Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes

Hyejin Kim^{1,3} and Luciano A. Marraffini^{1,2,*}

¹Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.

²Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New

York, NY 10065, USA.

³Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.

*Corresponding author: marraffini@rockefeller.edu

SUPPLEMENTARY FIGURES

Supplementary Figure 1. *cas* gene expression under the control of P*spac* is similar for wild type Cas9 and hCas9. (A) RNA quantification of *cas* gene transcripts via qRT-PCR normalized to housekeeping gene *rho*. Total RNA was isolated from early log phase *S. aureus* cultures harboring pCRISPR expressing wild-type Cas9 or hCas9 with *cas* gene expression under the control of native P*cas* or constitutive P*spac* promoters. Means of three biological replicates + SD are reported. (B) Agarose gel electrophoresis of PCR products obtained after amplification of the CRISPR array using DNA obtained from infections with ϕ NM4γ4 (MOI10) in Figure 1D. (C) Sequence of the ϕ NM4γ4 target used in Figure 1G, containing a NAG protospacer adjacent motif (PAM).

Supplementary Figure 2. Mutation of the Pcas target PAM relieves *tracr-L*mediated *cas* repression to enhance the type II-A response. (A) Schematic of *tracr-L*-mediated repression of the Pcas promoter in *S. pyogenes*. Highlighted in green is the 11-nucleotide match between the 5' end of *tracr-L* and the Pcas promoter. The putative GGG PAM of the Pcas target was mutated to GGC. (B) Growth of *S. aureus* harboring a pCRISPR with a Pcas PAM mutation, GGC, upon infection with ϕ NM4γ4 (MOI ~10), measured as the OD₆₀₀ of the cultures over time. Mean of three biological replicates <u>+</u> SEM are reported. (C) Schematic of *tracr-S*/crRNA-mediated repression of the Pcas promoter in *S. pyogenes*. Highlighted in green is the 11-nucleotide match between the 5' end of crRNA and the P_{cas} promoter. (D) Pcas promoter activity measured as the green fluorescence/OD₆₀₀ ratio in cells harboring a plasmid harboring a Pcas-gfp reporter and a second plasmid encoding pCRISPR with wild-type Cas9 or hCas9 in the presence of a deletion of the tracr-L promoter (only *tracr-S* is present in the cells). Promoter activity was normalized to an empty vector control. Means of five biological replicates (3 technical replicates each) + SD are reported.

Supplementary Figure 3. Mutations in Cas9 residue 473 can modulate Pcas

repression. (A) Agarose gel electrophoresis of PCR products obtained after amplification of the CRISPR array using DNA obtained from colonies formed on top agar, after infection with ϕ NM4γ4 (MOI~2), from the experiment shown in Figure 4A with I473 substitutions that enhance spacer acquisition. (B) Same as (A) but testing I473 substitutions that do not alter spacer acquisition frequency.

Supplementary Figure 4. The Cas9 pocket interacting with tracrRNA nexus is important for Pcas repression. (A) Schematic of the tracrRNA nexus shared by *tracr-S* and sgRNA. The highlighted U59 base of the tracrRNA nexus is predicted to interact with the Cas9 pocket displayed in Figure 3A. (B) Agarose gel electrophoresis of PCR products obtained after amplification of the CRISPR array using DNA obtained from colonies formed on top agar that express Cas9^{R78A} or Cas9^{Y81A}, after infection with ϕ NM4γ4 (MOI~2), from the experiment shown in Figure 5A. (C) Detection of plaque formation after spotting 10-fold serial dilutions of ϕ NM4γ4 phage on top agar seeded with *S. aureus* expressing Cas9^{R78A} or Cas9^{Y81A} or an empty vector control. Plasmids were programmed with a spacer in the CRISPR array to target a region of the viral genome followed by a NAG PAM. Representatives of three biological replicates shown.

1	
F	۰.

Α								
	S. pyogene S. mutans	s 1 1	MDKKYSIGLDIGTNSVG MKKPYSIGLDIGTNSVG *.* **************	WAVITDEYKVPSKK WAVVTDDYKVPAKK	FKVLGNTDRHS] MKVLGNTDKSH] :******	IKKNLIGALLFDSGI IKKNLLGALLFDSGI *****::*******	TAEATRLKRTARF	RYTRRKN <mark>R</mark> IC RYTRRRN <mark>R</mark> IL
	S. pyogene S. mutans	s 81 81	YLQEIFSNEMAKVDDSF YLQEIFAEEMSKVDDSF ******::**:***	FHRLEESFLVEEDK FHRLEDSFLVTEDK	KHERHPIFGNI\ RGERHPIFGNLE : ********	/DEVAYHEKYPTIYH EEEVKYHENFPTIYH :** ***::****	ILRKKLVDSTDKAD ILRQYLADNPEKVD ***: *.*:*.*	DLRLIYLALAH DLRLVYLALAH
	S. pyogene S. mutans	s 161 161	MIKFRGHFLIEGDLNPC IIKFRGHFLIEGKFDTR :***********	NSDVDKLFIQLVQT NNDVQRLFQEFLAV *.**::** :::	YNQLFEENPINA YDNTFENSSLQE *:: **:::	ASGVDAKAILSARLS EQNVQVEEILTDKIS *:.: **: ::'	SKSRRLENLIAQLF SKSAKKDRVLKLFF *** : :.:: :*	PGEKKNGLFGN PNEKSNGRFAE
	S. pyogene S. mutans	s 241 241	LIALSLGLTPNFKSNFD FLKLIVGNQADFKKHFE :: * :* .:**.:*:	DLAEDAKLQLSKDTY LEEKAPLQFSKDTY * *.* **:****	DDDLDNLLAQIO EEELEVLLAQIO :::*: *****	GDQYADLFLAAKNLS GDNYAELFLSAKKLS **:**:**:**	DAILLSDILRVNT DSILLSGILTVTC *:****.** *.	EITKAPLSAS VSTKAPLSAS *******
	S. pyogene S. mutans	s 321 321	MIKRYDEHHQDLTLLKA MIQRYNEHQMDLAQLKQ **:**:**: **: **	LVRQQLPEKYKEIF FIRQKLSDKYNEVF ::**:*.:**:*:*	FDQSKNGYAGY1 SDVSKDGYAGY1 * **:*****	IDGGASQEEFYKFI IDGKTNQEAFYKYL *** :.** ***::'	KPILEKMDGTEELL KGLLNKIEGSGYFL * :*:*::*: :*	VKLNREDLLR DKIEREDFLR
	S. pyogene S. mutans	s 401 401	KQRTFDNGSIPHQIHLG KQRTFDNGSIPHQIHLG *****	ELHAILRRQEDFYP EMRAIIRRQAEFYP *::**:*** :***	FLKDNREKIEK FLADNQDRIEK ** **:::***	ILTFRIPYYVGPLAF ILTFRIPYYVGPLAF *************	RGNSRFAWMTRKSE RGKSDFAWLSRKSA **:* ***::***	ETITPWNFEE NDKITPWNFDE :.******:*
	S. pyogene S. mutans	s 481 481	VVDKGASAQSFIERMTN IVDKESSAEAFINRMTN :*** :**::**:**	IFDKNLPNEKVLPKH IYDLYLPNQKVLPKH ::* ***:*****	SLLYEYFTVYNE SLLYEKFTVYNE ***** *****	ELTKVKYVTEGMRKK ELTKVKYKTEQ-GK ******* ** *	PAFLSGEQKKAIVE FAFFDANMKQEIFE	DLLFKTNRKVT DGVFKVYRKVT State: ***.
	S. pyogene S. mutans	s 561 560	VKQLKEDYFKKIECFDS KDKLMDFLEKEFDEFRI .:* : *::: *	VEISGVEDRFN VDLTGLDKENKAFN *:::*:: **	ASLGTYHDLLKI ASYGTYHDLRKI ** ****** *'	IIKDKDFLDNEENEI IDKDFLDNSKNEI * *******	DILEDIVLTLTLFE (ILEDIVLTLTLFE **********	DREMIEERLK DREMIRKRLE
	S. pyogene S. mutans	s 638 638	TYAHLFDDKVMKQLKRR NYSDLLTKEQVKKLERR .*:.*: .: :*:*:*	RYT RHYT : * *				
В								
	tracr-l 5	ster -uucgg	<u>m</u> UGCUUUUUUUA-3'					
3	-ATATTA	IGAATAA.	ACGAAAAAACGTTCC-5′					
5	' - <u>TATAAT</u>	ACTTATT	rgcttttttgcaagg-3 '					
	-10	+1	target PAM	- NOO				
	Pcas	promoter	↓ Pca	s-NGC				
~			ACC					
C			-10	+1 tracr-Lt	arget PAN	Л		
2	5. pyogene	es Pcas	ATT-TTGTGTTATAAT	CTATTTATT-ATTAA	GTATTGGG	TAATATTTTTTGAA	GAGATATTT	
	S. muta	ns Pcas	ATTATTG <u>TATAA-</u> -10	- <u>TACTTATTGCTT</u> +1 <i>tracr-L</i> t	-TTTTGCAAGG	––ACATTTTTTCAA	AGGAGACATTT	
п					- get the			
U	_		wtCas9	hCas	\$9	wtCas9,	Pcas-NGC	
	400 bp _ 300 bp -							spacers _ +2 _ +1 _ 0
	Construction of the second							

Supplementary Figure 5. Cas9^{I473F} enhances spacer acquisition in other type II-A systems that produce a tracr-L isoform. (A) TCOFFEE alignment of the Cas9 proteins encoded by S. pyogenes SF370 and S. mutans NN2025. Highlighted in red are the residues of interest that have been mutated in this study. (*) indicates identical residues. (:) indicates strongly similar residues. (.) indicates weakly similar residues. (B) Schematic of *tracr-L*-mediated repression of the P*cas* promoter in *S. mutans*. Highlighted in green is the 9-nucleotide match between the 3' end of *tracr-L* and the P*cas* promoter. The putative AGG PAM of the P*cas* target was mutated to AGC in Figure 6. **(C)** Alignment of the P*cas* region of *S. pyogenes* and *S. mutans*. **(D)** Agarose gel electrophoresis of PCR products obtained after amplification of the CRISPR array using DNA obtained from colonies formed on top agar after infection with ϕ NM4γ4 (MOI~2), in the experiment described in Figure 6A.

Supplementary Figure 6. Aligment of 1,000 Cas9 protein sequences. (A) Frequency of conservation of amino acid residues at position 473 of *S. pyogenes* SF370 Cas9 (the residue present in this protein is noted in blue). (B) Same as (A) but for position 78. (C) Same as (A) but for position 81.

SUPPLEMENTARY TABLES

Supplementary Table 1. Plasmids used in this study.

Plasmid	Description	Reference
pC194	Cloning vector	(1)
pE194	Cloning vector	(2)
pLZ12	Cloning vector	(3)
pDB114	Cloning vector	(4)
pLG29	S. pyogenes P _{cas} -GFP reporter	(5)
pLG3	S. pyogenes Ptracr-L-GFP reporter	(5)
pGG32	S. pyogenes pCRISPR with native array	(6)
pRH065	S. pyogenes pCRISPR targeting with spc65	(7)
pRH087	<i>S. pyogenes</i> pCRISPR with 1 st native spacer	(7)
pRH163	hCas9 in GG32 backbone	(7)
pHK30	pGG32 ∆tracr-L	This study
pHK31	pRH163 ∆tracr-L	This study
pHK34	hCas9 in RH087 backbone	This study
pHK41	3xFLAG WT Cas9 in RH087 backbone	This study
pHK42	3xFLAG hCas9 in HK34 backbone	This study
pHK58	Mutated P _{cas} PAM to NGC in pGG32	This study
pHK59	Mutated P _{cas} PAM to NGC in pRH163	This study
pHK78	hCas9 in RH065 backbone	This study
pHK132	3xFLAG WT Cas9 ∆tracr-L	This study
pHK133	3xFLAG hCas9 ∆tracr-L	This study
pHK171	GG32 with cas genes under control of P _{spac}	This study
pHK175	RH163 with cas genes under control of P _{spac}	This study
pHK180	RH065 ∆tracr-L	This study
pHK181	HK78 ∆tracr-L	This study
pHK184	S. pyogenes pCRISPR targeting with spc64	This study
pHK185	hCas9 in HK184 backbone	This study
pHK191	RH065 with Cas9 under control of P _{spac}	This study
pHK192	HK78 with hCas9 under control of P _{spac}	This study
pHK211	3xFLAG Cas9 ^{R78A} in RH087 backbone	This study
pHK212	3xFLAG Cas9 ^{Y81A} in RH087 backbone	This study

pHK218	Cas9 ^{R78A} in RH065 backbone	This study
pHK219	Cas9 ^{Y81A} in RH065 backbone	This study
pJM75	S. mutans pCRISPR in pC194	This study
pHK230	S. mutans pCRISPR in LZ12	This study
pHK232	S. mutans pCRISPR I473F in LZ12	This study
pHK233	S. mutans pCRISPR Pcas-ngc in LZ12	This study
pHK323	S. mutans Pcas-GFP reporter in LZ12 with	This study
	SpecR replaced by CmR	

- 1. Horinouchi, S. and Weisblum, B. (1982) Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. *J. Bacteriol.*, **150**, 815-825.
- 2. Horinouchi, S. and Weisblum, B. (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. *J. Bacteriol.*, **150**, 804-814.
- 3. Perez-Casal, J., Caparon, M.G. and Scott, J.R. (1991) Mry, a trans-acting positive regulator of the M protein gene of *Streptococcus pyogenes* with similarity to the receptor proteins of two-component regulatory systems. *J. Bacteriol.*, **173**, 2617-2624.
- 4. Bikard, D., Euler, C.W., Jiang, W., Nussenzweig, P.M., Goldberg, G.W., Duportet, X., Fischetti, V.A. and Marraffini, L.A. (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. *Nat. Biotechnol.*, **32**, 1146-1150.
- 5. Workman, R.E., Pammi, T., Nguyen, B.T.K., Graeff, L.W., Smith, E., Sebald, S.M., Stoltzfus, M.J., Euler, C.W. and Modell, J.W. (2021) A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression. *Cell*, **184**, 675-688 e619.
- 6. Heler, R., Samai, P., Modell, J.W., Weiner, C., Goldberg, G.W., Bikard, D. and Marraffini, L.A. (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. *Nature*, **519**, 199-202.
- Heler, R., Wright, A.V., Vucelja, M., Bikard, D., Doudna, J.A. and Marraffini, L.A. (2017) Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. *Mol. Cell*, 65, 168-175.

Name	Sequence	Purpose
HK1	GGAAGTCTGAAGAAACACTTACCCCATGGAATTT TG	Cas9 I473L
HK2	CAAAATTCCATGGGGTAAGTGTTTCTTCAGACTT CC	Cas9 I473L
НК3	GGAAGTCTGAAGAAACAGTTACCCCATGGAATTT TG	Cas9 I473V
HK4	CAAAATTCCATGGGGTAACTGTTTCTTCAGACTT CC	Cas9 I473V
HK5	GGAAGTCTGAAGAAACAACTACCCCATGGAATTT TG	Cas9 I473T
HK6	CAAAATTCCATGGGGTAGTTGTTTCTTCAGACTT CC	Cas9 I473T
HK7	GGAAGTCTGAAGAAACAAATACCCCATGGAATTT TG	Cas9 I473N
HK8	CAAAATTCCATGGGGTATTTGTTTCTTCAGACTT CC	Cas9 I473N
HK9	GGAAGTCTGAAGAAACAAGTACCCCATGGAATT TTG	Cas9 I473S
HK10	CAAAATTCCATGGGGTACTTGTTTCTTCAGACTT CC	Cas9 I473S
HK11	GGAAGTCTGAAGAAACAAAGACCCCATGGAATT TTG	Cas9 I473K
HK12	CAAAATTCCATGGGGTCTTTGTTTCTTCAGACTT CC	Cas9 I473K
HK13	GGAAGTCTGAAGAAACAAGAACCCCATGGAATT TTG	Cas9 I473R
HK14	CAAAATTCCATGGGGTTCTTGTTTCTTCAGACTT CC	Cas9 I473R
HK15	GGAAGTCTGAAGAAACATATACCCCATGGAATTT TG	Cas9 I473Y
HK16	CAAAATTCCATGGGGTATATGTTTCTTCAGACTT CC	Cas9 I473Y
HK17	GGAAGTCTGAAGAAACATGTACCCCATGGAATTT TG	Cas9 I473C
HK18	CAAAATTCCATGGGGTACATGTTTCTTCAGACTT CC	Cas9 I473C
HK19	GGAAGTCTGAAGAAACATGGACCCCATGGAATT TTG	Cas9 I473W
HK20	CAAAATTCCATGGGGTCCATGTTTCTTCAGACTT CC	Cas9 I473W
HK21	GGAAGTCTGAAGAAACACCTACCCCATGGAATT TTG	Cas9 I473P

Supplementary Table 2. Oligonucleotides used in this study.

HK22	CAAAATTCCATGGGGTAGGTGTTTCTTCAGACTT CC	Cas9 I473P
HK23	GGAAGTCTGAAGAAACACATACCCCATGGAATTT TG	Cas9 I473H
HK24	CAAAATTCCATGGGGTATGTGTTTCTTCAGACTT CC	Cas9 I473H
HK25	GGAAGTCTGAAGAAACACAAACCCCATGGAATT TTG	Cas9 I473Q
HK26	CAAAATTCCATGGGGTTTGTGTTTCTTCAGACTT CC	Cas9 I473Q
HK27	GGAAGTCTGAAGAAACAGATACCCCATGGAATT TTG	Cas9 I473D
HK28	CAAAATTCCATGGGGTATCTGTTTCTTCAGACTT CC	Cas9 I473D
HK29	GGAAGTCTGAAGAAACAGAAACCCCCATGGAATT TTG	Cas9 I473E
HK30	CAAAATTCCATGGGGTTTCTGTTTCTTCAGACTT CC	Cas9 I473E
HK31	GGAAGTCTGAAGAAACAGGTACCCCATGGAATT TTG	Cas9 I473G
HK32	CAAAATTCCATGGGGTACCTGTTTCTTCAGACTT CC	Cas9 I473G
HK33	GGAAGTCTGAAGAAACAATGACCCCATGGAATT TTG	Cas9 I473M
HK34	CAAAATTCCATGGGGTCATTGTTTCTTCAGACTT CC	Cas9 I473M
HK44	GGAAGTCTGAAGAAACAGCTACCCCATGGAATT TTG	Cas9 I473A
HK45	CAAAATTCCATGGGGTAGCTGTTTCTTCAGACTT CC	Cas9 I473A
HK38	AGGATCATGATGGTGATTATAAAGATCACGACAT CGATTACAAAGATGATGACGATAAAGATAAGAAA TACTCAATAGGCTTAGATATCG	3xFLAG Cas9
HK39	CGTGATCTTTATAATCACCATCATGATCCTTGTA GTCCATTTTTGCCTCCTAAAAT	3xFLAG Cas9
HK42	CTTTCTCAAGTTATCATCGGCAATG	S. pyogenes array
HK100	AGTGCGATTACAAAATTTTTTAGAC	S. pyogenes array
HK95	TGCTGTTACTTTAAGACTTACAACAGAAG	pE194 cloning
HK96	CTTCTGTTGTAAGTCTTAAAGTAACAGCA	pE194 cloning
HK105	TATTAAGTATTGGCTAATATTTTTTGAAGAGATAT TTTG	P _{cas-NGC}
HK106	CAAAATATCTCTTCAAAAAATATTAGCCAATACTT AATA	P _{cas-NGC}
HK146	TCTGACTTCCGAAAAGATTTCC	qPCR (Cas9)
HK147	GCAGTTCCAACGACGGCA	qPCR (Cas9)

HK148	GAACCATTTAGGCCTTTAGTGG	qPCR (Cas1)
HK149	CATATCCTAAATTCAGGAACTCCTTTC	qPCR (Cas1)
HK150	CCATTAAGAGGCGGTACAATTC	qPCR (Csn2)
HK151	CCTCATATTGGTAACAATATTGCAC	qPCR (Csn2)
HK159	GCATCTGGTTTGTTCGTACTGATTG	qPCR (rho)
HK160	CCAGATGAGCGTATTAAATTAGAGACAG	qPCR (rho)
HK161	CTTTTATAACAAATAATCAAGGAGAAATTC	qPCR (tracr-L)
HK162	GTATTAAGTATTGTTTTATGGCTGATAAAT	qPCR (tracr-L)
HK155	GGTGCCACTTTTTCAAGTTGATAAC	qPCR (tracr-S)
HK200	TGGAACCATTCAAAACAGCATAGCA	qPCR (tracr-S)
HK165	GTTTTAGAGCTATGCTGTTTTGAATG	qPCR (crRNA)
HK166	AAAAGCGCAAGAAGAAATCAAC	qPCR (crRNA)
HK196	TATTTGAACCAACAAACGACTTTTAGTATAACC	pC194 cloning
HK197	GGTTATACTAAAAGTCGTTTGTTGGTTCAAATA	pC194 cloning
HK233	TTATTGCTTTTTTGCAAGCACATTTTTTCAAAGGA	Smut P _{cas-NGC}
HK234	TCCTTTGAAAAAATGTGCTTGCAAAAAAGCAATA A	Smut P _{cas-NGC}
HK249	ATACACGTCGGAAGAATGCTATTTGTTATCTACA GGAG	SpyCas9 R78A
HK250	CTCCTGTAGATAACAAATAGCATTCTTCCGACGT GTAT	SpyCas9 R78A
HK251	ATACACGTCGGAAGAATCGTATTTGTGCTCTACA GGAG	SpyCas9 Y81A
HK252	CTCCTGTAGAGCACAAATACGATTCTTCCGACGT GTAT	SpyCas9 Y81A
HK265	TTTATCTACAAGGTGTGGCATAATGTGTGGAATT GTGAGCGGATAACAATTGTAATATTTTTTGAAGA GATATTTTGAAAAAGAAA	P _{spac} -cas
HK266	TGTTATCCGCTCACAATTCCACACATTATGCCAC ACCTTGTAGATAAAGTCAAACACAAAATTCTTTTA AAAAGTAGTTTATTTTG	P _{spac} -cas
HK275	TTTTTAAAAGAATTTTGTGTTATAATCTATTTATTA TTAAGTATTGGGT	∆tracr-L
HK276	TTATAACACAAAATTCTTTTAAAAATGGCTGATAA ATTTCTTTGAATTTCTCC	∆tracr-L
HK286	ATCGGCTGATAAATTTACACCATGGAAT	SmCas9 I473F
HK287	ATTCCATGGTGTAAATTTATCAGCCGAT	SmCas9 I473F
HK215	GCTTTGGCACATATAATTAAGTTTAGAGG	Smut qPCR (Cas9)
HK220	ATTCTTGAAACAGTCTTTGTACATCATTATTGC	Smut qPCR (Cas9)
HK221	GCTAAACAATCAGATTTCTTGGGCAG	Smut qPCR (Cas1)
HK222	GAACATTCTCCCAAATAACATGACTGAT	Smut qPCR (Cas1)
HK225	TGGTTCACGCTGATTTAGAAAATCAGT	Smut qPCR (Csn2)

HK226	GCAATTAATTCCGTAATGGTATTTGCC	Smut qPCR (Csn2)	
HK219	AACAAGAAAAGCGCTAGAAAGATTGATTTCTA	Smut array	
HK347	TGAGCGCAACGCAATTAA	Smut array	
JM386	AAAACCTACAGAAAACACTAAATTAATAAGAAAG	Smut	pCRISPR
	AGCCAAACCTCGAAAG	cloning	
JM389	GGCTCTTTCTTATTAATTTAGTGTTTTCTGTAGGT	Smut	pCRISPR
	TTTTAGGCATAAAACTATATG	cloning	
JM511	GCTAGTAAACCGCCTCGCGCAGCTTTTAAAAAG	Smut	pCRISPR
	CAAATATGAGCC	cloning	
JM512	GGCTCATATTTGCTTTTTAAAAGCTGCGCGAGGC	Smut	pCRISPR
	GGTTTACTAGC	cloning	
HK391	AAACACTAAATTAATAAGAAAGAGCCAAACC	Smut	pCRISPR
		cloning	
HK392	GCGCGAGGCGGTTTACTA	Smut	pCRISPR
		cloning	
HK393	TGCCCGCTAGTAAACCGCCTCGCGCGGTCATAA	Smut	pCRISPR
	CCTGAAGGAAGATCTGG	cloning	
HK394	GCTCTTTCTTATTAATTTAGTGTTTATCTGTGCCA	Smut	pCRISPR
	GTTCGTAATGTCTG	cloning	
HK493	TGTTTCCACCATTTTTCAATTTTTCACTTTAGAT	LZ12 Sp	ecR→CmR
	AAAAATTTAGGAGGCATATCAA	1740.0	
HK494		LZ12 Sp	ecR→CmR
HK495		1 712 Sp	ecR→CmR
		1 712 Sp	
HK490	AAAAATIGAAAAAATGGTGGAAACACTTT	LZ IZ SP	