our study demonstrates that our biomarkers accurately capture F3-F4 

stages (AUC=0.84, figure 6 and 7 in the manuscript) across two independent cohorts. It is well-

documented that a significant majority (approximately 80%) of HCC cases arise from cirrhosis (stage 

F4). However, our diagnostic markers are not designed to diagnose HCC or decompensated cirrhosis 

directly; instead, they aim to detect fibrosis at an earlier stage, enabling the application of targeted 

therapies. Our data indicate that our biomarkers can predict F3-F4 stages more effectively than other 

tests, such as FIB-4, which has been shown to be an independent factor associated with increased 

HCC risk among NASH cirrhosis patients (Albhaisi et al., 2023). The study by Albhaisi et al. focuses on 

a cohort of 157 NASH, cirrhosis, and HCC patients, with a specific emphasis on FIB-4 and the 

occurrence of HCC/decompensated events. Recently it was also demonstrated that FIB-4 and 

FibroScan have prospective value for these endpoints (published by Mozes et al (Lancet Gastroenterol 

Hepatol. 2023;8:704-713 and co-authored by Holleboom, Mak and van Dijk)). We would like to point 

out that this meta-analysis was designed for the purpose by collecting the data of 25 studies 

including over 2,500 patients with nearly 150 events. 

Given our promising results in fibrosis prediction, it is plausible that our panel could outperform FIB-4 

in predicting HCC and decompensation. However, exploring this hypothesis would require a different 

study design.  

At the reviewer’s request we performed an additional analysis to compare FIB-4 and TLM3, our novel 

biomarker set on the complete set of clinical cohorts in this study (training set, first validation set and 

second validation set). The results of this analysis are shown in Table 4 below. The left part of the 

table presents the confusion matrix, and the right part the corresponding performance matrices 

(sensitivity, specificity and precision). FIB-4 is shown in Table 4A, and TLM3 shown in Table 4B. The 

data show that for stages F2 and F3/F4 for all performance matrices TLM3 outperformed FIB-4. For 

F0/F1 the specificity and sensitivity between the two biomarkers were almost similar (0.70 vs. 0.69; 

0.83 vs. 0.82; FIB-4 slightly better) whereas for precision TLR3 clearly exceeded FIB-4. These results 

are added to the manuscript as supplemental table 4.  

A) 

B) 

Table 4. Confusion matrices and performance metrics of FIB4 (A) and TLM3 (B) and of all samples 

used in the study.

FIB4 confusion matrix Predicted class Perfomance metrics

F0/1 F2 F3/4 Sensitivity Specificity Precision

F0/1 59 21 4 F0/1 0.70 0.83 0.52

True class F2 32 29 7 F2 0.43 0.75 0.28

F3/4 23 55 31 F3/4 0.28 0.64 0.74

TLM3 confusion matrix Predicted class Perfomance metrics

F0/1 F2 F3/4 Sensitivity Specificity Precision

F0/1 51 16 7 F0/1 0.69 0.82 0.76

True class F2 8 19 11 F2 0.50 0.87 0.36

F3/4 8 18 56 F3/4 0.68 0.78 0.76



Reviewer #2 (Remarks to the Author): 

“Thank you for addressing the concerns raised; this has significantly improved the overall 

consistency of the manuscript. However, there are still some issues that need to be addressed as 

follows”: 

“2.10 How was the data normalized before presenting it to the LightGBM model?”

Reviewer’s own Response: While it is partially true that the model’s results on the dataset used in 

this study might not be significantly altered by scaling/normalizing the data, the purpose of data 

scaling is to ensure that the methods developed here can be extended to many other datasets. 

These external datasets might have different data distributions, due to even minor differences in 

measurement techniques. The thresholds learnt by the proposed model may not produce the 

reported performance in such cases. One of the objectives of developing an ML model is to show 

that it has generalizability and data normalization is essential for that. Moreover, the results 

presented here need to consider the effect of this normalization. For instance, if a feature is be 

normalized to a standard normal distribution, the parameters for this transformation are estimated 

from the training set (independently per fold). The validation/test sets are transformed using the 

learnt parameters before inference. This provides a realistic estimate of how the model is likely to 

generalize to other datasets.

Author Response: We agree that the purpose of the study is to develop a generic model that can be 

applied to many other datasets/studies. This indeed includes that minor differences in measuring 

techniques should be addressed before the data is used in the model. In the testing cohort consisting 

of 128 samples, we did not normalize the data before it was used in the LGBM model, as indicated in 

our previous response. However, in the additional validation cohort of 156 samples which was 

analyzed on request of the reviewers, we normalized the data by adjusting by the mean of the 

validation set with respect to the mean of the training set. This adjustment has been included in the 

Methods section of the manuscript. In future unknown datasets, the variation in data due to 

measuring techniques will be addressed through the inclusion of reference samples. 

“2.11 -The full list of features used to train the models is not clearly specified. If both clinical and 

gene expression were used as features, how were they integrated?”

Reviewer’s own Response: Thanks for the clarification. However, please address the concern raised 

in 2.18 regarding the LDA computations. 

Author Response: See response to 2.18 

“2.16 - It is very surprising that adding sex and BMI reduces the model's performance so 

significantly. Given that this is a decision tree-based ensemble model, shouldn't the model be able 

to pick the right features even when some additional features are provided?”

Reviewer’s own Response: This necessitates the need to show if the model is biased towards a 

particular gender. This can be clarified by reporting the model’s performance stratified by gender.  

Author Response: After careful analysis of stratification by gender, we observed no significant 

differences in the accuracy of the model in predicting fibrosis groups between male and female 



(Table 5), suggesting no bias towards a particular gender. This fits with the observation that adding 

gender in a forced way to the model did not improve the model’s performance. (supplemental figure 

2 of the manuscript). 

Gender subgroup Total Accuracy

female 0/1 30 0.63 

female 2 15 0.53 

female 3/4 29 0.72 

male 0/1 36 0.75 

male 2 15 0.27 

male 3/4 31 0.61 

Table 5. LGBM model accuracy per gender in the independent validation cohort. 

“2.18 - Line 252: It is unclear how the LDA features were computed and used. Were they 

computed independently per fold? While the LDA features were deemed important they do not 

show up in Fig. 5. It is surprising the LightGBM model were unable to learn the features learnt 

using LDA. What was the performance without using LDA?”

Reviewer’s own Response: Thanks for the clarifications. In this case, the 10-fold CV results are 

biased due to leaky pre-processing, as the entire training set, including the validation sets used in 

CV, was used to compute the LDA features. This is akin to including the validation/test set to select 

(learn) features and then evaluate the feature’s performance on the validation/test set.

Author response:  The reviewer is correct in pointing out that there could be a potential for leaky pre-

processing. We trained the LDA model using the training set in the characterization of the testing 

cohort (referred to as the testing set in the manuscript). In addition, this concern did not apply to the 

additional analysis such as the prediction of fibrosis score for the independent validation using the 

Danish cohort. Therefore, the potential problem identified by the reviewer does not arise in this 

context. We now have added this information to the methods section to clarify this for the reader. 

“2.20 Suggestion: Since there are multiple sources of data (murine, human) and several methods 

of measurement (transcriptome, liver lipid analysis, proteomics etc.) as well as several analysis 

(DEG analysis, correlation analysis, ML-based modelling etc.), it would be good to have a block 

diagram that describes the connections between these. 

For clarification we generated an overview of the steps taken in the project to highlight multiple 

sources of data and methods of measurements. If the reviewer and editor like this graphical 

abstract, we can add this as a figure in the supplements. “

“Reviewer’s own Response: Yes, please add the figure as it enhances clarity in the manuscript.”

Author Response: thank you, we have added the figure as supplement to the manuscript.



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have responded appropriately to the reviewer's comments, and the manuscript 

has been improved. There are no remaining issues of particular concern. 

Reviewer #2 (Remarks to the Author):

The authors have addressed most comments adequately - just a few minor comments to 

revise as below 

Response to 2.11: 

It should be clearly described that the testing cohort is actually part of a "discovery cohort". 

Because the entire discovery cohort was used for feature selection (LDA) there was no need 

for data normalization. While the authors have mean centered the data for the validation 

cohort, it is unclear why variance normalization is ignored. Does the model perform poorly if 

variance is normalized? If so, please indicate in supplementary why that is the case. 

Response to 2.16: 

This is a useful result and should be included in the supplementary material (in addition to 

Fig. 2 of the manuscript) as this shows the variability of the model across subgroups. 

Specifically, the accuracy for F2 in males is poor. These should be mentioned as the model's 

limitations in the discussion section also. 

Response to 2.18: 

Thanks for the clarification. The training set and testing cohort (testing set) together then 

should be clearly described as the "discovery cohort/discovery set" since this entire set is 

used for feature selection.



Dear reviewers,  

We are grateful to the reviewers for their insightful and constructive comments,. Their detailed 

feedback which have significantly contributed to the improvement of our manuscript. We thank 

them for their time and expertise. 

REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have responded appropriately to the reviewer's comments, and the manuscript has 

been improved. There are no remaining issues of particular concern. 

Author response: We greatly appreciate the reviewer’s insightful comments and advice aimed at 

improving our manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed most comments adequately - just a few minor comments to revise as 

below 

Author response: We thank the reviewer for his/her valuable insights and constructive feedback. The 

few minor comments below are taken into account in the final version of the manuscript.  

Response to 2.11: 

It should be clearly described that the testing cohort is actually part of a "discovery cohort". 

Because the entire discovery cohort was used for feature selection (LDA) there was no need for 

data normalization. While the authors have mean centered the data for the validation cohort, it is 

unclear why variance normalization is ignored. Does the model perform poorly if variance is 

normalized? If so, please indicate in supplementary why that is the case.

Author response: We acknowledge the concern about not performing variance normalization. 

However, we opted to retain the original data scale as it carries biologically significant variance, 

which we believe is crucial for accurate predictions and analysis. This decision was further supported 

by our observations in the validation cohort, where the median of all biomarkers was higher 

compared to the training cohort, despite having a similar composition in terms of fibrosis stage 

groups. We attributed this difference primarily to assay or experimental settings, leading us to 

median center the validation data. Nonetheless, given that the origin of variance could be both 

biological and experimental, we maintain that preserving the original scale is beneficial for the 

integrity of the analysis.  

With regards to the description of the testing cohort we have added the following to the methods 

section: “Since this cohort is used for feature selection and the development of the machine learning 

model, the testing cohort should also be considered a discovery cohort.” 



Response to 2.16: 

This is a useful result and should be included in the supplementary material (in addition to Fig. 2 of 

the manuscript) as this shows the variability of the model across subgroups. Specifically, the 

accuracy for F2 in males is poor. These should be mentioned as the model's limitations in the 

discussion section also.

Author response: We added the table to supplemental figure 3 as suggested by the reviewer and 

mentioned this in the discussion section. 

Response to 2.18: 

Thanks for the clarification. The training set and testing cohort (testing set) together then should 

be clearly described as the "discovery cohort/discovery set" since this entire set is used for feature 

selection. 

Author response: We have added a sentence in the description of the cohort that the testing cohort is 

used for feature selection and the development of the machine learning model. Therefore, the testing 

cohort should also be considered a discovery cohort. 


