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Supplementary Note 1： General expression of the longitudinal optical force 

In the main text, we derived an expression for the longitudinal optical force acting on 

the particle. This force can be calculated by integrating the Minkowski stress tensor 

min
T  over a closed surface S that encloses the particle. Specifically, the force can be 

written as: 

minˆ ˆ ,x
S

F x ndS   T                       (S1) 

where S is an arbitrary closed surface and n̂  is the outward normal unit vector of S. 

To simplify the calculations, we choose the closed surface S to be a spherical surface 

S with an infinite radius R , as illustrated in Supplementary Fig. 1.  

 

In our analysis, we consider the metamaterial to be infinite in the x and y directions, 

while it extends indefinitely in the negative z direction. The incident surface wave (SW) 

is launched from the left infinity ( x  ). For convenience, we assume the 

metamaterial to be isotropic, characterized by a relative permittivity    and 

permeability  . 

 

In this system, we have three types of electromagnetic (EM) waves: the incident surface 

wave (SW), the scattered SWs propagating in all directions on the xoy plane, and the 

freely propagating waves (FPWs) that propagate in all solid angles both in air and inside 

the metamaterial. For the incident SW, the electric and magnetic fields can be expressed 

as: 

( ) ( )( , , ) , ( , , ) ,p pik x ik xi T i T

ix iy iz ix iy ize e e e h h h e E H               (S2) 

where pk  is the propagating wavenumber of the SW, , ,ix y ze and , ,ix y zh  are functions 

that depend on z only and vanish at the infinities ( z   ). The superscript (i) denotes 

that these fields are associated with the incident SW. By applying Maxwell's equations, 

we can obtain the electric and magnetic induction fields of the incident SW: 
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The scattered SWs are confined to the xoy plane, and in the far field limit ( R), it 

is convenient to express their EM fields in cylindrical coordinates as: 

( ) ( )( ) ( , , ) , ( ) ( , , ) .p pik iks T s T

z ze e e e h h h e
 

     E H          (S4) 

Here, , ,ze    and , ,zh    are functions that depend on the coordinates , , z   , and 

vanish in the limit z   . These functions characterize the field amplitudes of the 

scattered SW. The superscript (s) denotes that these fields are associated with the 

scattered SW. 

 

In the far field region (    ), the radiation boundary condition and energy 

conservation dictate that the functions , ,ze  and , ,zh   scale as ~ 1/ pk  ( according 

to the radiation boundary condition). This scaling behavior results in the following 

expressions: 

, , , ,

, , , ,3/2 3/2

1 1
, .

( ) ( )

z z

z z

p p

e h
e h

k k

   

   
   

 
   

 
          (S5) 

Therefore, we can neglect the partial derivatives above, and the induction fields of the 

scattered SW in the far field (on the yellow ribbon in Supplementary Fig. 1, where 

 ) are calculated as 
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For the FPWs, in the spherical coordinate, the EM fields in the far field are expressed 

as 

( ) ( )( , ) , ( , ) ,
f fik R ik R

f f

n n

e e

R R
    E a H b             (S7) 

where ,n na b  are complex vectors depend on the direction vector 



ˆ ˆ ˆ ˆsin cos sin sin cosn x y z       , fk  is the freely propagating wavenumber which 

equals 0k   in air and 0k    inside the metamaterial, and the superscript (f) 

indicates that these quantities correspond to the FPWs. In the far field region, the 

radiation fields inside the isoptropic medium are transverse fields, satisfying 

1
ˆ ˆ ˆ0, ,n n n n

f

n n n
Z

     a b b a                 (S8) 

where
0 0 0/fZ Z     in air and 

0/fZ Z   inside the metamaterial. 

 

With the given expressions for the electromagnetic (EM) fields and induction fields, we 

can derive the expression for the longitudinal optical force. Since the total EM fields 

comprise three different types of fields, the Minkowski stress tensor can be divided into 

six components as follows: 

min ( ) ( ) ( ) ( ) ( ) ( ) ,i s f is if sf     T T T T T T T              (S9) 

which are in terms of the pure incident SW ( )i
T , the pure scattered SW ( )s

T , the pure 

FPW ( )f
T , the interference of the incident SW and scattered SW ( )is

T , the interference 

of the incident SW and FPW  ( )if
T , and interference of the scattered SW and FPW 

( )sf
T , respectively. However, due to the conservation law of linear momentum in the 

absence of particle, the integral over ( )i
T  is zero. 

 

A. Integral of ( )s
T  

As the SW rapidly diminishes as z   , ( )s
T  is nonzero only on the yellow ribbon 

as shown in Supplementary Fig. 1. As R , this yellow ribbon becomes an infinitely 

long cylindrical surface extending along the z direction. Consequently, the integral of 

( )s
T  can be expressed as 

2 2

( ) ( ) ( )

0 0

ˆ ˆlim lim .s s s

x x
R R

F dz x e Rd dz T Rd

 

  
 

 
 

      T                  (S10) 

Using the expression of Minkowski stress tensor, one has 

( ) ( ) ( )* ( )* ( ) ( ) ( )* ( )* ( )1 1
Re[ ( )cos ].

2 2

s s s s s s s s s

x x xT E D H B        E D H B       (S11) 



Inserting Equations (S4) and (S6) into Equation (S11), one obtains 

 

Supplementary Figure 1. The geometry of the integral surface. The yellow ribbon 

denotesa cylindrical surface with infinite radius and height. The SWs are vanishing 

except on the yellow ribbon. Therefore, the effective integral region of stress tensors 

involving the SWs is the yellow ribbon. 
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Then,  
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where we have used that the fields vanish at z   , ( ) * *1
Re( )

2

s

z zs e h e h     is the 

radial component energy flux density induced by the scattered SW, cos  is the 

averaged cosin of scattering angle, and   
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is the the rate at which photon energy is scattered in the form of SW. Since the system 

does not possess any gain, the scattered waves are radiated to infinity. As a result, the 



radial energy flux density, denoted as ( )ss , is required to be positive. Similarly, the 

scattered power, represented by ( )s

scaW , must also be positive. 

 

B. Integral of ( )f
T  

For ( )f
T  in terms of the pure FPWs, since the FPWs do not decay away from the 

interface, the integral should be over the whole spherical surface S . Using Equation 

(S7) and expression of Minkowski stress tensor, one has  
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where we have used Equation (S8). Note that  
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where ( , ) (1,1)f f   in air and ( , ) ( , )f f    inside the metamaterial, and the 

outward energy flux density of the PFW: 

( ) ( ) ( )* 2

ˆ ˆ2

1 1
Re( ) | | 0,

2 2

f f f

n f ns Z
R

   E H b              (S17) 

then the integral can be partitioned into two components: one over the upper half-space 

(air domain) and the other over the lower half-space (metamaterial domain): 
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     (S18) 

where /f fv k  is the phase speed of FPW inside the metamaterial, ( , ) ( , ),f a f m

sca scaW W

denote the rates at which photon energy is scattered to FPWs in air and the metamaterial, 

respectively, 
1

cos  and 
2

cos  correspond to the averaged cosines of the scattered 

angles, and 1cos (sin cos )    represents the scattered angle with respect to the x 



axis. Since ( )

ˆ 0f

ns  according to Equation (S17), the scattering rates ( , ) ( , ),f a f m

sca scaW W are 

both positive.  

 

C. Integral of ( )is
T  

Since the SWs vanish at the infinities z   , the effective integral of ( )is
T is also 

performed on the yellow ribbon, which is an infinite cylindrical surface: 

2 2
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According to the expressions of the incident and scattered SWs, see Equations (S2)-

(S6), ( )is

xxT can be divided into two components as follows:  

(1 cos ) (1 cos )( )

1 2
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Re[ ( ) ( ) ],

2

p pik R ik Ris

xxT f e f e
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             (S20) 

where 1( )f   and 2( )f   are the total amplitudes of terms with phases 
(1 cos )pik R

e
 

 , 

respectively. Using the method of stationary phase [1], we obtain  
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Therefore,  
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Similarly, we easily obtain that  
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Using Equations (S2)-(S6), we obtain  

* * * * * * * *
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Thus  
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Here, leveraging the fact that the fields vanish as z   , the second and third terms in 

the middle of Equation (S25) are zero. In the following, we will prove that the term 

with underline in Equation (S25) is just the extinction rate 
extW  of the particle in the 

system. 

 

The extinction rate 
extW   is consist of two parts: ( )is

extW  involving the incident and 

scattered SWs and ( )if

extW  involving the incident SW and scattered FPWs. For ( )is

extW , 

according to the definition [2],  

2

( ) ( )

0

,is is

extW dz Rd s








                        (S26) 

where ( ) ( ) ( )* ( ) ( )* ( )1
ˆ ˆRe( )

2

is i s s i iss        E H E H s is the outward (radial) energy flux 

density by the mixing of incident and scattered SWs. Similary, ( )iss   can also be 

devided into two components according to their phases as 
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where according to Equations (S2)-(S6), 
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Using the method of stationary phase [1], ( )is

extW is calculated as  
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1 2 1 2

2 1
~ Re [ (0) (0)] [ ( ) ( ) ] .

2

p pik R ik Ris i i

ext

p

W R dz f f e f e f e e
k R

 
 


 



      (S29) 

Since the extinction rate is independent of R, the last two terms in Equation (S29), 



which oscillate with R, make no contribution to ( )is

extW . Therefore, substituting Equation 

(S28) into Equation (S29), we obtain 
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which is just the underlined term in Equation (S25). On the other hand, since | | | |p fk k , 

based on the method of stationary phase, it is easy to know that the extinction rate 

( ) 0if

extW  . Therefore, 
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D. Integrals of ( )if
T and ( )sf

T  

The effective integrals of ( )if
T and ( )sf

T  are also on the yellow ribbon. We can infer 

that these two integrals are both zero based upon a simple argument. Note that in the 

far field region R ,  

( ) ( )1 1
~ , ~ ,s f

p fk R k R
A A                  (S32) 

where , , ,A E H D B . Therefore, the FPWs are infinitesimal compared with the SWs 

on the effective integral surface. Then, ( )if
T , ( )sf

T  are also infinitesimal compared with 

( )is
T , leading to 

( ) ( ) ( ) ( )1 1
~ ~ 0, ~ ~ 0.if is sf is

x x x x

f f

F F F F
k R k R

          (S33) 

 

E. The total force 

To sum up, the longitudinal optical force is given by 

( ) ( ) ( )

( ) ( , ) ( , )

1 2

incdident force recoil force
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      (S34) 

Similar to the optical force in air, the first part of xF , i.e ( )is

xF , which is caused by the 



incident photons, is the incident optical force, and the second and third parts, i.e 

( ) ( ),s f

x xF F , which are due to the scattered photons, contribute to the recoil optical force. 

A more comprehensive and detailed discussion will be provided in the subsequent 

section. 

 

Supplementary Note 2： The conservation of canonical momentum 

In this section, we will establish the relationship between the longitudinal optical force 

and the canonical momentum of light. In general, the constitutive relations for an 

anisotropic medium can be expressed as follows: 
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where ,  are relative permittivity and permeability tensors. The energy density W and 

canonical mometum density min
g  in the medium are given by 

min ˆRe | , Re | ,W p    g                (S36) 

where p̂ i    is the canonical momentum operator, and  
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with  
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 

 

 

                   (S38) 

Therefore, for a wave with a space-dependence 
ie k r

 (wave vector is k), the relation 

between the energy density and canonical momentum density is [3] 

min .W



k

g                           (S39) 

On the other hand, the group speed of an EM wave along the propagating direction is 

defined as 

ˆ ,n
g

s
v

W
                            (S40) 

where n̂s is the energy flux density along the propagating direction. As such,  



min

ˆ ,n gs v



k

g                           (S41) 

which denotes the canonical momentum flux density along the propagating direction.  

 

Inserting Equation (S41) into Equation (S31), we obtain  
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where ( )s

gv   is the group speed of the SW， ( )is

xg  is the canonical momentum density 

associate with the mixing fields, which is contributed from the incident SW. The 

negative sign in Equation (S42) indicates that the canonical momentum is injected into 

the space. Therefore, ( )is

xF  corresponds to the canonical momentum transfer resulting 

from directly capturing the incident photons, and it can be called the inicident force. 

Inserting Equation (S41) into Equations (S13) and (S18), we obtain  
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where ( ) ( )

ˆ,s f

ng g are the canonical momentum densities of the scattered SW and FPW 

along their propagating directions, and ( ) ( )

ˆ,s f

x nxg g  are the corresponding projections 

along the x direction. Thus, ( )s

xF and ( )f

xF  corresponds to the canonical momentum 

transfer due to reemitting the captured photons, and they are recoil force.  

 

Equations (S42) and (S43) establishes a relationship between the longitudinal optical 

force and the change in the canonical momentum of light throughout space, 

encompassing both the SWs and the bulk waves (FPWs), per unit time. Hence, it can 

be concluded that the longitudinal optical force is entirely attributable to the canonical 

momentum of light. 

 

Supplementary Note 3： Trajectory of the particle near the substrate 



For the dielectric constant of the particle, namely 3r    and 15r   , the lack of 

equilibrium along the y direction, as indicated by the black and blue lines in Fig. 3c of 

the main text, causes the particles to ultimately come into contact with the surface of 

the metamaterial, as shown in Supplementary Figs. 2a and 2c. In contrast, for 9r  , 

the particle oscillates around the equilibrium position along the y direction. Due to the 

negligible ambient damping force compared to the optical force, the particle can rapidly 

move far along the negative-x direction within a short time period. However, when we 

reduce the amplitude of the light source by two orders (resulting in a four-order 

reduction in the optical force), the ambient damping force becomes significant. As 

depicted by the purple dashed line in Supplementary Fig. 2b, under the reduced light 

source, the particle moves much slower along the x direction, and eventually becomes 

confined to approximately ~ 1.12y m . 

 

 

Supplementary Figure 2. The trajectories of the particles with different relative 

permittivities. a 3r  , b 9r   and c 15r  . The radius and mass density of the 



particles are 0.7r m   and 32500kg / m   ,  and they are initially located at 

0 0( , ) (0,2.5)x y m  with zero velocity. The ambient damping constant is used as 

220 /pN m  . The amplitudes of the line sources for the black, red and blue curves 

are 1V, and 0.01V for the purple curve. The coefficient of restitution we used is 0.7e  . 

The arrows denote the directions of movements. The consumed time form the starting 

point to the ends of the trajectories are indicated. (Source data are provided as a Source 

Data file). 

 

 

 

Supplementary Note 4： Metamaterial based on a composite metamaterial host 

In the realm of high frequency, locating an exceptionally high dielectric medium is 

nearly unattainable. Nevertheless, this host medium boasting a substantial relative 

permittivity can be substituted with a composite metamaterial. 

 

The unit cell of the metamaterial supporting the TM-polarized OSTB is depicted in 

Supplementary Fig. 3a. The white circle represents the air hole, while the gray region 

containing embedded black disks serves as the host medium. In this context, the gray 

region represents dielectric inclusions, while the black disks signify metallic inclusions. 

The effective permittivity of the composite host medium is determined by the Maxwell-

Garnett formula, which is expressed as follows: 
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where p represents the filling ratio of the metallic inclusions, d   is the relative 

permittivity of the dielectric, and m   is the relative permittivity of the metallic 

inclusions. In the lossless limit, the relative permittivity m based on the Drude model 

is given by: 



2

2
( ) 1 ,

p

m


 


                          (S45) 

where 
p is the plasmon resonance frequency. According to Eqs. (S44) and S(45), the 

host composite medium is dispersive. We use the coherent potential approximation 

method to calculate the effective constitutive parameters. According to Ref. [4], the 

effective constitutive parameters are obtained by 

 

 

 

Supplementary Figure 3. Metamaterial design in high frequency regime. a The 

supercell of the metamaterial. b The effective constitutive parameters as functions of 

the frequency. The relative permittivity of the dielectric is 5d  , the filling ratio of 

the metallic inclusions is 0.2p  , 3 / pa c  , 0.1cr a . (Source data are provided as 

a Source Data file). 
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where 
or a  , 0o bk k  is the wavenumber in the composite host medium, ,n nJ Y  

are the first and second kinds of Bessel functions, and 
nD  is the Mie coefficient of the 

air hollow in the backgroud medium given by 

' ' ( ' ) ( ) ( ' ) ' ( )
,

' ' ( ' ) ( ) ( ' ) ' ( )

n n n n
n

n n n n

m J m x J x J m x J x
D

m J m x H x J m x H x


 


            (S47) 

where ' 1 / bm  ,
o cx k r , and 

n n nH J iY  is the first kind of Hankel function.  

 

For given values of 5d   , 0.2p   , 3 / pa c   , and 0.1cr a  , we calculate the 

effective constitutive parameters of the metamaterial using Eqs. (S44)-(S47) and 

present the results in Supplementary Fig. 3b. It can be observed that within a specific 

frequency range (between the two cyan dots), namely 0.240 / 0.251p    , the 

conditions 11 0e e       are satisfied. This indicates that the TM polarized OSTB 

can be excited within this frequency range. Note that the valid frequency range can be 

adjusted by tuning the lattice constant a.  

 

 

Supplementary Note 5: Prism excitation of OSTB on the surface of a metamaterial 

consist of a PC microstructure 

Supplementary Fig. 4 shows the real parts of the electric fields in a region that is far 

away from the source region. It is observed that the FPWs are vanishingly small, and 

the electromagnetic (EM) field is dominated by the SW mode in this region.  

 



 

Supplementary Figure 4. An enlargement of a portion of Fig. 5a. The black disks 

are air holes and the horizontal black solid line represents the interface between the 

metamaterial and air. (Source data are provided as a Source Data file). 

  

In Supplementary Fig. 5, we illustrate TM-polarized OSTBs excited using prisms. The 

wavenumber along the x direction inside the prism equals to that of the OSTB when 

the incident angle is 45o. At this incident angle, and with perfect TM polarization, 

excitation efficiency peaks. Deviation from this angle results in reduced excitation 

efficiency due to the wavenumber mismatch, as evident from the comparison between 

the Fourier spectra shown by the black lines in Supplementary Figs. 5b and 5d. 

Moreover, if the incident beam is not fully TM-polarized, scattering efficiency also 

diminishes, as depicted by the red line in Supplementary Fig. 5b.   

 

 



 

Supplementary Figure 5. TM-polarized OSTBs excited using prisms. a and c, The 

y-component electric field distributions. The black dashed line outlines the prism 

boundary, while white arrows indicate the directions of incident Gaussian beams. Both 

prisms have a refractive index of 1.69. The shaded regions are corresponding to the 

absorbing metamaterials. b and d, The Fourier transform spectra of the electric fields 

on the metamaterial surface ( 70 110 , 16a x a z a   ). In panel b, the black and red solid 

lines correspond to perfect TM-polarized and hybrid (81% TM + 19% TE) polarized 

incident beams, respectively. All incident beams have the same amplitude. (Source data 

are provided as a Source Data file). 

 

 

 

Supplementary Note 6: Various types of particles pulled over the metamaterial 

with a microstructure 

The longitudinal optical forces acting on individual particles with varying shapes and 

constitutive parameters are examined. Results for circular, square, and triangular 

particles are presented in Supplementary Figs. 6a, 6b, and 6c, respectively, with their 



geometric parameters illustrated in the insets. We consider particles with transparent, 

lossy, and chiral (chirality parameter χ, expressed in units of 1/c) properties. For 

transparent and chiral particles which are assumed loessless, their refractive indices are 

required to be greater than 1 according to the causality. It is noted from Supplementary 

Fig. 6 that the longitudinal optical forces on single particles, irrespective of shape or 

constitutive parameters, are consistently negative. 

 

 

 

Supplementary Figure 6. Optical pulling of particles with varied shapes. The 

longitudinal optical forces on a circular, b square, and c triangular particles are plotted 

against their relative permittivity for a fixed particle size
0 1.5k r  . Transparent, lossy, 

and chiral particles are represented by black, red, and blue circles, respectively. (Source 

data are provided as a Source Data file). 

 

 

Additionally, we explore scenarios where multiple particles are arranged equidistantly 

along the x-direction, as depicted in the geometrical sketch in the inset of 

Supplementary Fig. 7c. The first particle is circular and transparent, the second particle 

is square and either lossy dielectric ( Re( ) 0r  ) or plasmonic ( Re( ) 0r  ), and the third 

particle is triangular and chiral. Notably, when the second particle is a lossy dielectric 

(panels a-c in Supplementary Fig. 7), the longitudinal optical forces on all particles 

remain negative, regardless of the distances (d) between them. However, when the 



second particle is plasmonic (panel d), its longitudinal optical force can become 

positive for some distances (d). Nonetheless, the overall longitudinal optical force 

acting on the three particles remains negative.   

 

Supplementary Figure 7. Optical pulling of multiple particles. The longitudinal 

optical forces on three particles with particle sizes a 
0 0.5k r   , b and d

0 1.5k r   , c 

0 2.5k r  . The inset in panel c illustrates the arrangement of the particles, equidistant 

along the x-direction. The first and third particles are transparent ( 5, 0r    ) and 

chiral ( 5, 1.0r    ), respectively. In panels (a-c), the relative permittivity of the 

middle particle is 5 0.5r i    , while in panel d it is 3 0.5r i     . (Source data are 

provided as a Source Data file). 

 

 

Supplementary Note 7： The effect of loss from the metamaterial 



Now let's consider the case where the metamaterial exhibits loss. For a typical scenario, 

we assume the constitutive parameters of the metamaterial to be 0.9 0.02i     and 

1.2 0.02i    . Although the OSTB is still supported, its amplitude rapidly decreases 

as it propagates along the x direction, as illustrated in Supplementary Fig. 8a. The 

reduction in field amplitude results in a weakening of the optical force strength. 

However, it is important to note that the optical pulling effect remains valid for any 

passive particles. As depicted in Supplementary Figs. 8b and 8c, the longitudinal optical 

force is negative regardless of the dielectric constant, radius, and x coordinate of the 

particle, albeit the strength of the optical pulling force significantly diminishes when 

the particle is located further away from the light source. 

 



 

Supplementary Figure 8. In case of lossy metamaterial. The metamaterial is lossy 

with 0.9 0.02i     , 1.2 0.02i     . a The electric field. The longitudinal optical 

force as functions of (b) the relative permittivity of the particle and (c) the radius of the 

particle at different locations. (Source data are provided as a Source Data file). 
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