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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): expertise in DNA methylation bioinformatics 

 

In “Sensitive and accurate tumor detection by methylation and hemi-methylation of plasma cell-

free DNA”, Hua et al. describe strand-specific MeDIP-Seq for analyzing DNA methylation in a 

strand-specific manner in cells (“genomic DNA”) and plasma samples. They apply their methods to 

liver tumors and adjacent controls, as well as cell-free DNA from individuals without cancer and 

individuals with liver or brain cancer. They define sites of differential methylation (DMR) as well as 

differential hemimethylation (DHMR) and find that genomic DNA-derived DMRs overlap with 

plasmid-derived DMRs. Surprisingly, they find that DMRs do not overlap with DHMRs, both in 

genomic and plasma samples. The authors construct a model to classify samples, and models that 

include DMR and DHMRs outperform models using only DMR or DHMRs, and can classify control, 

liver, and IDH+/- gliomas with reasonable accuracy. The authors identify DMRs and DHMRs that 

are located near genes whose expression are associated with particular gene functions and with 

patient survival. Overall, the authors present a compelling argument for the study of single-strand 

methylation and its utility in the context of cancer detection using cell-free DNA and their 

described assays. 

 

 

Major comments: 

 

1. Strand-specific methylation could arise from biases in 5-mC antibody (33D3), pA-Tn5, or strand 

dropout during sample collection or library preparation. The authors need to address these and 

other sources of biases and perhaps provide data from orthogonal methylation assays (e.g. 

targeted bisulfite sequencing) at DMRs and DHMRs to validate their findings. 

 

2. The finding that DMRs do not overlap with DHMRs is surprising to me. Figure 2f shows that 

increase of single-strand methylation bias is enriched in CGIs which are generally unmethylated in 

normal samples. The figure suggests that DHMRs exist where unmethylated CGIs gain strand-

specific methylation, but I would assume this would result in a DMR as well. Could the authors 

provide more intuition about how DHMRs arise without creating DMRs? For example, plots showing 

raw read counts on +/- strands at DMR and DHMR sites for all samples would be useful. 

 

3. The authors test significance of overlapping DMRs using a permutation test, but these tests and 

accompanying figures don’t give a sense for the raw overlapping rates. Raw numbers for overlaps 

are also not provided in the main text or supplementary data. Additionally, unexpected 

comparisons have a ‘significant’ p-value (e.g. Fig 3d class C p-0.003) decreasing the utility of this 

method. For Fig 1d, Supp 2d,e, and Fig 3d the overlaps should be measured and shown in another 

way (e.g. upset plot, overlapping barplot or venn diagram) that will increase the interpretability for 

readers. 

 

4. DMR analysis was not performed on the plasma-titration-sensitivity samples – they were only 

used as inputs to previously-trained models (page 14, “Evaluate the sensitivity of the sscf-MeDIP-

Seq method”). How many DMRs could be identified in the lower-coverage samples, and do they 

overlap with the DMRs from the larger-input samples? Do the DHMRs drop out before the DMRs 

with lower coverage? 

 

5. Processed annotated data should be shared as supplemental information (e.g. values in Fig 2d, 

3c, 3f, etc.) 

 

 

Minor comments: 

 

1. Page 4 “…whole genome DNA methylation is the best..” - the reference suggests that a subset 

of methylation can perform better than whole-genome DNA methylation. The authors should revise 

their summary of the reference. 

 

2. Page 7 “we analyzed the DNA methylation profiles of liver cancer from TCGA” raw numbers of 



overlaps between these sets should be reported. 

 

3. Page 7 “we analyzed the DNA methylation profiles of liver cancer from TCGA” to increase the 

utility of single-strand methylation analysis the authors should test whether the methylation levels 

from TCGA were similar to methylation levels in the ss-MeDIP samples (and point out that 450K 

TCGA samples cannot report strand-specific methylation information). 

 

4. Page 8 “we identified 260,055 and 325,866 HMRs in 8 liver tumor samples and their Adj-NT 

controls, respectively.” Is this the sum of all HMRs or an average per sample? The average per 

sample should be reported as well. This also applies to reporting of cfDNA DMRs (page 10) and 

elsewhere where aggregate numbers are reported. 

 

5. Page 13 – “90% of the training cohort” and “in a balanced way” need to be defined – is this 

90% of samples or 90% of features? 

 

6. Page 14 – Sample selection wording is unclear “Briefly, we randomly chose two cfDNA samples, 

with each from individuals with liver and brain tumors.” 

 

7. Page 15 – “Evaluate the sensitivity of the sscf-MeDIP-Seq method.” Were the machine learning 

outcomes improved if the only-DMR or only-DHMR models were used? 

 

8. Page 17 – “Together, these results indicate that a significant fraction of liver cancer specific 

cfDNA DMRs and DHMRs identified in this study are likely associated with changes in the 

expression of nearby genes in tumor cells, which in turn may contribute to tumorigenesis.” It is 

unclear what significant fraction this sentence refers to. There is no significance test discussed in 

this section, and 78/4989 does seem significant enough to make this claim. This sentence should 

be substantiated, softened or removed. 

 

9. Page 23, DMRs were called in blocks in cfDNA samples, but how were DMRs called in 450K TCGA 

samples? Were they called as individual probes or somehow expanded to include multiple probes? 

 

10. Page 25 “Machine learning models” What were the inputs to the models? I assume methylation 

levels at DMRs and bias at DHMRs, but this should be explicit. 

 

11. Page 26 R scripts should be shared via github 

 

12. Page 26 “cfDNA DMRs or DHMR are associated with patient survival” hazard ratio cutoff should 

be provided here 

 

13. Page 33, Figure 1a – it could be useful to show an example of hemimethylation in the 

schematic here 

 

14. Page 33, Figure 1b, page 7 text “By inspection of MeDIP-seq signals at the gene locus of TBX2, 

a gene known to be methylated in liver cancer, we identified a DMR specifically in tumors 

compared to Adj-NT samples” How was this highlighted DMR selected? It looks like there are 

several other DMRs in this region. 

 

15. Page 33, Figure 1d – p-value for B is 0 – is this correct? 

 

16. Page 33, Figure 1e – Does the LINE value extend beyond the left axis? The x axis should be 

increased to show the limit of this value. 

 

17. Page 33, Figure 1e – N’s should be shown for each category as enrichment values are hard to 

interpret (probably in a supplementary figure if not possible in the main figure) 

 

18. Page 33, Figure 1e – x-axis “Z score enrichment” is not defined. Do the authors mean “Z 

score”? 

 

19. Page 35, Figure 2b shows hemimethylation with a scale of -3 to 3. However, the formula 



implies a range of -1 to 1. 

 

20. Page 35, Figure 2f labels “Increased DHMR” could be changed to “Increased HM” to reflect that 

the region isn’t increasing, but the hemimethylation is changing. 

 

21. Page 42, Figure 1a – how were the IDH subtype model DMRs selected? The heatmap suggests 

that the DMRs were selected between a different number of samples (~80/20 instead of the 43/34 

IDHmut/WT samples described in the text). 

 

22. Page 42 Figure 5a the schematic of the application of Bayes’ theorem is unclear – the boxes 

make it appear that the P(IDH mut ) and P(IDH WT) apply to DMRs while P(Liver) and P(Control) 

apply to DHMRs. 

 

23. Page 44 Figure 6d/g – perhaps x-axis label should be “Time in months” or “Time (months)”? 

 

24. Figure S1 – Suggest changing labels to “Promoters with CGI” and “Promoters without CGI” 

 

 

 

 

 

Reviewer #2 (Remarks to the Author): expertise in cell free DNA methylation methods 

 

“Sensitive and accurate tumor detection by methylation and hemi-methylation of plasma cdl-free 

DNA” by Hua et al. is a well written article detailing utility of MeDIP-Seq methods. The 

performance of their classifier models to identify cancer and is promising but it appears that 

DHMRs do not contribute very much to the performance given especially that there are many more 

DHMR regions than DMRs. 

 

INTRODUCTION 

 

The statement that targeted bisulfite sequencing “requires up to 80ml of plasma” doesn’t seem 

accurate. Assuming the authors are referring to Liu et al. which states “Up to 80 ml whole blood 

was collected from all participants as part of the research study; only two tubes of plasma were 

processed separately per participant.” 1) that’s 80ml of blood, not plasma and 2) only 2 tubes of 

blood were analyzed which would yield ~8-10ml of plasma. 

 

METHODS/RESULTS 

 

The authors’ ssg-MeDip-Seq ligates different adapters to the Watson and Crick strands, allowing 

for strand-specific analysis. From the description provided and the diagram (Figure 1A) I don’t see 

how the same result could not be achieved in silico by doing a standard library prep and then 

simply splitting the bam file by strand after alignment. 

 

As the authors point out, allele specific methylation is an overlooked and potentially useful 

biomarker. It is possible to analyze strand specific methylation from bisulfite sequencing; the 

biscuit BS-Seq aligner, for example, has an allele specific methylation subroutine. With the data 

that is currently present it is difficult to evaluate the advantage of strand-specific methylation 

analysis using ss(g/cf)-MeDIP-Seq compared to bisulfite sequencing, as these comparisons are not 

presented. 

 

The strand specific adaptor ligation shown in figure 1A is absent in figure 3A where they detail the 

cell-free DNA library prep (sscf-MeDIP-Seq). Is the strand specific adaptor ligation performed in 

sscf-MeDIP-Seq? Or in this case is strand specific methylation resolved in silico? 

 

The authors state that their sscf-MeDIP-Seq library prep is superior to other cfDNA methods in part 

because it can recover single stranded and damaged DNA, which is particularly important for 

cfDNA applications. However, the authors do not compare their method with traditional MeDIP 

which begs the question: how much is gained by performing sscf-MeDIP-Seq versus previously 



published methods and studies on cfDNA MeDIP-Seq (PMID: 35065650, 31471598, 31471598)? 

Does it improve sequencing output given identical input? Does it significantly improve signal 

detection? A direct comparison to previously published methods would strengthen the results. 

 

Sequencing metrics that might be used to evaluate ss(g/cf)-MeDIP-Seq are absent (total reads, 

alignment rate, duplication rate etc.). It would also be useful to know the sequencing depth at 

each of the ~2M CpG clusters the authors evaluated. 

 

The overlap between DMRs and DHMRs indicates that they are largely independent. However 

hemi-methylation would be ~50% methylated, if only considering beta value, and therefore 

hypomethylated compared to average genomic methylation levels; I would expect more overlap. If 

you reduce the stringency of the filtering criteria for DMR analysis do you see an increase in the 

overlap? 

 

In the model training, the authors “selected the top 100 DMRs and 741 DHMRs” for model 

training/testing. How were cutoffs determined (n = 100 DMR & n = 741 DHMR)? Seems a bit 

lopsided in favor of the DHMRs, which do not seem to be adding much to the performance of the 

model. The authors state that the DMR+DHMR model performs better than either DMR or DHMR 

models alone but the DMR model has 100 features, no? What’s the performance of the DMR model 

if you take the top 841 DMRs, so the total number of features is equal? Or if you were to train 

using the top X DMRs and top X DHMRs – this would allow for more direct comparison between the 

feature types. 

Did you force the cluster breaks in the heatmaps in figure 6? C/F appear to have been forcefully 

split by row and column groups using the row_split and column_split options, assuming the 

authors are used the ComplexHeatmap R package. If so, this should be stated. 

 

ROC curve AUCs should have confidence intervals either stated in the text or annotated on the 

figure, ideally both. 

 

DISCUSSION 

 

The authors state many advantages of their methods, please provide direct comparisons to 

previously published methods. 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): expert in machine learning cfDNA analysis 

 

The author employed an enhanced MeDIP-Seq technique to examine DNA methylation patterns in 

liver cancer and brain cancer, underscoring the effectiveness of utilizing both DMRs and DHMRs for 

accurate cancer detection. Nevertheless, in previous studies, bioinformatics approaches for 

stranded methylation detection and hemi-methylation region identification from MeDIP-Seq data 

have already been well-established. Furthermore, both MeDIP-Seq sequencing technology and the 

utilization of the Tn5 enzyme for fragmenting and tagging double-stranded DNA in Next-

Generation Sequencing (NGS) are well-established, mature techniques, emphasizing a notable lack 

of significant innovation. Hemi-methylated DNA typically has a propensity to either become fully 

methylated or tend towards demethylation. Varying DMR identification thresholds can be used to 

extract methylation change data in these regions. Moreover, the gold standard for methylation 

identification, WGBS (Whole Genome Bisulfite Sequencing), can differentiate between the positive 

and negative strands to acquire strand-specific methylation changes. This highlights a notable lack 

of impact. 

 

My main detailed concerns regarding this manuscript are as follows: 

1.Hemi-methylated regions represent a relatively small fraction of the genome, yet the number of 

DHMRs (Differentially Hemi-Methylated Regions) is significantly greater than the count of DMRs 

(Differentially Methylated Regions). This raises questions about whether the threshold set for DMR 

identification may have resulted in some regions that could potentially be identified as DMRs going 



unnoticed, ultimately leading to a limited overlap between DHMRs and DMRs. This undermines the 

conclusion that the factors contributing to DHMRs are independent of those associated with DMRs. 

2.MeDIP-seq exhibits a proclivity for interrogating genomic regions characterized by low CpG 

density, and fewer CpG sites are more susceptible to sequencing technology errors and random 

inaccuracies, leading to bias in identifying hemi-methylated regions. 

3.The accuracy and sensitivity of cfDNA abnormal methylation in cancer detection have been 

previously reported in earlier studies. And the title is too generic and fails to highlight the main 

content and innovative aspects of the article. 

4.External cohorts are needed to validate the diagnostic accuracy of DHMRs for lung and liver 

cancer, thereby preventing overfitting in model development. 

5.In the clinical setting, blood tests for late-stage cancer patients are not meaningful. What is the 

distribution of cancer stages in your cohort? It is necessary to separately examine the diagnostic 

accuracy of early-stage DHMRs to demonstrate their practical significance in cancer diagnosis. 

6.Raw data and code should be provided to ensure that data availability allows independent 

verification of results and increases the transparency of scientific research. 



We thank all reviewers for their time to review this manuscript and for their insightful 

comments. We have performed additional analysis and experiments as well as editing to 

address each concern of all reviewers.  Consequently, we felt that the revised manuscript 

has improved significantly. 

 

Reviewer #1 (Remarks to the Author): expertise in DNA methylation bioinformatics 

In “Sensitive and accurate tumor detection by methylation and hemi-methylation of plasma cell-

free DNA”, Hua et al. describe strand-specific MeDIP-Seq for analyzing DNA methylation in a 

strand-specific manner in cells (“genomic DNA”) and plasma samples. They apply their 

methods to liver tumors and adjacent controls, as well as cell-free DNA from individuals without 

cancer and individuals with liver or brain cancer. They define sites of differential methylation 

(DMR) as well as differential hemimethylation (DHMR) and find that genomic DNA-derived 

DMRs overlap with plasmid-derived DMRs. Surprisingly, they find that DMRs do not overlap 

with DHMRs, both in genomic and plasma samples. The authors construct a model to classify 

samples, and models that include DMR and DHMRs outperform models using only DMR or 

DHMRs, and can classify control, liver, and IDH+/- gliomas with reasonable accuracy. The 

authors identify DMRs and DHMRs that are located near genes whose expression are associated 

with particular gene functions and with patient survival. Overall, the authors present a 

compelling argument for the study of single-strand methylation and its utility in the context of 

cancer detection using cell-free DNA and their described assays. 

 

Response: We thank the reviewer for his/her time to review this manuscript and for the very 

positive and insightful comments. We have attempted to address each concern of the reviewer.  

 

 

Reviewer #1: 

Major comments: 

1. Strand-specific methylation could arise from biases in 5-mC antibody (33D3), pA-Tn5, or 

strand dropout during sample collection or library preparation. The authors need to address 

these and other sources of biases and perhaps provide data from orthogonal methylation assays 

(e.g. targeted bisulfite sequencing) at DMRs and DHMRs to validate their findings. 

 

Response: To address the reviewer’s concern whether the strand-specific methylation could 

arise from pA-Tn5 or strand dropout during sample collection or library preparation, we 

followed the same experimental procedures and prepared libraries using pA-Tn5 for genomic 

DNA of 2 liver samples without the methylated DNA immunoprecipitation step. We also 

followed the same procedures and prepared the libraries of 8 cfDNA samples (four control 

cfDNA samples and four liver cancer cfDNAs samples) without the methylated DNA 

immunoprecipitation step. We then used these input samples to assess the contributions of 

experimental procedures to the potential biases (hemi-methylation) at the ~2 M methylation 

blocks. Overall, the majority of blocks of the input samples did not show bias (Supplemental Fig. 

S2a, e), supporting the idea that the experimental procedures did not lead to the generation of 

strand-specific methylation bias. To minimize the contribution of sequence reads to false 

identification of hemi-methylated regions, we also tested the number of reads (RPM) at each 

block on the strand bias using these input samples. We found that the number of blocks showing 

bias decreased markedly using RPM>1 as the cut off compared to the cutoff of RPM>0.5. A 
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further increase of the cutoff to RPM>2 did not dramatically change the number of blocks 

showing bias based on these input samples (Supplemental Figure 2b, f). Therefore, we used the 

same cutoff and reanalyzed hemi-methylated regions of all samples using this cutoff. In this way, 

the bias generated by pA-Tn5 and library preparation procedures in MeDIP-Seq samples should 

be greatly minimized. Indeed, with this cutoff, we identified far fewer HMR regions and 

DHMRs for liver tumor samples and cfDNA samples than previously. Importantly, we found 

that machine learning models based on DHMRs performed significantly better than previous 

DHMR-models. For instance, the AUCs for control, liver and brain tumor samples were 0.761, 

0.933 and 0.885, respectively, based on models trained with DHMRs identified previously 

(Figure 4 of previous version). The AUCs for control, liver and brain tumor samples were 0.899, 

0.954 and 0.908, respectively, based on DHMRs identified in the revised manuscript (Figure 4).  

 

We did not address whether 5-mC antibodies (33D) will generate bias for the following reasons. 

Using RPM>1 at each block as the cut-off, we found that only 10% of ~2M methylation blocks 

showed hemi-methylation (Figure 2c). It is unlikely that 33D antibodies will generate DNA 

hemi-methylation at these blocks only.  

 

 

Letter Figure 1: The 

overlap between 

HMRs of 8 liver 

tumor DNA samples 

(A) or their 

corresponding non-

tumor samples (Adj-

NT, B) with CTCF 

sites. 

 

 

To further address this concern bioinformatically, we determined the percentage of hemi-

methylated regions that overlapped with CTCF sites. We found that in both liver tumor DNA and 

their corresponding non-tumor control samples, about 1.2% HMRs overlapped with the CTCF 

sites in the genome. This is consistent with previous studies showing that about 0.8-1.4% of 

HMR overlapped with CTCF sites from two independent studies (Thomas et al, Nucleic Acid 

Research 2023, 51: 5997-6005, Table 1). 

 

Reviewer #1: 

2. The finding that DMRs do not overlap with DHMRs is surprising to me. Figure 2f shows that 

increase of single-strand methylation bias is enriched in CGIs which are generally unmethylated 

in normal samples. The figure suggests that DHMRs exist where unmethylated CGIs gain strand-

specific methylation, but I would assume this would result in a DMR as well. Could the authors 

provide more intuition about how DHMRs arise without creating DMRs? For example, plots 

showing raw read counts on +/- strands at DMR and DHMR sites for all samples would be 

useful.  

 



Response: We agree with the reviewer that it is surprising that a large fraction of DHMRs do not 

overlap with DMRs. As discussed above, with RPM>1 as the cut off, we found input samples 

showed bias or potential false positive HMRs at very few blocks. Using this cutoff, we found 

that while the number of DHMRs identified were reduced markedly compared to previous 

calculations without this cut off, about 2/3 liver tumor DNA DHMR (4474/6562) did not overlap 

with DMRs (Fig. 2e). Similar results were observed between cfDNA DHMRs and DMRs of 10 

liver tumor samples compared to controls (Figure 3g). These results are consistent with the idea 

that DHMRs are novel epigenetic markers that can be inherited during cell division. We would 

like to point out that a  recent study from the laboratory of Dr. Peter Jones, the pioneer of DNA 

methylation studies in cancer, found that hemi-methylation of different DNA strands at CTCF 

sites affect CTCF binding differently (Thomas et al, Nucleic Acid Research 2023, 51: 5997-

6005). This study provides mechanistic insight into the potential function of hemi-methylation as 

well as additional rationale to use hemi-methylation as an independent biomarker. 

 

To address the reviewer’s comment directly, we calculated the normalized read counts of Watson 

and Crick strands at DMRs and DHMRs of 8 liver tumor DNA samples compared to their 

corresponding controls. We found that liver tumor DMRs in general showed alerted (increased or 

decreased) DNA methylation density at both Watson and Crick strands compared to the 

corresponding controls. In contrast, liver tumor DHMRs in general displayed altered DNA 

methylation density at only one strand compared to Adj-NT controls (Supplemental Figure 3). 

We would like to point out that we did not use raw read counts in this calculation because of 

different sequencing depth among these samples. Together, these results suggest that DMRs arise 

from changes in DNA methylation on both strands, whereas DHMRs arise from changes in DNA 

methylation at one strand, providing additional support to the idea that the majority of DHMRs is 

independent biomarkers from DMRs. 

 

Reviewer #1: 

3. The authors test significance of overlapping DMRs using a permutation test, but these tests 

and accompanying figures don’t give a sense for the raw overlapping rates. Raw numbers for 

overlaps are also not provided in the main text or supplementary data. Additionally, unexpected 

comparisons have a ‘significant’ p-value (e.g. Fig 3d class C p-0.003) decreasing the utility of 

this method. For Fig 1d, Supp 2d,e, and Fig 3d the overlaps should be measured and shown in 

another way (e.g. upset plot, overlapping barplot or venn diagram) that will increase the 

interpretability for readers. 

 

Response: We followed the reviewer’s suggestion and included bar plots for all these figure 

panels (Figure 1e, Figure 3e and Supplemental Figure 4e). In fact, the bar plot results appeared to 

show more significant overlaps between concordant groups. 

 

Reviewer #1: 

4. DMR analysis was not performed on the plasma-titration-sensitivity samples – they were only 

used as inputs to previously-trained models (page 14, “Evaluate the sensitivity of the sscf-

MeDIP-Seq method”). How many DMRs could be identified in the lower-coverage samples, and 

do they overlap with the DMRs from the larger-input samples? Do the DHMRs drop out before 

the DMRs with lower coverage?  

 



Response: The reviewer raised several interesting questions. The purpose of testing different 

amounts of samples for the generation of sscf-MeDIP-Seq datasets was to determine whether 

sscf-MeDIP-Seq datasets generated using different amount of cfDNA samples would yield 

robust predictions by the trained models. We did not identify DMRs because we did not know 

which controls should be needed for the identification of DMRs or DHMRs of these samples.  

 

To address the reviewer’s other concerns, we also predicted samples using models based on 

DMR or DHMR alone. As shown in Supplemental Figure 7, DMR- and DHMR-based models 

also predicted the brain and liver samples using sscf-MeDIP-seq datasets generated from 

different amounts of input samples. Furthermore, DMR+DHMR based models performed better 

than models based on DMRs or DHMRs alone. 

 

 

Reviewer #1: 

5. Processed annotated data should be shared as supplemental information (e.g. values in Fig 

2d, 3c, 3f, etc.) 

  

Response: We followed the reviewer’s suggestion and put processed annotated data into Source 

Data using Excel files with corresponding labels. 

 

Reviewer #1  

Minor comments: 

1. Page 4 “…whole genome DNA methylation is the best..” - the reference suggests that a subset 

of methylation can perform better than whole-genome DNA methylation. The authors should 

revise their summary of the reference. 

 

Response: We thank the reviewer for the suggestion and we modified the passage accordingly 

(p4). 

 

Reviewer #1 

2. Page 7 “we analyzed the DNA methylation profiles of liver cancer from TCGA” raw numbers 

of overlaps between these sets should be reported. 

 

Response: We have reported the raw numbers (Fig. 1d). 

 

Reviewer #1  

3. Page 7 “we analyzed the DNA methylation profiles of liver cancer from TCGA” to increase 

the utility of single-strand methylation analysis the authors should test whether the methylation 

levels from TCGA were similar to methylation levels in the ss-MeDIP samples (and point out 

that 450K TCGA samples cannot report strand-specific methylation information). 

 

Response: We would like to point out that our method to analyze DNA methylation is ssg-

MeDIP-Seq. In contrast, TCGA utilizes DNA methylation arrays. It is challenging to compare 

raw values of DNA methylation levels measured using different methods. Therefore, we used an 

alternative way to compare the similarity between ssg-MeDIP-Seq data and published 

methylation array data of liver tumor samples (Figure 1d-e).  



 

 

Reviewer #1  

4. Page 8 “we identified 260,055 and 325,866 HMRs in 8 liver tumor samples and their Adj-NT 

controls, respectively.” Is this the sum of all HMRs or an average per sample? The average per 

sample should be reported as well. This also applies to reporting of cfDNA DMRs (page 10) and 

elsewhere where aggregate numbers are reported. 

 

Response: As indicated above, we recalculated the number of HMRs for each sample using the 

new cutoff. We identified 192,106 and 228,575 HMRs at 8 liver tumors and their corresponding 

control groups based on the new cutoff.  These two numbers represent the number of HMRs at 

each sample group. To address the reviewer concern, we also used boxplots to show the number 

of HMRs of each sample in Supplemental Fig. 2d.  

 

Reviewer #1  

5. Page 13 – “90% of the training cohort” and “in a balanced way” need to be defined – is this 

90% of samples or 90% of features?  

 

Response: We are sorry for the confusion. It is 90% of samples in the training cohort. We 

modified the text accordingly. 

 

Reviewer #1: 

6. Page 14 – Sample selection wording is unclear “Briefly, we randomly chose two cfDNA 

samples, with each from individuals with liver and brain tumors.” 

 

Response: We chose two cfDNA samples with highest concentration. In this way, we could use 

different amount of cfDNAs in each sample for analysis. We modified the text accordingly. 

 

Reviewer #1: 

7. Page 15 – “Evaluate the sensitivity of the sscf-MeDIP-Seq method.” Were the machine 

learning outcomes improved if the only-DMR or only-DHMR models were used? 

 

Response: We observed that in general the models trained with DMRs+DHMRs performed 

more robustly than the models trained with DMRs or DHMRs only (Supplemental Fig. 7). 

 

Reviewer #1: 

8. Page 17 – “Together, these results indicate that a significant fraction of liver cancer specific 

cfDNA DMRs and DHMRs identified in this study are likely associated with changes in the 

expression of nearby genes in tumor cells, which in turn may contribute to tumorigenesis.” It is 

unclear what significant fraction this sentence refers to. There is no significance test discussed in 

this section, and 78/4989 does seem significant enough to make this claim. This sentence should 

be substantiated, softened or removed. 

 

Response: First, the reviewer is correct that the original sentence is confusing. To clarify the 

situation in the previous version, we found that the expression of 78 genes in liver cancer tissue 

samples out of 968 genes with at least one cfDNA DMRs nearby is associated with patient 



survival. The number 78 refers to genes, not DMRs. In the revised manuscript, we included 50 

additional cfDNA samples in the control group in our analysis. Consequently, the number of 

genes with at least one liver tumor cfDNA nearby changed. To address this concern, we 

modified the sentence to avoid the confusion (p17). 

 

Reviewer #1 

9. Page 23, DMRs were called in blocks in cfDNA samples, but how were DMRs called in 450K 

TCGA samples? Were they called as individual probes or somehow expanded to include multiple 

probes? 

 

Response: The reviewer is correct that the DMRs were called by blocks for sscf-MeDIP-Seq 

datasets. In contrast, DMRs were called at each individual probe for TCGA 450K methylation 

array datasets. Each individual probe was then tested by Student’s t-test and considered as DMR 

if p<0.05. We did not merge different probes into one. 

 

Reviewer #1 

10. Page 25 “Machine learning models” What were the inputs to the models? I assume 

methylation levels at DMRs and bias at DHMRs, but this should be explicit.  

 

Response: We modified the text accordingly. 

 

Reviewer #1: 

11. Page 26 R scripts should be shared via github. 

 

Response: We uploaded the R scripts to GitHub: https://github.com/clouds-drift/plasma_MCD 

 

Reviewer #1: 

12. Page 26 “cfDNA DMRs or DHMR are associated with patient survival” hazard ratio cutoff 

should be provided here. 

 

Response: The hazard ratio cutoff we’re using is 1. When the hazard ratio > 1, the feature is a 

risky factor; when hazard ratio <1, the feature is a protective one. 

 

 

Reviewer #1: 

13. Page 33, Figure 1a – it could be useful to show an example of hemimethylation in the 

schematic here.  

 

Response: We thank the reviewer for the suggestion and modified Figure 1a accordingly. 

 

Reviewer #1 

14. Page 33, Figure 1b, page 7 text “By inspection of MeDIP-seq signals at the gene locus of 

TBX2, a gene known to be methylated in liver cancer, we identified a DMR specifically in tumors 

compared to Adj-NT samples” How was this highlighted DMR selected? It looks like there are 

several other DMRs in this region.  

 



Response: We are sorry for the confusion. We called the DMRs of 8 liver tumor samples based 

on ssg-MeDIP-Seq datasets and their corresponding Adj-NT samples using the QSEA software 

(Lienhart et al Nucleic Acid Research (2017), 45, e44). We only showed three samples in Figure 

1b to save space. The other regions were not identified as DMRs among these samples based on 

the QSEA analysis. We modified the text as well as switched the original Figure 1b with Figure 

1c to make this point clear. 

 

Reviewer #1: 

15. Page 33, Figure 1d – p-value for B is 0 – is this correct? 

 

Response: We added exact p-value to Fig. 1d.  

 

Reviewer #1: 

16. Page 33, Figure 1e – Does the LINE value extend beyond the left axis? The x axis should be 

increased to show the limit of this value.  

 

Response: We modified the previous Figure 1e accordingly (current Figure 1f) 

 

Reviewer #1: 

17. Page 33, Figure 1e – N’s should be shown for each category as enrichment values are hard 

to interpret (probably in a supplementary figure if not possible in the main figure)  

 

Response:  We added the number of DMRs that show significant enrichment in parenthesis and 

modified the figure legend. 

 

Reviewer #1: 

18. Page 33, Figure 1e – x-axis “Z score enrichment” is not defined. Do the authors mean “Z 

score”? 

 

Response: It should be Z score and we modified Figure 1e accordingly. 

 

Reviewer #1: 

19. Page 35, Figure 2b shows hemimethylation with a scale of -3 to 3. However, the formula 

implies a range of -1 to 1.  

 

Response: We are sorry for the confusion. Figure 2b represents the RPM value of ssg-MeDIP-

Seq datasets. To address this concern, we moved the formula to Figure 2a and indicated the RPM 

values in Figure 2b legend. 

 

Reviewer #1: 

20. Page 35, Figure 2f labels “Increased DHMR” could be changed to “Increased HM” to 

reflect that the region isn’t increasing, but the hemimethylation is changing. 

 

Response: We modified Figure 2f and other figures accordingly. 

 



Reviewer #1 

21. Page 42, Figure 1a – how were the IDH subtype model DMRs selected? The heatmap 

suggests that the DMRs were selected between a different number of samples (~80/20 instead of 

the 43/34 IDHmut/WT samples described in the text). 

 

Response: DMRs were identified between 43 IDH mutant and 34 IDH WT brain sample groups. 

The confusion arose from the text in Figure 5a. We modified Figure 5a to avoid confusion (see 

below). 

 

Reviewer #1 

22. Page 42 Figure 5a the schematic of the application of Bayes’ theorem is unclear – the boxes 

make it appear that the P(IDH mut ) and P(IDH WT) apply to DMRs while P(Liver) and 

P(Control) apply to DHMRs. 

 

Response: We are sorry for the confusion. We modified Figure 5a accordingly.  

 

 

Reviewer #1: 

 

23. Page 44 Figure 6d/g – perhaps x-axis label should be “Time in months” or “Time 

(months)”? 

 

Response: We made changes in the figures accordingly. 

 

Reviewer #1: 

24. Figure S1 – Suggest changing labels to “Promoters with CGI” and “Promoters without 

CGI.”  

 

Response: We modified the figures accordingly. 

 

 

Reviewer #2 (Remarks to the Author): expertise in cell free DNA methylation methods 

 

“Sensitive and accurate tumor detection by methylation and hemi-methylation of plasma cdl-free 

DNA” by Hua et al. is a well written article detailing utility of MeDIP-Seq methods. The 

performance of their classifier models to identify cancer and is promising but it appears that 

DHMRs do not contribute very much to the performance given especially that there are many 

more DHMR regions than DMRs.  

 

Response: We thank the reviewer for the precious time to review this manuscript and for 

insightful comment. In response to the concerns of the three reviewers about hemi-methylation 

identification, we analyzed 10 input samples including two genomic DNA samples and 8 cfDNA 

samples without the precipitation by antibodies against 5-mC. In principle, these input samples 

should not show hemi-methylation. Indeed, these input samples did not show hemi-methylation 

at the vast majority of ~2M methylation blocks (Supplemental Figure 2). Furthermore, the 

number blocks showing bias was further reduced using RPM>1 at each block as the cut off and 



was not reduced further from RMP>1 (Supplemental Figure 2). Using RPM>1 as the cut off, we 

re-analyzed hemi-methylation of all ssg-MeDIP-Seq, and sscf-MeDIP-Seq datasets. We found 

that the number of DHMRs were significantly reduced. For instance, we identified 24,883 DMRs 

and 6,562 DHMRs in 8 liver tumor DNA samples compared to their corresponding Adj-NT 

controls (Figure 2e). These results indicate that many false positive DHMRs were identified 

previously, likely due to the fact that low sequence reads at each block may impact the DHMR 

calculation. 

 

In the revised manuscript, we analyzed 50 additional cfDNA samples from the control group. In 

total, we analyzed cfDNA 271 samples from three groups of samples (control, liver cancer and 

brain tumor). Using newly identified DHMRs, we also found that models trained with both 

DMRs and DHMRs showed better predictive performance than models trained with DMRs or 

DHMRs alone (Figure 4). 

 

We agree with the reviewer that models trained with both DMRs and DHMRs only showed a 

slight improvement than models using either DMRs or DHMRs alone. The slight improvement is 

likely due to the fact that DMR-or DHMR-based models alone showed great performance, which 

makes it challenging to improve further using both DMRs and DHMRs, especially when 

analyzing 56 samples in the validation cohort. However, we would like to argue that the slight 

improvement in performance will likely offer benefits in clinical settings when hundreds and 

thousands of samples would be tested. Second and importantly, one of major issues for early 

tumor detection is the false positive rate. By evaluating a sample using three different models 

(DMRs, DHMRs and DMRs+DHMRs), we could predict the results three times independently. 

If the prediction from three models show concordance, this would increase confidence in the 

prediction. However, if the predictions from three models show discordance, we could in 

principle flag the sample for additional tests. Through these approaches, one would expect to 

reduce false positive prediction and increase prediction accuracy. In the revised manuscript, we 

discussed these ideas.   

 

Review #2 

INTRODUCTION 

The statement that targeted bisulfite sequencing “requires up to 80ml of plasma” doesn’t seem 

accurate. Assuming the authors are referring to Liu et al. which states “Up to 80 ml whole blood 

was collected from all participants as part of the research study; only two tubes of plasma were 

processed separately per participant.” 1) that’s 80ml of blood, not plasma and 2) only 2 tubes of 

blood were analyzed which would yield ~8-10ml of plasma. 

 

Response: We thank the reviewer for pointing out for our oversight and we modified the text 

accordingly. 

 

 

Reviewer #2 

METHODS/RESULTS 

The authors’ ssg-MeDip-Seq ligates different adapters to the Watson and Crick strands, 

allowing for strand-specific analysis. From the description provided and the diagram (Figure 

1A) I don’t see how the same result could not be achieved in silico by doing a standard library 
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When complementary adaptors are added to the fragments, dsDNA amplified from the Watson and Crick 

strand are identical, which lose strand-specific information

When fork-headed adaptors are added to a DNA fragment, dsDNAs amplified from the Watson and Crick 

strand can be distinguished and strand-specificity is preserved

prep and then simply splitting the bam file by strand after alignment. As the authors point out, 

allele specific methylation is an overlooked and potentially useful biomarker. It is possible to 

analyze strand specific methylation from bisulfite sequencing; the biscuit BS-Seq aligner, for 

example, has an allele specific methylation subroutine. With the data that is currently present it 

is difficult to evaluate the advantage of strand-specific methylation analysis using ss(g/cf)-

MeDIP-Seq compared to bisulfite sequencing, as these comparisons are not presented.  

 

Response: We would like to discuss with the following points with the reviewer to address this 

concern. First, whether a method can detect strand-specific methylation depends on how 

sequencing libraries are generated. If sequence libraries are prepared using hair-pin adaptors or 

fork adaptors that mark 3’ and 5’ end of double-stranded DNA differently (see Letter Figure 2), 

then the method preserves strand-specific information and consequently could detect hemi-

methylation. However, if the library preparation method utilizes the complementary strand (see 

letter Fig. 2) then strand-specific information will be lost after PCR amplification because double 

stranded DNA from the original Watson and Crick strand will be the same.  

 

Letter Figure 2. Whether a 

method can detect strand-

specific DNA methylation 

depends on how the 

sequence libraries are 

generated. Top and bottom 

panels describes a loss and a 

retention of strand-specific 

information, respectively. 

 

 

 

 

Second, the reviewer is correct to point out that bisulfite-sequencing (BS-seq) could in principle 

detect hemi-methylation if the sequencing libraries are prepared using adaptors that preserve 

strand specific information. In fact, the study that shows DNA hemi-methylation is a novel 

epigenetic mark utilized a modified BS-seq to analyze DNA methylomes (Xu and Gorce, 

Science 2018, 359, 1166). 

 

Third, while we did not compare the ssg-MeDIP-seq method with BS-seq directly, we believe 

that the ssg-MeDIP-seq method has both pros and cons compared to BS-seq. First, the ssg-

MeDIP-seq method is relatively simple to perform compared to BS-Seq as the method does not 

need a library preparation kit and does not need bisulfite conversion. Moreover, BS-seq cannot 

differentiates between 5-mC and 5hmC. However, unlike the BS-Seq method, ssg-MeDIP-Seq 

cannot detect methylation at single nucleotide resolution. 

 

Finally, as the reviewer pointed out, DNA hemi-methylation is under studied. In fact, to our 

knowledge, no studies have used a combination of DNA methylation and hemi-methylation of 

cfDNA for tumor detection despite the fact that BS-seq could detect hemi-methylation. While we 

did not understand the reason behind this, one of the authors (ZZ)’s conversation with Dr. Peter 



Jones, a pioneer in DNA methylation in cancer, during a seminar visit, offered some insights. 

Based on his opinions, quoting from his email “ hairpin bisulfite sequencing seems to be the best 

option for detection of hemi-methylation”. However, his lab “has had issues with hairpin 

bisulfite seq protocols in the past because of low bisulfite conversion rate and other difficulties. 

Therefore, we are trying to figure out a different way to detect hemi-methylation that does not 

involve hairpin technology”.  

 

Reviewer #2 

The strand specific adaptor ligation shown in figure 1A is absent in figure 3A where they detail 

the cell-free DNA library prep (sscf-MeDIP-Seq). Is the strand specific adaptor ligation 

performed in sscf-MeDIP-Seq? Or in this case is strand specific methylation resolved in silico? 

 

Response: Likely due to our writing, we did not make this clear about sscf-MeDIP-seq. Because 

cfDNA molecules are small in size (100-200bp), and also contain a large fraction of single-

stranded DNA (ssDNA) and damaged DNA, we used a different strategy to make sequencing 

libraries that could preserve strand-specific information for the detection of hemi-methylation. 

First, we denatured all cfDNA molecules into ssDNAs using heat and then marked the 3’ end of 

each ssDNA molecule with an oligo using a single-stranded DNA ligase. Following synthesis of 

the second strand, a different adaptor is ligated to the 5’-end. In this way, strand-specific 

information is preserved. In the revised manuscript, we modified Figure 3A to make this clear. In 

short, hemi-methylation detected by sscf-MeDIP-Seq is not resolved in silico. 

 

Reviewer #2. 

The authors state that their sscf-MeDIP-Seq library prep is superior to other cfDNA methods in 

part because it can recover single stranded and damaged DNA, which is particularly important 

for cfDNA applications. However, the authors do not compare their method with traditional 

MeDIP which begs the question: how much is gained by performing sscf-MeDIP-Seq versus 

previously published methods and studies on cfDNA MeDIP-Seq (PMID: 35065650, 31471598, 

31471598)? Does it improve sequencing output given identical input? Does it significantly 

improve signal detection? A direct comparison to previously published methods would 

strengthen the results. 

 

Response: We agree with the reviewer that it would be ideal to perform a direct comparison of 

sscf-MeDIP-Seq datasets with published cfDNA MeDIP-seq. However, we could not access 

these datasets even after we sent multiple requests to access these published datasets in the last 

three and half years. The most recent request was sent on November 16, 2023. While we could in 

principle follow the published cfDNA MeDIP-seq to generate datasets for comparison, we did 

not do this for the following reasons. First, it took us a long time to optimize sscf-MeDIP-Seq 

procedures and we suspect that it may take a long time to follow published procedures to 

generate reliable MeDIP-Seq datasets. Second and importantly, we have analyzed over 300 

samples using sscf-MeDIP-seq. Therefore, it may not be a good comparison if we are very good 

at handling sscf-MeDIP-seq procedures than cf-MeDIP-seq procedures. Importantly, our method 

can detect hemi-methylation. We are not sure the published cfDNA MeDIP-Seq can. Even if the 

method could, the published study did not use hemi-methylation for tumor detection.  
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To address this concern further, we searched the literature and found a couple of published 

studies comparing different cfDNA library procedures. They found that the single-stranded 

cfDNA preparation method, which we used here, is more sensitive than the traditional double 

stranded DNA preparation method (Burnham et al Scientific Reports 6: Sci Rep 6, 27859 (2016). 

In the revised manuscript, we cited these papers and modified the discussion extensively to avoid 

direct comparison between sscf-MeDIP-Seq and published cf-MeDIP-Seq. 

 

Reviewer #2. 

Sequencing metrics that might be used to evaluate ss(g/cf)-MeDIP-Seq are absent (total reads, 

alignment rate, duplication rate etc.). It would also be useful to know the sequencing depth at 

each of the ~2M CpG clusters the authors evaluated. 

 

Response: In response to the reviewer’s request, we have compiled “Table 1 Sample and Reads 

info” listing total reads, alignment rate and duplication rate of all samples used in this study and 

put them the Source Data 

 

We also calculated the average sequencing depth of 2M CpG clusters of 10 cfDNA case samples 

and 10 control samples 

(Letter Fig. 3).  

 

 

Letter Figure 3. Mean 

raw read count and 

Mean RPM at ~2M 

blocks of 10 liver cancer 

cfDNA samples and 10 

controls used in Figure 

3. 

 

 

 

 

 

Reviewer #2 

The overlap between DMRs and DHMRs indicates that they are largely independent. However 

hemi-methylation would be ~50% methylated, if only considering beta value, and therefore 

hypomethylated compared to average genomic methylation levels; I would expect more overlap. 

If you reduce the stringency of the filtering criteria for DMR analysis, do you see an increase in 

the overlap? 

 

Response: We thank the reviewer for the insightful comments. As detailed above, we reanalyzed 

hemi-methylation of all samples by including an additional cut off (RPM> 1) based on the 

assumption that input samples without the methylated DNA immunoprecipitation step showed 

little, if any, strand-specific bias. Using additional cutoff, we found that the number of DHMRs 

was reduced markedly. However, while the overlap between DHMRs and DMRs increased 

(Figure 2e), 4,474 of 6,562 liver tumor DNA DHMRs did not overlap with DMRs. Similar 



analysis on cfDNA DHMRs from 10 liver tumor samples compared to 10 controls also reveals 

that a large fraction of DHMRs did not overlap with DMRs (Figure 3g). These results are 

consistent with published studies that DNA hemi-methylation is an independent epigenetic mark 

(Xu and Gorce, Science 2018, 359, 1166; and Thomas et al, Nucleic Acid Research 2023, 51: 

5997-6005). 

 

To address this concern further, we calculated DNA methylation density of Watson and Crick 

strands at liver tumor specific DMRs and DHMRs compared to controls. We found that DNA 

methylation density of both Watson and Crick strand at DMRs were changed almost equally, 

whereas DNA methylation density at DHMRs were changed markedly only at one strand 

(Supplemental Figure 3), providing an explanation for the observations that most DHMRs did 

not overlap with DMRs.  

 

Reviewer #2 

In the model training, the authors “selected the top 100 DMRs and 741 DHMRs” for model 

training/testing. How were cutoffs determined (n = 100 DMR & n = 741 DHMR)? Seems a bit 

lopsided in favor of the DHMRs, which do not seem to be adding much to the performance of the 

model. The authors state that the DMR+DHMR model performs better than either DMR or 

DHMR models alone but the DMR model has 100 features, no? What’s the performance of the 

DMR model if you take the top 841 DMRs, so the total number of features is equal? Or if you 

were to train using the top X DMRs and top X DHMRs – this would allow for more direct 

comparison between the feature types. 

 

Response: As detailed above, based on analysis of input samples, we included an additional 

cutoff (RPM>1 at each block) to analyze hemi-methylation. We found far fewer DHMRs for 

each group of samples. In the revised manuscript, we also followed the reviewer’s suggestion 

and used an equal number of DMRs and DHMRs (200 each) for as inputs to machine learning. 

These DMRs and DHMRs were selected based on the feature importance of 215 samples in the 

training cohort. Please note that we analyzed 50 more cfDNA samples from the control group in 

the revised manuscript. Under these conditions, we found that 1) models trained with DHMRs 

alone performed better than DHMR models of last submission, and 2) DMR+DHMR models 

performed a slight better than models using DMRs or DHMRs alone (Figure 4). As discussed 

above, the slight improvement is likely due to high performance DMR- or DHMR models, which 

makes it challenging to improve the performance when DMRs+DHMRs are combined to analyze 

the 56 samples in the validation cohort. 

 

We also selected the top 100 DMRs and DHMRs to train machine learning models. The models 

could also predict samples in the validation cohort very well (Letter Fig. 4), revealing the 

robustness of prediction. 



 

Letter Figure 4. Predicting 

tumor types by models 

trained with DMRs, 

DHMRs and 

DMRs+DHMRs. 

Evaluation of model 

performances for the 

prediction of control (A), 

liver tumor (B) and brain 

tumor (C) cfDNA samples 

in the validation cohort 

using models trained with 

100 DMRs, 100 DHMR, or 

100 DMRs+ 100 DHMRs. 

The best sensitivity and 

specificity point for each 

prediction were marked 

with the Red dot. (D) The 

average prediction 

probability of each group of samples using models trained with DMRs+DHMRs. Each column 

represents the group of validation samples, with each row representing model predictions. Red, 

yellow and blue bars represent probability of samples being from brain cancer, liver cancer, and 

healthy controls, respectively. 

 

Reviewer #2 

Did you force the cluster breaks in the heatmaps in figure 6? C/F appear to have been forcefully 

split by row and column groups using the row_split and column_split options, assuming the 

authors are used the ComplexHeatmap R package. If so, this should be stated. 

 

Response:  Figure 6 C/F is clustered by unsupervised clustering using the  pheatmap package 

(https://cran.r-project.org/web/packages/pheatmap/index.html).  We did not forcefully split by 

row and column groups, nor did we use the ComplexHeatmap package. 

 

 

Review #2 

ROC curve AUCs should have confidence intervals either stated in the text or annotated on the 

figure, ideally both. 

 

Response: We added the confidence intervals in the text, figure and figure legends. 

 

Reviewer #2 

DISCUSSION 

The authors state many advantages of their methods, please provide direct comparisons to 

previously published methods. 

 

https://cran.r-project.org/web/packages/pheatmap/index.html


Response: As discussed above, while we would be happy to compare our methods with other 

published methods, we could not. In the revised manuscript, we modified the text to avoid direct 

comparison of sscf-MeDIP-Seq with other published methods. 

 

 

 

Reviewer #3 (Remarks to the Author): expert in machine learning cfDNA analysis 

The author employed an enhanced MeDIP-Seq technique to examine DNA methylation patterns 

in liver cancer and brain cancer, underscoring the effectiveness of utilizing both DMRs and 

DHMRs for accurate cancer detection. Nevertheless, in previous studies, bioinformatics 

approaches for stranded methylation detection and hemi-methylation region identification from 

MeDIP-Seq data have already been well-established. Furthermore, both MeDIP-Seq sequencing 

technology and the utilization of the Tn5 enzyme for fragmenting and tagging double-stranded 

DNA in Next-Generation Sequencing (NGS) are well-established, mature techniques, 

emphasizing a notable lack of significant innovation. 

 

Response: We thank the reviewer for spending precious time to review the manuscript. The 

reviewer raised several points. I would like to discuss the following points with the reviewer. 

First, I agree with the reviewer that previous studies on DNA methylation in cell lines and/or in 

other animal species, using either MeDIP-seq and BS-seq datasets, could detect DNA hemi-

methylation. However, no studies, to our knowledge, analyzed both DNA methylation and hemi-

methylation of plasma cell free DNA for tumor detection, which is the focus of the present study. 

Furthermore, our studies show for the first time that most DHMRs do not overlap with DMRs 

based on analysis of tumor DNA and cfDNA samples from liver cancer patients. Finally, we 

would like to point out that our study, to our knowledge, is the first to combine the existing 

technologies to study DNA methylation in a strand-specific way. For instance, while Tn5 has 

been used to fragment DNA for NGS library preparation, few studies, if any, have combined 

DNA fragmentation by Tn5 with methylated DNA immunoprecipitation to analyze DNA 

methylation and DNA hemi-methylation. In short, our studies, like most studies in the literature, 

benefit from these published studies. 

 

Reviewer #3 

Hemi-methylated DNA typically has a propensity to either become fully methylated or tend 

towards demethylation. Varying DMR identification thresholds can be used to extract 

methylation change data in these regions. Moreover, the gold standard for methylation 

identification, WGBS (Whole Genome Bisulfite Sequencing), can differentiate between the 

positive and negative strands to acquire strand-specific methylation changes. This highlights a 

notable lack of impact. 

 

Response: First, as stated above, BS-seq could in principle detect hemi-methylation if the library 

preparation method preserves strand-specific information. Second and importantly, while hemi-

methylation could be detected by BS-seq, our study is the first to utilize both cfDNA DMRs and 

DHMRs for tumor detection. Further, we show for the first time that DMRs and DHMRs are 

likely independent biomarkers. Third, as pointed out above, we could predict one sample using 

three different machine learning models (DMRs, DHMRs, DMRs+DHMRs). If all three models 

predict the same outcome, this will increase confidence in tumor detection. However, if the three 



models show discordance, this in principle allows us to be cautious about the prediction. In 

principle, this will likely reduce the false positive predictions, a major challenge in liquid biopsy. 

We discussed these points in the discussion. 

 

Reviewer #3 

My main detailed concerns regarding this manuscript are as follows: 

1.Hemi-methylated regions represent a relatively small fraction of the genome, yet the number of 

DHMRs (Differentially Hemi-Methylated Regions) is significantly greater than the count of 

DMRs (Differentially Methylated Regions). This raises questions about whether the threshold set 

for DMR identification may have resulted in some regions that could potentially be identified as 

DMRs going unnoticed, ultimately leading to a limited overlap between DHMRs and DMRs. This 

undermines the conclusion that the factors contributing to DHMRs are independent of those 

associated with DMRs. 

 

Response: We thank the reviewer for the insightful comments. As described in the responses to 

the concerns of both reviewer #1 and reviewer #2, we found that DHMRs identified previously 

most likely contained a large number of false positive ones. In short, we sequenced 10 input 

samples without being subjected to methylated DNA immunoprecipitation and analyzed “hemi-

methylation” or bias at ~2 M methylation blocks of these input samples. In principle, these input 

samples should not show any hemi-methylation. Indeed, we found that these input samples did 

not show bias at the vast majority of blocks. Using RPM>1 at each block as the cut off, we found 

that the number of blocks showing bias are reduced further, suggesting that sequencing depth 

may affect the identification of hemi-methylated regions. Using RPM>1, we re-analyzed hemi-

methylation of all ssg-MeDIP-Seq and sscf-MeDIP-seq datasets. We found that the number of 

hemi-methylation sites decreased markedly. Consequently, we found that DMRs far exceed 

DHMRs in both tumor DNA samples (Figure 2e) and cfDNA samples (Figure 3g). 

 

Reviewer #3 

2.MeDIP-seq exhibits a proclivity for interrogating genomic regions characterized by low CpG 

density, and fewer CpG sites are more susceptible to sequencing technology errors and random 

inaccuracies, leading to bias in identifying hemi-methylated regions. 

 

Response: To address this concern, we used the same procedures and prepared the libraries of 

input samples, which were not subjected to methylated DNA immunoprecipitation, for 

sequencing. If bias arises from sequencing technology errors and random inaccuracies, one 

would  expect that the same bias could also be also detected at these input samples. We found 

that these input samples did not show bias at the vast majority of methylation blocks.  

Furthermore, with RPM>1 at each block as the cutoff, we identified fewer biased regions 

compared to RPM>0.5, and a further increase in the number of reads at each block did not 

reduce the number of blocks showing bias in these input samples markedly. Therefore, using 

RPM>1 as an additional cutoff, we could markedly minimize potential false positive hemi-

methylated regions. In the revised manuscript, we reanalyzed HMRs of sscf-MeDIP-seq datasets 

and found that machine learning models trained with DHMRs performed better than models 

trained with DHMR identified previously. For instance, the AUCs for control, liver and brain 

tumor samples were 0.761, 0.933 and 0.885, respectively, based on models trained with DHMRs 

identified before (Figure 4 of previous version). The AUCs for control, liver and brain tumor 
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samples were 0.899, 0.954 and 0.908, respectively, based on DHMRs identified in the revised 

manuscript (Figure 4), supporting the idea that DHMRs identified using the new cutoff are likely 

more accurate than those identified last time. 

 

 

Reviewer #3 

3.The accuracy and sensitivity of cfDNA abnormal methylation in cancer detection have been 

previously reported in earlier studies. And the title is too generic and fails to highlight the main 

content and innovative aspects of the article. 

 

Response: We modified the title to highlight the novelty of this study: Tumor detection by 

analysis of both symmetric-and hemi-methylation of plasma cell free DNA. 

 

Reviewer #3: 

4.External cohorts are needed to validate the diagnostic accuracy of DHMRs for lung and liver 

cancer, thereby preventing overfitting in model development. 

 

Response: We agree with the reviewer that it would be great to test our models for liver and 

brain tumor using an external cohort of samples. We would like to point out that it is very 

challenging to obtain these kinds of samples externally. For instance, we established a 

collaboration with Dr. Scott Kaufmann at Mayo Clinic on ovarian cancer. These samples have 

been collected already at Mayo Clinic many years ago. It took 6 months for Columbia University 

and Mayo Clinic to come up with an agreement on how to share potential intellectual properties. 

Therefore, it is very challenging to obtain an independent cohort of cfDNA samples from brain 

and liver cancer patients from an independent source.  

 

However, through the collaboration efforts on ovarian cancer project, we obtained 34 control 

samples. We found that our machine learning models including DHMR models predicted these 

samples extremely accurately (Letter Figure 5).  While these samples validated our models for 

the controls, we decided not to put these results in this manuscript for two reasons. First, we 

needed to ask permission of Dr. Kaufmann to include these samples. Second and importantly, 

these samples are not sex balanced as they are all from women. We are not sure whether this will 

affect the prediction outcome. Nonetheless, these results at least show that our models trained 

with DHMRs most likely provide additional diagnostic accuracy. 

 

 

Letter Figure 5: Predict the 

outcome of 34 control 

samples from an independent 

cohort using DMR-, DHMR-, 

and DMR+DHMR-based 

models.  (A) Evaluation of 

model performances for the 

prediction of being a control. 

The best sensitivity and 

specificity point for each 



prediction were marked with a red dot. (B) The average prediction probability using models 

trained with DMRs, DHMRs and DMRs+DHMRs (Final). These 34 samples were collected by 

the Mayo Clinic as the control samples for an independent study on ovarian cancer. The models 

were trained using 215 cfDNA samples described in Figure 4. 

 

 

Reviewer #3: 

5.In the clinical setting, blood tests for late-stage cancer patients are not meaningful. What is the 

distribution of cancer stages in your cohort? It is necessary to separately examine the diagnostic 

accuracy of early-stage DHMRs to demonstrate their practical significance in cancer diagnosis. 

 

Response: We separated liver cancer samples in the validation cohort into early and late groups 

and found that our model predicted early and late stages of liver cancer equally well 

(Supplemental Fig. 6).  

 

Reviewer #3: 

6.Raw data and code should be provided to ensure that data availability allows independent 

verification of results and increases the transparency of scientific research. 

 

Response: All sequencing datasets were deposited at dbGAP (see link below). This study was 

not supported by NCI, and it took us a long time to go through the approval process at Columbia 

University and NCI so that we could deposit data related to human samples to dbGaP. 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003462). 

The custom code was uploaded to github: https://github.com/clouds-drift/plasma_MCD. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003462


REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors' responses appear to sufficiently address the reviewers' concerns. I am pleased to see 

that a more stringent cutoff of coverage reduced false-positives and improved machine learning 

outcomes. 

 

Reviewer #1 (Remarks on code availability): 

 

Code provides README file with instructions for running code. Code is decently annotated. The 

authors could improve the repository by including column names in provided data files. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I would like to thank the authors for performing a thorough and detailed revision of their 

manuscript; the revised version and rebuttal letter addresses many of the questions and 

comments I had with the original submission and is a much stronger paper overall. However, there 

remains several other important issues that need to be resolved. 

 

 

RESULTS 

 

In the section where the authors evaluate the sensitivity of sscf-MeDIP-Seq they use different 

input for the brain cancer sample (3.5,10,24ng) and liver cancer sample (3,7,15ng) (Suppl Fig. 7). 

Why exactly are the input amounts inconsistent between the two samples? 

The authors state they could obtain data from ‘as little as 20 ul plasma.’ I am assuming you are 

referring to the lower limit of their input experiment (3ng cfDNA). As I am sure the authors are 

aware, the concentration of plasma cfDNA can vary quite a lot between individuals – I think this 

statement should be further qualified. 

 

METHODS 

 

I would like to thank the authors for providing a GitHub repository with code and data for 

independent researchers to evaluate the results. I have a few comments regarding the repo: 

 

I assume the “*score.txt” files appear to contain the raw data used to construct the machine 

learning models provided on the github repository. Merging the data in the DHMR score files shows 

a large proportion of missing (NA) values (~40%). Comparing these data to the training data in 

the ML models on the repository, it appears all NA values have been imputed as 0 in the ML 

models. I assume the DHMR models use the ‘bias’ calculation as ML input since all features are 

numeric values between -1 and 1, which matches the description of ‘bias’ ((Watson-

Crick)/(Watson+Crick)). By this logic, the NA values would potentially be due to Watson+Crick = 

0, which would mean no reads were mapped to the region. If I understand correctly, this could be 

due to a lack of methylated cytosines at this locus (i.e., completely hypomethylated) leading to no 

IP pulldown, and therefore there would not be a bias, in which case it would be appropriate to 

assign these regions a score of 0. An alternate explanation, however, is that no reads are mapped 

because of inadequate sequencing, or an inefficient IP. 

A few points: 1) the authors should describe the data processing and machine learning input in 

more detail, which would remove a lot of ambiguity here. 2) Have the authors considered technical 

variables that could influence the number of reads mapped, and potentially the frequency of NA 

values, to DHMR regions? 3) Do the authors believe the lower performance of DHMR models could 

be due to this imputation? 

 

There appear to be 41 files in both the DMR and DHMR directories for samples that were not 

included in the training or validation sets (based of the excel sheets). Were these samples used in 

some other part of the manuscript for a different purpose? They appear to mostly be normal, 

“ZH680_normal_M19035001586” is one example. 



 

DISCUSSION 

 

I had said, in the first round of peer review, “The authors state many advantages of their methods, 

please provide direct comparisons to previously published methods” and the authors stated in the 

rebuttal that they ‘were unable to directly compare their method to other published methods.’ I 

should have been clearer in the original comment – I was talking about the overall performance of 

their method/models to other studies also performing cancer classification using cfDNA. The cfDNA 

results are very good, putting those results in the context of other studies would strengthen the 

discussion. 

 

The authors state “by evaluating samples using three different models (DMRs, DHMRs and 

DMRs+DHMRs), we could envision to reduce false positives during cancer screening, a major issue 

for early tumor detection using current assays. Because we could predict the same sample three 

times independently, we could in principle flag the sample for additional tests if predictions from 

three models show discordance.” Do the authors have any examples in the validation set where a 

false positive would be reclassified as a true negative using this approach? 

 

 

 

Reviewer #2 (Remarks on code availability): 

 

included with main comments 

 

 

Reviewer #3 (Remarks to the Author): 

 

Upon reviewing the revised manuscript, it's evident that the authors have effectively addressed the 

specific issues highlighted in the initial feedback. The modifications made, particularly the 

enhancement of the title to better reflect the study's innovative aspects, the incorporation of an 

external validation cohort, and the adjustment of thresholds to address the issue of excessive 

hypermethylated regions, clearly indicate a focused effort to refine the study based on the 

provided recommendations. 

 

The decision to include an external validation cohort enriches the study by offering additional 

evidence of the model's robustness, effectively mitigating concerns regarding overfitting. This 

addition strengthens the manuscript's claims and broadens its appeal. 

 

The adjustment of thresholds to manage the identification of hypermethylated regions 

demonstrates a proactive approach to addressing theoretical concerns, ensuring that the analysis 

remains aligned with established scientific principles. This adjustment likely enhances the accuracy 

and relevance of the findings, making the study more valuable to readers and researchers 

interested in the field. 

 

Given the revisions undertaken, the manuscript now presents a clearer, more compelling narrative 

that is likely to engage a wider audience. The steps taken to address the initial feedback not only 

improve the manuscript's clarity and precision but also highlight the authors' dedication to 

presenting their research in the best possible light. 

 

In conclusion, the revised manuscript represents a significant improvement over the original 

submission. The authors have taken careful steps to address the concerns raised, resulting in a 

study that is well-positioned to make a meaningful contribution to its field. 



REVIEWER COMMENTS 
Reviewer #1 (Remarks to the Author): 
The authors' responses appear to sufficiently address the reviewers' concerns. I am pleased to 
see that a more stringent cutoff of coverage reduced false-positives and improved machine 
learning outcomes. 
 
Response: We thank the reviewer for the time reviewing the manuscript and for the support of 
publication of this important study. 
 
Reviewer #1 (Remarks on code availability): 
Code provides README file with instructions for running code. Code is decently annotated. The 
authors could improve the repository by including column names in provided data files. 
 
Response: Thanks for the reviewer’s suggestion. We added the column names for the following 
files. 
“QSEA_diff/215_training_set_other_nature_block_QSEA/all_sample/pvalue0.01_LFC1/total20
0.bed” and 
“DMBR_diff/215_training_set_other_nature_block_RPM1_each0.3_miss1/all_sample/pvalue0.0
1_delta0.3_base0.3/total200.bed”.  
 
 
Reviewer #2 (Remarks to the Author): 
I would like to thank the authors for performing a thorough and detailed revision of their 
manuscript; the revised version and rebuttal letter addresses many of the questions and 
comments I had with the original submission and is a much stronger paper overall. However, 
there remains several other important issues that need to be resolved. 
 
Response: We thank the reviewer for the time reviewing the manuscript and for the very positive 
comments. We have attempted to address each of the concerns detailed below. 
 
Reviewer #2  
RESULTS 
In the section where the authors evaluate the sensitivity of sscf-MeDIP-Seq they use different 
input for the brain cancer sample (3.5,10,24ng) and liver cancer sample (3,7,15ng) (Suppl Fig. 
7). Why exactly are the input amounts inconsistent between the two samples? 
The authors state they could obtain data from ‘as little as 20 ul plasma.’ I am assuming you are 
referring to the lower limit of their input experiment (3ng cfDNA). As I am sure the authors are 
aware, the concentration of plasma cfDNA can vary quite a lot between individuals – I think this 
statement should be further qualified. 
 
Response: Thank the reviewer for pointing this out. As the reviewer stated above, the amount of 
cfDNA purified from each plasma sample can vary a lot among individual samples. Therefore, 
we did not use exact amount of cfDNA for sscf-MeDIP-Seq. Instead, we normally used 1/3 to ½ 
cfDNA purified from 1 ml plasma samples for our analysis. Therefore, when we tested different 
amount of cfDNA for the generation of sscf-MeDIP-Seq datasets, we used different fractions of 



cfDNA purified from each sample instead of the exact amount of cfDNA. In the revised 
manuscript, we made this clear (p16).  
 
To answer the reviewer’s inquiry precise, the three amounts of cfDNA (3.5 ng, 10 ng, 24 ng) for 
the brain tumor sample are equivalent to 21 µl, 63 µl and 150 µl of plasma used for purification. 
The three different amounts of cfDNA of the liver cancer sample (3 ng, 7 ng and 15 ng) are 
equivalent to 60 µl, 140 µl, and 300 µl plasma of the sample. As described in the manuscript, 
these two samples were chosen for analysis because they contained high concentration of 
cfDNA, which allowed us to perform sscf-MeDIP-seq using different amount materials. 
Therefore, these two samples do not represent the majority of cfDNA samples. To avoid potential 
confusion, we deleted the sentence from the revised manuscript (p16). 
 
Reviewer #2  
METHODS 
I would like to thank the authors for providing a GitHub repository with code and data for 
independent researchers to evaluate the results. I have a few comments regarding the repo: I 
assume the “*score.txt” files appear to contain the raw data used to construct the machine 
learning models provided on the github repository. Merging the data in the DHMR score files 
shows a large proportion of missing (NA) values (~40%). Comparing these data to the training 
data in the ML models on the repository, it appears all NA values have been imputed as 0 in the 
ML models. I assume the DHMR models use the ‘bias’ calculation as ML input since all features 
are numeric values between -1 and 1, which matches the description of ‘bias’ ((Watson-
Crick)/(Watson+Crick)). By this logic, the NA values would potentially be due to Watson+Crick 
= 0, which would mean no reads were mapped to the region. If I understand correctly, this could 
be due to a lack of methylated cytosines at this locus (i.e., completely hypomethylated) leading to 
no IP pulldown, and therefore there would not be a bias, in which case it would be appropriate to 
assign these regions a score of 0. An alternate explanation, however, is that no reads are mapped 
because of inadequate sequencing, or an inefficient IP. 
 
Response: The reviewer is correct that the file labeled score.txt contains the bias score of sscf-
MeDIP-Seq. In this revised manuscript, we annotated the Score.txt in the GitHub repository for 
“DMR_model/score” and “DHMR_model/score” files to make it clearer. 
 
The author’s explanation for potential reasons for the blocks labeled with the NA is also correct. 
As mentioned in the method section, we used RPM>1 at each methylation block as the cutoff 
based on analysis of input samples. Therefore, if a block does not meet this criterion, the block in 
the sample will be labeled as “NA” in the score sheet. In the revised manuscript, we followed the 
reviewer suggestions and added a couple of sentences describe the NA in the method section 
(p28, detailed below).  
 
At the same time, I would also like to point out that DHMR are regions showing significantly 
differential sscf-MeDIP-Seq bias score among different groups of samples. The block labeled 
with “NA” in one sample may not be “NA” in other samples of the same group. Therefore, the 
inadequate sequencing depth in one sample, if not occurring in other samples of this group, will 
unlikely affect DHMR identifications for this sample group. 
 



Reviewer #2  
A few points: 1) the authors should describe the data processing and machine learning input in 
more detail, which would remove a lot of ambiguity here. 2) Have the authors considered 
technical variables that could influence the number of reads mapped, and potentially the 
frequency of NA values, to DHMR regions? 3) Do the authors believe the lower performance of 
DHMR models could be due to this imputation? 
 
Response: We followed the reviewer’s suggestion and describe the data processing and machine 
learning input in more detail in the revised manuscript (p28). Second, we shared the reviewer’s 
concern that technical variables may influence the numbers of reads mapped, and potentially the 
frequency of NA values for each sample. Based on our experience through analysis of close to 
300 cfDNA sscf-MeDIP-Seq datasets, as the reviewer may predict, the main variable is the 
amount of cfDNAs used for sscf-MeDIP-Seq experiment. However, this issue, I suspect, that 
may also affect the identification of both DMRs and DHMRs. Importantly, I believe that it is a 
general problem that we need to deal with no matter which methods are used to analyze plasma 
cfDNA methylomes for tumor detection.  
 
Third, I also agree with the reviewer that the imputation for identification of DHMRs likely 
contributes to the lower performance of DHMR models compared to DMRs models. In the 
revised manuscript, we added this idea to the method section after describing the caveats for our 
analysis of DHMRs (p28). 
 
 
Reviewer #2  
There appear to be 41 files in both the DMR and DHMR directories for samples that were not 
included in the training or validation sets (based of the excel sheets). Were these samples used in 
some other part of the manuscript for a different purpose? They appear to mostly be normal, 
“ZH680_normal_M19035001586” is one example. 
 
Response: As shown in Letter Fig. 5 in previous response letter, we used the models trained in 
this study to predict 34 controls samples collected from Mayo Clinic. These 34 samples were not 
included in the manuscript, but the scores for these 34 samples were put in the repository for 
reviewers to review them.  Four files were from different amounts of cfDNA (Figure S7). We 
removed three other files that were not used in this manuscript and were put in the Table by 
oversight. If the reviewer likes, we could remove all these 41 files. 
 
Reviewer #2  
DISCUSSION 
I had said, in the first round of peer review, “The authors state many advantages of their 
methods, please provide direct comparisons to previously published methods” and the authors 
stated in the rebuttal that they ‘were unable to directly compare their method to other published 
methods.’ I should have been clearer in the original comment – I was talking about the overall 
performance of their method/models to other studies also performing cancer classification using 
cfDNA. The cfDNA results are very good, putting those results in the context of other studies 
would strengthen the discussion. 
 



Response: Thank the reviewer for the clarification of previous concern. We followed the 
reviewer’s suggestion and compared our methods with two highly-cited studies by analysis of 
methylomes of cfDNA using different methods (p21-p22). 
 
Reviewer #2  
The authors state “by evaluating samples using three different models (DMRs, DHMRs and 
DMRs+DHMRs), we could envision to reduce false positives during cancer screening, a major 
issue for early tumor detection using current assays. Because we could predict the same sample 
three times independently, we could in principle flag the sample for additional tests if predictions 
from three models show discordance.” Do the authors have any examples in the validation set 
where a false positive would be reclassified as a true negative using this approach? 
 
Response: The short answer is yes. For instance, of the 21 control (normal) samples in the 
validation cohort, 3 samples were predicted by the DMR models as “brain tumor” and as 
“Normal” by DHMR-based models. In theory, we could flag these samples for additional 
analysis. 
 
Reviewer #3 (Remarks to the Author): 
Upon reviewing the revised manuscript, it's evident that the authors have effectively addressed 
the specific issues highlighted in the initial feedback. The modifications made, particularly the 
enhancement of the title to better reflect the study's innovative aspects, the incorporation of an 
external validation cohort, and the adjustment of thresholds to address the issue of excessive 
hypermethylated regions, clearly indicate a focused effort to refine the study based on the 
provided recommendations. The decision to include an external validation cohort enriches the 
study by offering additional evidence of the model's robustness, effectively mitigating concerns 
regarding overfitting. This addition strengthens the manuscript's claims and broadens its appeal. 
 
The adjustment of thresholds to manage the identification of hypermethylated regions 
demonstrates a proactive approach to addressing theoretical concerns, ensuring that the analysis 
remains aligned with established scientific principles. This adjustment likely enhances the 
accuracy and relevance of the findings, making the study more valuable to readers and 
researchers interested in the field. 
 
Given the revisions undertaken, the manuscript now presents a clearer, more compelling 
narrative that is likely to engage a wider audience. The steps taken to address the initial 
feedback not only improve the manuscript's clarity and precision but also highlight the authors' 
dedication to presenting their research in the best possible light. 
 
In conclusion, the revised manuscript represents a significant improvement over the original 
submission. The authors have taken careful steps to address the concerns raised, resulting in a 
study that is well-positioned to make a meaningful contribution to its field. 
 
Response: We thank the reviewer for the time reviewing the manuscript and for the support of 
publication of this study. 



REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

We thank the authors for the edits. We have no further questions. 
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