## **Supporting Information**

## Metal complexation for the rational design of gemcitabine formulations in cancer therapy

Federica Carnamucio<sup>1,\*</sup>, Claudia Foti<sup>2</sup>, Massimiliano Cordaro<sup>2</sup>, Franz Saija<sup>3</sup>, Giuseppe Cassone<sup>3,\*</sup>, Sandro R. P. da Rocha<sup>1</sup>, Ottavia Giuffrè<sup>2,\*</sup>

<sup>1</sup>Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United State

<sup>2</sup> Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy

<sup>3</sup>Institute for Chemical-Physical Processes National Research Council of Italy, Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Italy

\*corresponding: FC (<u>carnamuciof@vcu.edu</u>); GC (<u>giuseppe.cassone@ipcf.cnr.it</u>); OG (ogiuffre@unime.it)

| Species                                            | <i>t</i> /°C | I / mol L <sup>-1</sup> | logβ <sup>1</sup> |
|----------------------------------------------------|--------------|-------------------------|-------------------|
| $Ca^{2+} + H_2O \rightleftharpoons [CaOH]^+ + H^+$ | 15           | 0.15                    | -13.14            |
|                                                    | 25           | 0.15                    | -12.87            |
|                                                    | 25           | 0.5                     | -12.88            |
|                                                    | 25           | 1                       | -12.81            |
|                                                    | 37           | 0.15                    | -12.56            |
|                                                    | 45           | 0.15                    | $-12.6(5)^2$      |

**Table S1.** Hydrolysis constants of  $Ca^{2+}$  at different temperatures and ionic strength values.

<sup>1</sup>Crea, F.; De Stefano, C., Milea, D., Pettignano, A., Sammartano, S. (2015). SALMO and S3M: A Saliva Model and a Single Saliva Salt Model for Equilibrium Studies, Bioinorg. Chem. Appl. 2015.

<sup>2</sup> Unplubished data.

| Reaction                                                                                                                                               | <i>t</i> /°C | <i>I /</i> mol L <sup>-1</sup> | logβ <sup>1</sup>  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|--------------------|
| $Zn^{2+} + H_2O \rightleftharpoons [ZnOH]^+ + H^+$                                                                                                     | 15           | 0.15                           | -9.5               |
|                                                                                                                                                        | 25           | 0.15                           | -9.14              |
|                                                                                                                                                        | 25           | 0.5                            | -9.15              |
|                                                                                                                                                        | 25           | 1                              | -9.16              |
|                                                                                                                                                        | 37           | 0.15                           | -8.78              |
|                                                                                                                                                        | 45           | 0.15                           | $-10.02^{2}$       |
| $\operatorname{Zn}^{2+} + 2\operatorname{H}_2\operatorname{O} \rightleftharpoons [\operatorname{Zn}(\operatorname{OH})_2]^0 + 2\operatorname{H}^+$     | 15           | 0.15                           | -17.64             |
|                                                                                                                                                        | 25           | 0.15                           | -17.10             |
|                                                                                                                                                        | 25           | 0.5                            | -17.1              |
|                                                                                                                                                        | 25           | 1                              | -17.22             |
|                                                                                                                                                        | 37           | 0.15                           | -16.52             |
|                                                                                                                                                        | 45           | 0.15                           | $-16.52^2$         |
| $\operatorname{Zn}^{2+} + 3\operatorname{H}_2\operatorname{O} \rightleftharpoons [\operatorname{Zn}(\operatorname{OH})_3]^- + 3\operatorname{H}^+$     | 15           | 0.15                           | -29.12             |
|                                                                                                                                                        | 25           | 0.15                           | -28.4              |
|                                                                                                                                                        | 25           | 0.5                            | -28.4              |
|                                                                                                                                                        | 25           | 1                              | -28.47             |
|                                                                                                                                                        | 37           | 0.15                           | -27.54             |
|                                                                                                                                                        | 45           | 0.15                           | $-27.54^{2}$       |
| $\operatorname{Zn}^{2+} + 4\operatorname{H}_2\operatorname{O} \rightleftharpoons [\operatorname{Zn}(\operatorname{OH})_4]^{2-} + 4\operatorname{H}^+$  | 15           | 0.15                           | -41.67             |
|                                                                                                                                                        | 25           | 0.15                           | -40.40             |
|                                                                                                                                                        | 25           | 0.5                            | -40.85             |
|                                                                                                                                                        | 25           | 1                              | -40.38             |
|                                                                                                                                                        | 37           | 0.15                           | -39.47             |
|                                                                                                                                                        | 45           | 0.15                           | $-39.47^{2}$       |
| $2\mathbf{Z}\mathbf{n}^{2+} + \mathbf{H}_2\mathbf{O} \rightleftharpoons \left[\mathbf{Z}\mathbf{n}_2(\mathbf{O}\mathbf{H})\right]^{3+} + \mathbf{H}^+$ | 15           | 0.15                           | -9.27              |
|                                                                                                                                                        | 25           | 0.15                           | -8.70              |
|                                                                                                                                                        | 25           | 0.5                            | -8.89              |
|                                                                                                                                                        | 25           | 1                              | -8.89              |
|                                                                                                                                                        | 37           | 0.15                           | -8.54              |
|                                                                                                                                                        | 45           | 0.15                           | -8.54 <sup>2</sup> |
| $2\mathbf{Zn}^{2+} + 6 \mathbf{H}_2\mathbf{O} \rightleftharpoons [\mathbf{Zn}_2(\mathbf{OH})_6]^{2-} +$                                                | 15           | 0.15                           | -58.91             |
| $6\mathrm{H}^+$                                                                                                                                        | 25           | 0.15                           | -57.50             |
|                                                                                                                                                        | 25           | 0.5                            | -57.53             |
|                                                                                                                                                        | 25           | 1                              | -57.32             |
|                                                                                                                                                        | 37           | 0.15                           | -55.9              |
|                                                                                                                                                        | 45           | 0.15                           | $-55.9^{2}$        |

**Table S2.** Hydrolysis constants of  $Zn^{2+}$  at different temperatures and ionic strength values.

45 0.15  $-55.9^2$ <sup>1</sup> F. Crea, G. Falcone, C. Foti, O. Giuffrè, S. Materazzi. Thermodynamic data for Pb<sup>2+</sup> and Zn<sup>2+</sup> sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths, New J. Chem., 2014, 38, 3973.

<sup>2</sup> K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, A. Leuz, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The  $Zn^{2+} + OH^-$ ,  $Cl^-$ ,  $CO_3^{2-}$ ,  $SO_4^{2-}$ , and  $PO_4^{3-}$  systems (IUPAC Technical Report), Pure Appl. Chem., 2013, 85, 2249–2311.

| Reaction                                                    | t   | I / mol L <sup>-1</sup> | $\log \beta^1$     |
|-------------------------------------------------------------|-----|-------------------------|--------------------|
|                                                             | /°C |                         |                    |
| $Mn^{2+} + H_2O \rightleftharpoons [MnOH]^+ + H^+$          | 15  | 0.15                    | -10.6              |
|                                                             | 25  | 0.15                    | -10.46             |
|                                                             | 25  | 0.5                     | -10.70             |
|                                                             | 25  | 1                       | -10.95             |
|                                                             | 37  | 0.15                    | -9.20              |
|                                                             | 45  | 0.1                     | -9.66 <sup>2</sup> |
| $2Mn^{2+} + 3H_2O \rightleftharpoons [Mn_2(OH)_3]^- + 3H^+$ | 15  | 0.15                    | -26.35             |
|                                                             | 25  | 0.15                    | -24.47             |
|                                                             | 25  | 0.5                     | -24.69             |
|                                                             | 25  | 1                       | -24.92             |
|                                                             | 37  | 0.15                    | -23.51             |
|                                                             | 45  | 0.15                    | $-24.84^{2}$       |

**Table S3.** Hydrolysis constants of  $Mn^{2+}$  at different temperatures and ionic strength values.

 $-\tau_{...}$ 0.13 $-24.84^2$  $^1$  C. Foti, O. Giuffrè. Interaction of Ampicillin and Amoxicillin with  $Mn^{2+}$ : A Speciation Study in Aqueous Solution.*Molecules*, 2020, 25, 3110. $^2$  Unpublished data.

**Table S4.** Cartesian components of the atomic species composing the gencitabine molecular structures shown in Fig. 7 of the main text optimized at the at the B3LYP/6-311++G(d,p) level of theory under CPCM water implicit solvation.

GMT

|   | X         | Y         | Z         |
|---|-----------|-----------|-----------|
| Ν | -1.135780 | -0.149828 | 0.483570  |
| С | -2.040774 | -0.203497 | 1.509387  |
| С | -3.371839 | -0.229248 | 1.275122  |
| С | -3.785999 | -0.205182 | -0.097117 |
| Ν | -2.918044 | -0.164466 | -1.103343 |
| Η | -1.630814 | -0.223674 | 2.510701  |
| Η | -4.081883 | -0.271130 | 2.088047  |
| 0 | -0.736501 | -0.100685 | -1.763530 |
| С | -1.582652 | -0.137207 | -0.869090 |
| Ν | -5.096252 | -0.227095 | -0.400066 |
| Η | -5.802926 | -0.255189 | 0.316358  |
| Η | -5.384191 | -0.211832 | -1.366152 |
| С | 1.940284  | -0.955954 | -0.734941 |
| С | 1.954479  | 0.586184  | -0.878996 |
| С | 1.101855  | 1.072022  | 0.310024  |
| С | 0.293326  | -0.154015 | 0.804332  |
| Η | 1.582037  | -1.397436 | -1.666622 |
| Η | 0.347672  | -0.171846 | 1.893034  |
| 0 | 0.970346  | -1.277706 | 0.301313  |
| F | 0.307402  | 2.140486  | -0.005740 |
| F | 1.896779  | 1.497206  | 1.345396  |
| 0 | 3.264360  | 1.110392  | -0.902210 |
| Η | 3.259642  | 1.929936  | -1.408394 |
| С | 3.256966  | -1.625569 | -0.358123 |
| Η | 4.030807  | -1.314861 | -1.060127 |
| Η | 3.124573  | -2.709827 | -0.450350 |
| 0 | 3.716015  | -1.290171 | 0.947452  |
| Η | 3.054362  | -1.601631 | 1.576419  |
| Η | 1.405997  | 0.858143  | -1.778739 |

## GMT+MnOH@site1

|   | X        | Y         | Z         |
|---|----------|-----------|-----------|
| Ν | 2.199392 | -0.011148 | 0.524085  |
| С | 3.093037 | -0.179605 | 1.549463  |
| С | 4.425221 | -0.186029 | 1.324765  |
| С | 4.854228 | -0.002821 | -0.031621 |
| Ν | 3.996725 | 0.169055  | -1.034208 |
| Η | 2.672578 | -0.306819 | 2.538252  |
| Η | 5.127223 | -0.320610 | 2.134532  |

| 0  | 1.820411  | 0.339686  | -1.695271 |
|----|-----------|-----------|-----------|
| С  | 2.662544  | 0.178130  | -0.808936 |
| Ν  | 6.165826  | 0.000113  | -0.322991 |
| Н  | 6.865893  | -0.122005 | 0.390258  |
| Η  | 6.463284  | 0.133518  | -1.277193 |
| С  | -0.642433 | 1.311646  | -0.596645 |
| С  | -0.909341 | -0.162174 | -0.988625 |
| С  | -0.119178 | -0.978449 | 0.064735  |
| С  | 0.772007  | 0.032888  | 0.831762  |
| Η  | -0.070813 | 1.786960  | -1.393879 |
| Η  | 0.689044  | -0.187045 | 1.895213  |
| 0  | 0.173017  | 1.285642  | 0.601353  |
| F  | 0.578283  | -2.012381 | -0.479039 |
| F  | -0.980507 | -1.542942 | 0.972007  |
| 0  | -2.304591 | -0.476425 | -1.004139 |
| Η  | -2.479123 | -1.248953 | -1.557645 |
| С  | -1.850012 | 2.180306  | -0.306091 |
| Η  | -2.486138 | 2.255957  | -1.186328 |
| Η  | -1.516138 | 3.180862  | -0.028432 |
| 0  | -2.679777 | 1.657482  | 0.756992  |
| Η  | -2.231760 | 1.745287  | 1.608405  |
| Η  | -0.485848 | -0.369869 | -1.966879 |
| Mn | -3.961057 | 0.033511  | 0.318252  |
| 0  | -5.058273 | -1.305149 | -0.419477 |
| Н  | -5.758089 | -1.666532 | 0.133971  |

## GMT+MnOH@site2

|   | X         | Y         | Z         |
|---|-----------|-----------|-----------|
| Ν | -0.260203 | -0.318647 | 0.532309  |
| С | 0.559206  | -0.696567 | 1.551577  |
| С | 1.884891  | -0.917024 | 1.346856  |
| С | 2.345799  | -0.724745 | 0.021101  |
| Ν | 1.587210  | -0.348703 | -0.976085 |
| Η | 0.099622  | -0.809572 | 2.524408  |
| Η | 2.536300  | -1.211803 | 2.155791  |
| 0 | -0.513046 | 0.203992  | -1.680094 |
| С | 0.248214  | -0.129909 | -0.781632 |
| Ν | 3.721626  | -0.906259 | -0.269847 |
| Η | 4.116735  | -1.707402 | 0.220402  |
| Η | 3.855562  | -1.024888 | -1.272451 |
| С | -3.068986 | 1.278023  | -0.564938 |
| С | -3.351271 | -0.177831 | -1.011562 |
| С | -2.666936 | -1.035743 | 0.072324  |
| С | -1.689252 | -0.093853 | 0.821147  |
|   |           |           |           |

| Н  | -2.591649 | 1.817562  | -1.384452 |
|----|-----------|-----------|-----------|
| Η  | -1.798911 | -0.271407 | 1.891160  |
| 0  | -2.104404 | 1.207708  | 0.525666  |
| F  | -2.044167 | -2.140166 | -0.442781 |
| F  | -3.576159 | -1.510314 | 0.979926  |
| 0  | -4.729312 | -0.432930 | -1.162065 |
| Η  | -4.846459 | -1.131632 | -1.815013 |
| С  | -4.261487 | 2.093716  | -0.079030 |
| Η  | -5.039895 | 2.073323  | -0.841872 |
| Η  | -3.933597 | 3.131492  | 0.049212  |
| 0  | -4.840831 | 1.601288  | 1.124620  |
| Η  | -4.184614 | 1.694348  | 1.825093  |
| Η  | -2.811714 | -0.370236 | -1.937718 |
| Mn | 5.105583  | 0.756972  | 0.307625  |
| 0  | 6.598384  | 0.602033  | -0.826014 |
| Η  | 6.914154  | -0.277628 | -1.056073 |
|    |           |           |           |



**Figure S1.**  $\varepsilon$  vs.  $\lambda$  of **a**) and Zn<sup>2+</sup>-GMT **b**) Mn<sup>2+</sup>-GMT species at  $t = 45^{\circ}$ C, I = 0.1 mol L<sup>-1</sup>.



**Figure S2.** UV spectra at selected pH of a)  $Mn^{2+}$ -GMT and b)  $Zn^{2+}$ -GMT at  $t = 45^{\circ}C$ , I = 0.1 mol L<sup>-1</sup>, C<sub>GMT</sub> = 0.04 mmol L<sup>-1</sup>, C<sub>M</sub> = 0.04 mmol L<sup>-1</sup>.



**Figure S3.** <sup>1</sup>H NMR spectra on solutions containing  $Zn^{2+}$ -GMT at  $C_{GMT} = 5 \text{ mmol } L^{-1}$  and  $C_{Zn} = 6 \text{ mmol } L^{-1}$ ,  $t = 25^{\circ}$ C,  $I = 0.1 \text{ mol } L^{-1}$  in NaCl,  $2.70 \le pH \le 7.64$ .



**Figure S4.** Comparison between chemical shift ( $\delta$ ) of a) CH-5' and b) CH-6' measured on <sup>1</sup>H NMR spectra on solutions containing GMT and Zn<sup>2+</sup>-GMT at C<sub>GMT</sub> = 5 mmol L<sup>-1</sup> and C<sub>Zn</sub> = 6 mmol L<sup>-1</sup>, *t* = 25°C, *I* = 0.1 mol L<sup>-1</sup> in NaCl, 2.72 ≤ pH ≤ 8.52.