Discovery and biosynthesis of persiathiacins: Unusual polyglycosylated thiopeptides active against multi-drug resistant tuberculosis

Yousef Dashti,^{ab*} Fatemeh Mohammadipanah,^c Yu Zhang,^a Pietra M. Cerqueira Diaz,^a

Anthony Vocat,^d Daniel Zabala,^{a‡} Christopher D. Fage,^{a‡} Isolda Romero-Canelon,^{ae} Boyke

Bunk,^f Cathrin Spröer,^f Lona M. Alkhalaf,^a Jörg Overmann,^{fg} Stewart T. Cole ^{d‡} and Gregory

L. Challis ahij*

^a Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

^b Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney NSW 2015, Australia ^c Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran

^d Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland

^e School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

^f Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany, and Technical University of Braunschweig, 38106 Braunschweig, Germany

^g German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany

^h Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom

ⁱ Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3168, Australia

^j ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton VIC 3168, Australia [‡] Current addresses: S.T.C. Institut Pasteur, 25 – 28 rue du Docteur Roux, 75015 Paris, France; C.D.F. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; D.Z. Faes Farma, Autonomia Etorbidea, 10, 48940 Leioa, Bizkaia, Spain.

* Corresponding authors: yousef.dashti@sydney.edu.au and g.l.challis@warwick.ac.uk

Contents	Page
Figure S1. Structure of persiathiacin A, numbered as in Table S1.	S2
Table S1. ¹ H and ¹³ C NMR chemical shifts of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S3-S5
Figure S2. Structure of persiathiacin B, numbered as in Table S2.	S6
Table S2. ¹ H and ¹³ C NMR chemical shifts of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S7-S9
Figure S3. ¹ H NMR spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S10
Figure S4. ¹³ C NMR spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S11
Figure S5. ¹ H- ¹ H COSY spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S12
Figure S6. ¹ H- ¹³ C HSQC spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S13
Figure S7. ¹ H- ¹³ C HMBC spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S14
Figure S8. ¹ H- ¹ H ROSY spectrum of persiathiacin A in CDCl ₃ -CD ₃ OD (9:1).	S15
Figure S9. ¹ H NMR spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S16
Figure S10. ¹³ C NMR spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S17
Figure S11. ¹ H- ¹ H COSY spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S18
Figure S12. ¹ H- ¹³ C HSQC spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S19
Figure S13. ¹ H- ¹³ C HMBC spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S20
Figure S14. ¹ H- ¹ H ROSY spectrum of persiathiacin B in CDCl ₃ -CD ₃ OD (9:1).	S21
Table S3: Predicted specialized metabolite biosynthetic gene clusters in the genome of	S22
Actinokineospora sp. UTMC 2448.	
Table S4: Genes/proteins in the persiathiacin biosynthetic gene cluster and their	S23-S24
similarity to homologous proteins.	G.2.5
Figure 515. Similarities and differences in the activation and attachment of MIA to the	\$25
Figure S16 Mass speatrum of DerV	\$26
Figure 510. Mass spectrum of PerA.	520
Figure S17. SDS-PAGE and intact protein MS of purified recombinant PerS4.	527
Figure 518. Percentage of A2/80 ovarian cancer cells surviving after exposure to increasing concentrations of percentaging A_{10} to A_{10} to A_{10} where A_{10} is a surviving after exposure to	827
increasing concentrations of persiatinacian A (10 to 400 µM) relative to an untreated	

Figure S1. Structure of persiathiacin A, numbered as in Table S1.

Table S1. ¹H (500 MHz) and ¹³C (125 MHz) and HMBC NMR data for persiathiacin A in CDCl₃-CD₃OD (9:1).

Posit	tion	$\delta_{ m C}$	$\delta_{ m H}$	HMBC	ROESY
Dha	C=O	166.5			
	C2	133.5			
	C3	104.8	H3a: 5.5, brs	Dha-(C=O)	Dha-(H3b)
			H3b: 6.5, brs	Dha-(C2, C=O)	Dha-(H3a)
	NH		9.98, s	Dha-(C3, C=O),	
				Thz5-(C4, C=O)	
Thz5	C2	166.9			
	C4	151.2			
	C5	127.2	8.15, s	Thz5-(C2, C4,	
				C=O)	
	C=O	160.0			
Pyr	C2	139.8			
	C3	149.0			
	C4	126.7	7.77, s	Pyr-(C2, C3, C6),	Sug4-(H1)
	05	100.0		Thz-(C2)	
	<u>C5</u>	128.3			
	C6	144.8			
Thzl	<u>C2</u>	165.5			
	<u>C4</u>	149.1	0.05		
	C5	125.2	8.25, s	Thz1-(C2, C4, C=O)	Thr-(H4)
	C=O	161.8			
Thr	NH		7.87, brs	Thz1-(C=O)	
	C=O	167.5			
	C2	56.2	4.21, dd, <i>J</i> = 4.0, 5.5	Thr-(C3, C4,	Thr-(H3)
				C=O), Thz1-	Dht-(NH)
				(C=O)	
	C3	64.7	2.88, m	Thr-(C=O)	Thr-(H2)
	C4	17.7	1.34, d, <i>J</i> = 6.0	Thr-(C2, C3)	Thz1-(H5)
O-methyl- Dht	NH		8.31, s	Dht-(C3), Thr- (C=O)	Thr-(H2)
	C2	110.7			
	C3	158.7			
	C4	13.7	1.86, s	Dht-(C2, C3),	Dht-(NH,
			,	Thz2-(C2)	OCH ₃), Thr-
					(H2)
	OMe	55.8	3.78, s	Dht-(C3)	Dht-(H4)
Thz2	C2	161.8			
	C4	146.1			
	C5	124.3	7.96, s	Thz2-(C2, C4,	
				C=O), Dht-(C2)	
	C=O	161.7			
Glu	NH		8.24, brs	$\overline{\text{Glu-}(\text{C2},\text{C3})},$	Glu-(H2, H4)
		40.7	5 00 1 1 10 0	$\frac{1 \text{ hz2-(C=O)}}{O \text{ l} (O \text{ c} O \text{ c} O \text{ c})}$	
	C2	48.7	5.80, d, J = 10.0	Glu-(C3, C4),	Glu-(NH, H3,
	02	00.0	2.65	$\frac{1 \text{ hz}_{3-}(\text{C}_{2})}{1 \text{ cl}_{2-}(\text{C}_{2-}(\text{C}_{2-}))}$	
	03	82.9	3.63, m	Glu-(C4, C=0),	(H2), Ind-
				(C2b)	$(\Pi SUA/U)$
				(USU)	

	C4	67.7	4.09, d, <i>J</i> = 10.0	Glu-(C2, C3,	Glu-(NH, H2,
				C=O)	H3)
	C=O	174.5			
Thz3	C2	154.8			
	C4	130.9			
	C5	160.3			
	C=O	160.3			
Ser	NH		7.89, d, <i>J</i> = 11.0	Ser-(C2, C3), Thz3-(C4, C=O)	Ser-(H2, H3b)
	C2	48.6	5.62, dd, <i>J</i> = 6.0, 10.5	Ser-(C3), Thz3- (C=O), Thz4- (C2)	Ser-(NH, H3a/b)
	C3	64.5	H3a: 4.36, d, <i>J</i> = 11.5 H3b: 5.21, dd, <i>J</i> = 6.0, 11.5	Ser-(C2), Thz4- (C2), Ind-(C=O) Ser-(C2), Thz4- (C2), Ind-(C=O)	Ser-(H2, H3b) Ser-(NH, H2, H3a)
Thz4	C2	169.8			
	C4	154.7			
	C5	121.2	7.77, s	Thz4-(C2, C4), Pyr-(C6)	
Ind	C=O	161.4			
	C2	127.0			
	C3	109.8			
	C3a	119.5			
	СЗь	65.9	H3ba: 4.17, d, <i>J</i> = 10.5 H3bb: 4.91, d, <i>J</i> = 10.5	Ind-(C2, C3, C3a), Glu-(C3) Ind-(C2, C3, C3a)	Glu-(H3), Ind- (H3bb, H4ab) Glu-(H3), Ind- (H3ba), Ser- (NH)
	C4	127.8			
	C4a	68.4	H4aa: 4.95, d, $J = 12.5$ H4ab: 5.92, d, $J = 12.5$	Ind-(C3a, C4, C5), Glu-(C=O) Ind-(C3a, C4, C5), Glu-(C=O)	Ind-(H3ba, H4ab, H5) Ind-(H3ba, H4aa, H5)
	C5	123.5	7.10, d, <i>J</i> = 7.0	Ind-(C3a, C4a, C6, C7)	Ind-(H4aa, H4ab, H6)
	C6	125.1	7.35, dd, <i>J</i> = 7.0, 8.5	Ind-(C4, C5, C7, C7a)	Ind-(H5, H7)
	C7	112.1	7.74, d, <i>J</i> = 8.5	Ind-(C3a, C5)	Ind-(H6)
	C7a	135.3			
	N-OH		10.46, s	Ind-(C2)	
Sug1	C1	101.9	5.41, brs	Thz3-(C5), Sug1- (C3, C5)	Sug1-(H2, H4, C2-OCH ₃)
	C2	76.0	4.00, m	Sug1-(C1, C3, C4, C2-OMe)	Sug1-(H1, H3, C2-OCH ₃)
	C2-OMe	59.4	3.48, s	Sug1-(C2)	Sug1-(H1)
	C3	80.1	3.60, m	Sug1-(C1, C5, C3-OMe)	Sug1-(H2, C3- OCH ₃)
	C3-OMe	57.9	3.42, s	Sug1-(C3)	Sug1-(H2, H4)
	C4	77.0	3.64, m	Sug1-(C2, C5, C6), Sug2-(C1)	Sug2-(H1)
	C5	70.1	3.63, m	Sug1-(C1, C3, C4, C6)	Sug1-(H2, H6)

	C6	17.7	1.31, d, <i>J</i> = 5.5	Sug1-(C4, C5)	Sug1-(H4)
Sug2	C1	102.2	4.61, d, <i>J</i> = 9.0	Sug1-(C4), Sug2-	Sug1-(H4),
				(C2, C5)	Sug2-(H2b,
					H3a, H5)
	C2	30.8	H2a: 1.39, m	Sug2-(C1, C3,	Sug2-(H1, H2b
				C4)	H3b, H4)
			H2b: 1.79, m		Sug2-(H1, H2a
					H3b)
	C3	29.9	H3a: 1.40, m	Sug2-(C1, C4)	
			H3b: 2.09, m		Sug2-(H2b, H4)
	C4	80.6	3.08, m	Sug2-(C5, C6),	Sug3-(H1),
				Sug3-(C1)	Sug2-(H3a/b,
		7.4.1	2.24		H6)
	C5	74.1	3.26, m	Sug2-(C1, C3,	Sug2-(H1, H3b,
	01	10.0			H6)
	C6	18.0	1.12, d, J = 6.0	Sug2-(C4, C5)	Sug2-(H4, H5),
C 2	<u>C1</u>	101.1		(C_{1}, C_{2}, C_{1})	Sug3-(H1)
Sugs	CI	101.1	4.45, d, J = 9.5	$Sug_{-}(C4), Sug_{-}(C4), Sug_{-}(C2)$	Sug2-(H4, H0), Sug2-(H2, H2)
				(C2, C3, C3)	Sugo-(п2а, по,
	<u>C2</u>	39.0	H2a: 1.46 m	Sug3_(C1_C3	$\frac{113}{\text{Sug}_{-}(\text{H2b H4})}$
	C2	57.0	H2h: 2.06 m	C4)	Sug3-(H1 H2a
			1120. 2.00, 11		H3)
	C3	71.3	3.42, <i>ol</i> *	Sug3-(C1, C5)	Sug3-(H1, H2b)
	C4	77.0	2.90, m	Sug3-(C2, C5,	Sug3-(H2a, H3,
				C6)	H6)
	C5	71.8	3.14, m	Sug3-(C1, C4,	Sug3-(H1, H3
				C6)	H6)
	C6	17.7	1.20, d, <i>J</i> = 6.0	Sug3-(C4, C5)	Sug3-(H4, H5)
Sug4	C1	100.4	5.18, d, <i>J</i> = 7.5	Pyr-(C3), Sug4-	Pyr-(H4), Sug4-
				(C3, C5)	(H2, H3, H5)
	C2	69.5	4.14, dd, $J = 7.5$, 10.0	Sug4-(C1, C3)	Sug4-(H1, C3-
		0.4.9			OCH ₃)
	C3	84.2	3.17, <i>ol</i>	Sug4-(C2, C4,	Sug4-(H1, H5)
	<u>(2) ())(</u>	70 1	2.45	C3-OMe)	
	C3-OMe	38.1	5.45, S	Sug4-(C3)	
	C4	//.6	3.42, <i>ol</i>	Sug4-($C2$, $C4$ -	Sug4-(H6)
	C4 OMa	61.0	2.51 a	Sug4 (C4)	Sugl (U6)
	C4-OIVIE	71.2	3.31, 8 2.76 m	$\frac{\text{Sug4-}(C4)}{\text{Sug4}(C1, C2)}$	$Sug4-(\Pi 0)$
		/1.5	5.70, III	Sug4-(C1, C3, C4, C6)	$Sug4-(\Pi 1, \Pi 4, \Pi 6)$
	<u>C</u> 6	167	120 + I = 60	(C4, C0)	п0)
1		10./	1.30, u, J = 0.0	sug4-(C4, C3)	

* overlapped

Figure S2. Structure of persiathiacin B, numbered as in Table S2.

Table S2. ¹H (700 MHz) and ¹³C (176 MHz) and HMBC NMR data of persiathiacin B in CDCl₃-CD₃OD (9:1).

Position		$\delta_{ m C}$	$\delta_{ m H}$	HMBC	ROESY
Dha	C=O	166.7			
	C2	133.5			
	C3	105.1	H3a: 5.56, brs	Dha-(C=O)	Dha-(H3b)
			H3b: 6.51, brs	Dha-(C2, C=O)	Dha-(H3a)
	NH		9.98, s	Deala-(C3,	
				C=O), Thz5-	
				(C4, C=O)	
Thz5	C2	167.1			
	C4	151.2			
	C5	127.4	8.21, s	Thz5-(C2, C4,	
				C=O)	
	C=O	160.1			
Pyr	C2	139.9			
	C3	149.1			
	C4	126.9	7.79, s	Pyr-(C2, C3,	Sug4-(H1)
				C6), Thz-(C2)	
	C5	128.4			
	C6	145.0			
Thz1	C2	165.5			
	C4	149.1			
	C5	125.2	8.27, s	Thz1-(C2, C4,	Thr-(H4)
				C=O)	
	C=O	161.9			
Thr	NH		7.94, brs	Thz1-(C=O)	
	C=O	167.5			
	C2	56.2	4.26, t, $J = 4.0$	Thr-(C3, C4,	Thr-(H3)
				C=O), Thz1-	Dht-(NH)
				(C=O)	
	C3	64.8	2.90, m	Thr-(C=O)	Thr-(H2)
	C4	17.6	1.37, d, $J = 6.0$	Thr-(C2, C3)	Thz1-(H5)
O-methyl-Dht	NH		8.35, s	Dht-(C3), Thr-	Thr-(H2)
		110 5		(C=O)	
	C2	110.7			
	<u>C3</u>	158.8	1.00		
	C4	13.7	1.89, s	Dht-($C2, C3$),	Dht-(NH,
				Thz2-(C2)	OCH_3), Thr-
	OMa	55.0	2.01 a	$Dh_{4}(C2)$	(H2)
Th - 2	C2	161.9	5.81, 8	Dnt-(C3)	Dnt-(H4)
1 nzz	C2	101.8			
	C4	140.1	7.00	$T_{\rm h} = 2 \left(C_{\rm h}^2 - C_{\rm h}^4 \right)$	
	CS	124.4	7.99, s	1 nz_{2} -(C2, C4, C=O) Dbt (C2)	
	C 0	161.0		C=0), Diit-(C2)	
Glu		101.8	8 27 brs	C_{1} (C_{2}, C_{2})	Glu (NH H2
	INFL		0.27,018	$Th_{7}^{(C2, C3)}$	$(1 \times \Pi, \Pi 2, \Pi 4)$
	C^{2}	18 7	5.82 dd $I = 1.5, 10.0$	$G_{11122}^{-}(C_{-}O)$	$\frac{114}{\text{Glu}}$
	02	+0./	5.62, uu, J = 1.3, 10.0	$Th_{73}(C^{2})$	Ош-(II3, П4)
				11123-(C2)	

	C3	83.0	3.66, m	Glu-(C4, C=O), Thz3-(C2), Ind (C3b)	Glu-(H2), Ind- (H3ba/b)
	C4	67.8	4.12, d, <i>J</i> = 10.0	Glu-(C2, C3, C=O)	Glu-(NH, H2, H3)
	C=O	174.5			,
Thz3	C2	154.7			
	C4	131.0			
	C5	160.3			
	C=O	160.3			
Ser	NH		7.91, d, <i>J</i> = 11.0	Ser-(C2, C3), Thz3-(C4, C=O)	Ser-(H2, H3b)
	C2	48.6	5.66, dd, <i>J</i> = 6.0, 11.0	Ser-(C3), Thz3- (C=O), Thz4- (C2)	Ser-(NH, H3a/b)
	C3	64.4	H3a: 4.40, d, <i>J</i> = 11.5 H3b: 5.25, dd, <i>J</i> = 6.0, 11.5	Ser-(C2), Thz4- (C2), Ind-(C=O) Ser-(C2), Thz4- (C2), Ind-(C=O)	Ser-(H2, H3b) Ser-(NH, H2, H3a)
Thz4	C2	169.9			
	C4	154.7			
	C5	121.3	7.76, s	Thz4-(C2, C4), Pyr-(C6)	
Ind	C=O	161.4			
	C2	127.1			
	C3	109.8			
	C3a	119.6			
	C3b	65.9	H3ba: 4.22, d, <i>J</i> = 10.5 H3bb: 4.95, d, <i>J</i> = 10.5	Ind-(C2, C3, C3a), Glu-(C3) Ind-(C2, C3, C3a)	Glu-(H3), Ind- (H3bb, H4ab) Glu-(H3), Ind- (H3ba), Ser- (NH)
	C4	127.9			
	C4a	68.4	H4aa: 5.00, d, <i>J</i> = 12.5 H4ab: 5.97, d, <i>J</i> = 12.5	Ind-(C3a, C4, C5), Glu-(C=O) Ind-(C3a, C4,	Ind-(H3ba, H4ab, H5) Ind-(H3ba,
				C5), Glu-(C=O)	H4aa, H5)
	C5	123.6	7.14, d, <i>J</i> = 7.0	Ind-(C3a, C4a, C6, C7)	Ind-(H4aa/b, H6)
	C6	125.1	7.39, dd, <i>J</i> = 7.0, 8.5	Ind-(C4, C5, C7, C7a)	Ind-(H5, H7)
	C7	112.2	7.80, d, <i>J</i> = 8.5	Ind-(C3a, C5)	Ind-(H6)
	C7a	135.3			
	N-OH		10.51, s	Ind-(C2)	
Sug1	C1	101.8	5.45, brs	Thz3-(C5), Sug1-(C2, C3, C5)	Sug1-(H2, H4, C2-OCH ₃)
	C2	75.9	4.04, m	Sug1-(C1, C3, C4, C2-OMe)	Sug1-(H1, H3, C2-OCH ₃)
	C2-OMe	59.4	3.51, s	Sug1-(C2)	Sug1-(H1, H2)
	C3	80.1	3.64, m	Sug1-(C4, C3-	Sug1-(H2, C3-
				OMe)	OCH ₃)

r	1	1		1	
	C3-OMe	57.9	3.45, s	Sug1-(C3)	Sug1-(H2, H4)
	C4	77.3	3.67, m	Sug1-(C5),	Sug1-(H6, C3-
				Sugar 2-(C1)	OCH ₃), Sug2-
					(H1)
	C5	70.0	3.68, m	Sug1-(C1, C3,	
				C6)	
	C6	17.4	1.34, d, <i>J</i> = 5.5	Sug1-(C4, C5)	Sug1-(H4)
Sug2	C1	100.2	4.71, dd, <i>J</i> = 1.5, 9.0	Sug1-(C4),	Sug1-(H4),
				Sug2-(C2)	Sug2-(H2b,
					H3, H5)
	C2	38.3	H2a: 1.41, m	Sug2-(C1, C3,	Sug2-(H2b,
				C4)	H4)
			H2b: 2.20, m		Sug2-(H1,
					H2a, H3)
	C3	69.6	3.52, m	Sug2-(C4)	Sug2-(H1,
					H2b)
	C4	88.2	2.90, m	Sug2-(C5, C6),	Sug3-(H1),
				Sug3-(C1)	Sug2-(H6)
	C5	70.0	3.23, m	Sug2-(C1, C4,	Sug2-(H1, H3,
				C6)	H6)
	C6	17.6	1.18, d, <i>J</i> = 6.0	Sug2-(C4, C5)	Sug2-(H4, H5)
Sug3	C1	101.0	4.45, dd, <i>J</i> = 2.0, 10.0	Sug2-(C4),	Sug2-(H4, H6),
				Sug3-(C2, C3,	Sug3-(H2b,
				C5)	H3, H5)
	C2	38.7	H2a: 1.56, m	Sug3-(C1, C3,	Sug3-(H2b,
				C4)	H4)
			H2b: 2.16, m		Sug3-(H1,
					H2b)
	C3	70.9	3.48, <i>ol</i>		Sug3-(H1,
					H2b, H5)
	C4	76.7	2.96, m	Sug3-(C3, C5,	Sug3-(H2a,
				C6)	H6)
	C5	72.3	3.28, m	Sug3-(C1, C3,	Sug3-(H1, H6)
				C4, C6)	
	C6	17.4	1.26, d, J = 6.0	Sug3-(C4, C5)	Sug3-(H4, H5)
Sug4	Cl	100.5	5.18, d, $J = 7.5$	Pyr-(C3), Sug4-	Pyr-(H4),
				(C3, C5)	Sug4-(H3, H5)
	C2	69.5	4.19, dd, <i>J</i> = 7.5, 9.5	Sug4-(C1, C3)	Sug4-(H1, H3)
	C3	84.3	3.24, <i>ol</i>	Sug4-(C1, C2,	Sug4-(H1, H2,
				C3-OMe)	H5)
	C3-OMe	58.1	3.50, s	Sug4-(C3)	Sug4-(H3)
	C4	77.6	3.48, <i>ol</i>	Sug4-(C4-OMe)	Sug4-(H5, H6)
	C4-OMe	61.9	3.56, s	Sug4-(C4)	Sug4-(H6)
	C5	71.3	3.78, m	Sug4-(C1, C3,	Sug4-(H1, H3,
				C4, C6)	H4, H6)
	C6	16.8	1.35, d, <i>J</i> = 6.5	Sug4-(C4, C5)	Sug4-(H4, H5,
					$C4-OCH_3$

Figure S3. ¹H NMR spectrum (500 MHz) of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S4. ¹³C NMR spectrum (125 MHz) of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S5. ¹H-¹H COSY spectrum of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S6. ¹H-¹³C HSQC spectrum of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S7. ¹H-¹³C HMBC spectrum of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S8. ¹H-¹H ROESY spectrum of persiathiacin A in CDCl₃-CD₃OD (9:1).

Figure S9. ¹H NMR spectrum (700 MHz) of persiathiacin B in CDCl₃-CD₃OD (9:1).

Figure S10. ¹³C NMR spectrum (176 MHz) of persiathiacin B in CDCl₃-CD₃OD (9:1).

Figure S11. ¹H-¹H COSY spectrum of persiathiacin B in CDCl₃-CD₃OD (9:1).

Figure S12. ¹H-¹³C HSQC spectrum of persiathiacin B in CDCl₃-CD₃OD (9:1).

Figure S13. ¹H-¹³C HMBC spectrum of persiathiacin B in CDCl₃-CD₃OD (9:1).

Figure S14. ¹H-¹H ROESY spectrum of persiathiacin B in CDCl₃-CD₃OD (9:1).

Cluster	antiSMASH functional	Start	End
	prediction	position	position
Cluster 1	Arylpolyene	361740	403998
Cluster 2	Ectoine	427620	438018
Cluster 3	Terpene	557729	606490
Cluster 4	T1pks-Nrps	830346	897979
Cluster 5	Terpene	1663302	1684207
Cluster 6	Bacteriocin	1814304	1825113
Cluster 7	Siderophore	1872946	1884691
Cluster 8	Nrps-Lantipeptide	1895748	1950324
Cluster 9	T1pks	1951254	1997820
Cluster 10	Terpene	2341218	2362180
Cluster 11	Thiopeptide-Oligosaccharide	2544416	2605135
Cluster 12	T2pks	2622827	2665306
Cluster 13	T3pks	2694719	2735756
Cluster 14	Otherks	2799423	2846466
Cluster 15	T1pks	2851965	2898111
Cluster 16	Indole	2927064	2948149
Cluster 17	Phenazine	3024546	3045010
Cluster 18	Nrps	3156780	3256358
Cluster 19	Terpene	3260280	3281989
Cluster 20	Nrps	3330279	3386499
Cluster 21	Ectoine	3571813	3582196
Cluster 22	Butyrolactone-Nrps	3579882	3652648
Cluster 23	T1pks	3904090	3957797
Cluster 24	Other	4140452	4181138
Cluster 25	Terpene	4239895	4261055
Cluster 26	Melanin	4434945	4445863
Cluster 27	T1pks	4577600	4623818
Cluster 28	Lantipeptide	4650662	4674898
Cluster 29	Ladderane-Arylpolyene-Nrps	4820757	4897663
Cluster 30	Lantipeptide-T1pks-NRPS	5700170	5876737
Cluster 31	Bacteriocin	6203188	6214081
Cluster 32	T1pks-Butyrolactone	6252778	6312920

Table S3. Predicted specialized metabolite biosynthetic gene clusters in the genome of *Actinokineospora* sp. UTMC 2448.

Table S4. Genes in the persiathiacin biosynthetic gene cluster and the percentage identity of the proteins they encode to proteins of known function.

Gene/Protein	Locus_tag	Length bp/aa	Similar Proteins	% aa Identity
perO/PerO	Actin_02399	906/302	NocO (<i>Nocardia</i> sp. ATCC202099) NosO (<i>Streptomyces actuosus</i>)	52 44
perN/PerN	Actin_02400	1236/412	NocN (Nocardia sp. ATCC202099) NosN (Streptomyces actuosus)	85 75
<i>perM</i> /PerM	Actin_02401	147/49	NocM (Nocardia sp. ATCC202099) NosM (Streptomyces actuosus)	98 88
perL/PerL	Actin_02402	1188/396	NocL (<i>Nocardia</i> sp. ATCC202099) NosL (<i>Streptomyces actuosus</i>)	85 82
<i>perK</i> /PerK	Actin_02403	846/282	NocK (Nocardia sp. ATCC202099) NosK (Streptomyces actuosus)	67 59
perI/PerI	Actin_02404	1260/420	NocI (Nocardia sp. ATCC202099) NosI (Streptomyces actuosus)	67 62
<i>perH</i> /PerH	Actin_02405	1728/576	NocH (Nocardia sp. ATCC202099) NosH (Streptomyces actuosus)	54 49
perG/PerG	Actin_02406	1854/618	NocG (Nocardia sp. ATCC202099) NosG (Streptomyces actuosus)	73 65
perF/PerF	Actin_02407	1398/466	NocF (<i>Nocardia</i> sp. ATCC202099) NosF (<i>Streptomyces actuosus</i>)	47 44
perE/PerE	Actin_02408	2589/863	NocE (Nocardia sp. ATCC202099) NosE (Streptomyces actuosus)	64 56
<i>perD</i> /PerD	Actin_02409	966/322	NocD (Nocardia sp. ATCC202099) NosD (Streptomyces actuosus)	59 55
perC/PerC	Actin_02410	1221/407	NocC (Nocardia sp. ATCC202099) NosC (Streptomyces actuosus)	81 71
perV/PerV	Actin_02411	1122/374	NocV (Nocardia sp. ATCC202099)	71
perR/PerR	Actin_02412	516/172	NocR (Nocardia sp. ATCC202099)	87
perQ/PerQ	Actin_02413	597/199	NocQ (Nocardia sp. ATCC202099)	78
perU/PerU	Actin_02414	1173/391	NocU (Nocardia sp. ATCC202099)	59
perT/PerT	Actin_02415	1122/374	NocT (Nocardia sp. ATCC202099)	59
perS1/PerS1	Actin_02416	1020/340	Oxidoreductase (<i>Streptomyces</i> sp.) NDP-hexose-3-ketoreductase (<i>Streptoalloteichus hindustanus</i>)	61 59
perP/PerP	Actin_02417	993/331	NocP (Nocardia sp. ATCC202099) NosP (Streptomyces actuosus)	61 55
perB/PerB	Actin_02418	1185/395	NosB (<i>Streptomyces actuosus</i>) NocB (<i>Nocardia</i> sp. ATCC202099)	55 54
perS2/PerS2	Actin_02419	858/286	UDP-glucose 4-epimerase (Amycolatopsis pretoriensis) SpeI (Streptomyces spectabilis)	44 43

Gene/Protein	Locus_tag	Length bp/aa	Similar Proteins	% aa Identity
perS3/PerS3	Actin_02420	819/273	macrocin O-methyltransferase (<i>Micromonospora viridifaciens</i>)	60
1			(<i>Streptomyces argenteolus</i>)	51
perS4/PerS4	Actin_02421	1137/379	rhamnosyltransferase (<i>Streptomyces</i> sp. SANK 60405) glycosyltransferase (<i>Allokutzneria</i> <i>albata</i>)	40 39
perS5/PerS5	Actin_02422	786/262	class I SAM-dependent methyltransferase (Kitasatospora mediocidica) (Micromonospora viridifaciens)	53 51
<i>perX</i> /PerX	Actin_02423	1176/392	cytochrome P450 (Actinobacteria bacterium OK074) (Streptomyces gilvigriseus)	41 40
perS6/PerS6	Actin_02424	1197/399	glycosyltransferase (Streptomyces aizunensis) (Kutzneria sp. 744)	45 41
perS7/PerS7	Actin_02425	1134/378	class I SAM-dependent methyltransferase (Actinoalloteichus hymeniacidonis) (Nocardia puris)	70 52
perS8/PerS8	Actin_02426	1044/348	glycosyltransferase (Streptomyces aizunensis) (Streptomyces sp. WMMB 714)	50 45
perS9/PerS9	Actin_02427	1086/362	glycosyltransferase (Amycolatopsis tolypomycina) (Streptomyces sp. PAN_FS17)	41 40
perS10/PerS10	Actin_02428	1404/468	NDP-hexose 2,3-dehydratase (Plantactinospora sp. KBS50) (Amycolatopsis vancoresmycina)	60 59
perS11/PerS11	Actin_02429	912/304	NDP-hexose 4-ketoreductase (Micromonospora sp. CNZ309) (Micromonospora echinofusca)	56 56
perS12/PerS12	Actin_02430	1305/435	NDP-hexose 3,4-dehydratase (Streptomyces minoensis) (Streptomyces caniferus)	71 70
perA/PerA	Actin_02431	435/145	NocA (Nocardia sp. ATCC202099) NosA (Streptomyces actuosus)	59 67

Figure S15. Similarities and differences in the activation and attachment of MIA to the processed core peptides of nosiheptide, persiathiacin, and nocathiacin (R-groups in persiathiacin and nocathiacin are shown in Figures 1 and 2 of the main manuscript).

Figure S16. ESI-Q-TOF-MS analysis of purified recombinant PerX. (A) An ion with m/z = 616.1701, corresponding to [M]⁺ for ferric haem, is observed. (B) Comparison of the measured (top) and simulated (bottom) spectra for the [M]⁺ ion of ferric haem. (C) Deconvoluted mass spectrum of PerX. The measured masses correspond to the protein after loss of the N-terminal methionine residue (measured: 45213.92, calculated: 45215.35) and a glucuronidated derivative (measured: 45392.23, calculated: 45391.35).

Figure S17. SDS-PAGE (left) and intact protein MS (right) of purified recombinant PerS4.

Figure S18. Percentage of A2780 ovarian cancer cells surviving after exposure to various concentrations of persiathiacin A ranging from 10 to 400 μ M relative to untreated (vehicle) controls. These experiments included 24 h of drug exposure time and 72 h of recovery time in drug-free medium. Red circles and black squares represent data from two independent replicates.