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Supplementary Figure 1 26 

 27 

Supplementary Figure 1. Downregulation of MLCK or H2O2 treatment induces cellular 28 

senescence in MCF10A cells. (a) MLCK mRNA transcript and protein levels 72 hours after 29 

treatment with control, single MLCK siRNA (MLCK siRNA #5), or a mixture of four MLCK siRNAs 30 

(MLCK siRNA #1-4). β-actin or Ponceau S is shown as a loading control. Original gels/blots are 31 

presented in Supplementary Figure 5. (b) MCF10A cells were seeded at identical quantities and 32 

counted after 72 hours. Dead cells were excluded using trypan blue staining. n=3 independent 33 

experiments. Ordinary one-way ANOVA with Dunnett’s multiple comparisons test. (c-d) 34 

Representative images and quantification of SA-β-gal staining. Scale bars, 100 µm. n=5-7 fields, 35 

2 independent experiments. Paired t-test. (e) Scratch wound migration assays were performed 36 

under conditioned media from control or MLCK siRNA #5-treated cells. n=3 independent 37 

experiments. Paired t-test. (f) Quantification of SA-β-gal positive cells in MCF10A cells at different 38 

cell densities. n=3 independent experiments. Ordinary one-way ANOVA with Tukey’s multiple 39 

comparisons test. (g-h) Representative images and quantification of SA-β-gal positive cells after 40 

H2O2 treatment in MCF10A cells. Scale bars, 100 µm. n=4-10 fields, 2 independent experiments. 41 

Unpaired t-test. (i) Representative immunofluorescence max projection images showing actin 42 

(green), β-catenin (red) and nucleus (blue). Scale bars, 20 µm.  mean±s.e.m. *P<0.05, ***P<0.001, 43 

****P<0.0001, ns = not significant.  44 
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Supplementary Figure 2 45 

 46 

Supplementary Figure 2. Downregulation of MLCK decreases cell proliferation and 47 

promotes cell migration in HER2-positive breast cancer cells. (a) Western blot analysis for 48 

MLCK siRNA expressing SK-BR-3 and BT-474 cells. Integrin β1 or α-tubulin is shown as a loading 49 

control. Original blots are presented in Supplementary Figure 5. (b-c) SK-BR-3 and BT-474 cells 50 

were seeded at an identical quantity and counted after 72 hr. Dead cells were excluded using 51 

trypan blue staining. n=3 independent experiments. Ratio Paired t-test. (d-e) Representative 52 

images and quantification of SA-β-gal staining in SK-BR-3 cells. Scale bars, 100 µm. n=3 53 

independent experiments. Paired t-test. (f-j) Scratch wound migration assays were performed in 54 

SK-BR-3 (g, h) and BT-474 (i, j) cells using conditioned media from control or MLCK siRNA-55 

treated MCF10A cells. Scale bars, 200 µm. n=3-4 independent experiments. Paired t-test. 56 

mean±s.e.m. *P<0.05, **P<0.01  57 
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Supplementary Figure 3 58 

 59 

Supplementary Figure 3. Downregulation of MLCK increases p53-dependent p21 60 

expression.  (a) Western blot analysis of control and MLCK siRNA-treated cells. β-actin is shown 61 

as a loading control. (b-c) The level of p21 protein and mRNA transcripts are downregulated after 62 

silencing of p53 in MLCK-depleted cells. β-actin or GAPDH is shown as a loading control. (d-e) 63 

The 20 µg/ml cycloheximide was used to analyze p21 protein degradation in both control and 64 

MLCK-depleted cells, with subsequent quantification of p21 protein expression levels following 65 

cycloheximide treatment. β-actin is shown as a loading control. Original gels/blots are presented 66 

in Supplementary Figure 6. n=2 independent experiments. Two-way ANOVA with Sidak's multiple 67 

comparisons test. mean±s.e.m. *P<0.05 68 
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Supplementary Figure 4 70 

 71 

Supplementary Figure 4. Source data for Figure 2a and Figure 4c-e  72 
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Supplementary Figure 5 73 

 74 

Supplementary Figure 5. Source data for Supplementary Figure 1a and 2a  75 
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Supplementary Figure 6 76 

 77 

Supplementary Figure 6. Source data for Supplementary Figure 3  78 
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Supplementary Video 1. Scratch wound migration with control siRNA-treated conditioned 79 

media. MCF10A cells were incubated with CM from control siRNA-treated cells. Cells were 80 

imaged every 10 minutes for 16 hours. Scale bars, 100 µm.  81 

 82 

Supplementary Video 2. Scratch wound migration with MLCK siRNA-treated conditioned 83 

media. MCF10A cells were incubated with CM from MLCK siRNA-treated cells. Cells were 84 

imaged every 10 minutes for 16 hours. Scale bars, 100 µm.    85 

 86 

Supplementary Table 1. Reverse-phase protein array results comparing control and 87 
MLCK-depleted MCF10A cells. 88 


