1 Supplementary information

2		
3	Loss of myosin light chain kinase induces the cellular senescence associated	
4	secretory phenotype to promote breast epithelial cell migration	
5		
6	Dayoung Kim ^{1, 2*} , Jonathan A. Cooper ¹ and David M. Helfman ²	
7		
8	1 Basic Sciences Division, Fred I	lutchinson Cancer Center, Seattle, WA, 98109, USA
9	2 Department of Biological Science	ces, Korea Advanced Institute of Science and Technology,
10	Daejeon, South Korea	
11	*Correspondence: dkim23@free	dhutch.org
12		
13	Supplementary Figure 1. Downregulation of MLCK or H_2O_2 treatment induces cellular	
14	senescence in MCF10A cells.	
15	Supplementary Figure 2. Downregulation of MLCK decreases cell proliferation and promotes	
16	6 cell migration in HER2-positive breast cancer cells.	
17	7 Supplementary Figure 3. Downregulation of MLCK increases p53-dependent p21 expression.	
18	Supplementary Figure 4. Source data for Figure 2a and Figure 4c-e	
19	Supplementary Figure 5. Source data for Supplementary Figure 1a and 2a	
20	Supplementary Figure 6. Source data for Supplementary Figure 3	
21	Supplementary Video 1. Scratch wound migration with control siRNA-treated conditioned media.	
22	Supplementary Video 2. Scratch wound migration with MLCK siRNA-treated conditioned media.	
23	Supplementary Table 1. Reverse-phase protein array results comparing control and MLCK-	
24	depleted cells.	

25

27

Supplementary Figure 1. Downregulation of MLCK or H_2O_2 treatment induces cellular 28 senescence in MCF10A cells. (a) MLCK mRNA transcript and protein levels 72 hours after 29 treatment with control, single MLCK siRNA (MLCK siRNA #5), or a mixture of four MLCK siRNAs 30 (MLCK siRNA #1-4). β -actin or Ponceau S is shown as a loading control. Original gels/blots are 31 presented in Supplementary Figure 5. (b) MCF10A cells were seeded at identical quantities and 32 counted after 72 hours. Dead cells were excluded using trypan blue staining. n=3 independent 33 experiments. Ordinary one-way ANOVA with Dunnett's multiple comparisons test. (c-d) 34 Representative images and quantification of SA- β -gal staining. Scale bars, 100 μ m. n=5-7 fields, 35 2 independent experiments. Paired t-test. (e) Scratch wound migration assays were performed 36 under conditioned media from control or MLCK siRNA #5-treated cells. n=3 independent 37 experiments. Paired *t*-test. (f) Quantification of SA- β -gal positive cells in MCF10A cells at different 38 cell densities. n=3 independent experiments. Ordinary one-way ANOVA with Tukey's multiple 39 comparisons test. (g-h) Representative images and guantification of SA-β-gal positive cells after 40 H₂O₂ treatment in MCF10A cells. Scale bars, 100 µm. n=4-10 fields, 2 independent experiments. 41 Unpaired *t*-test. (i) Representative immunofluorescence max projection images showing actin 42 (green), β-catenin (red) and nucleus (blue). Scale bars, 20 μm. mean±s.e.m. *P<0.05, ***P<0.001, 43 *****P*<0.0001. ns = not significant. 44

46

Supplementary Figure 2. Downregulation of MLCK decreases cell proliferation and 47 promotes cell migration in HER2-positive breast cancer cells. (a) Western blot analysis for 48 MLCK siRNA expressing SK-BR-3 and BT-474 cells. Integrin β 1 or α -tubulin is shown as a loading 49 control. Original blots are presented in Supplementary Figure 5. (b-c) SK-BR-3 and BT-474 cells 50 were seeded at an identical quantity and counted after 72 hr. Dead cells were excluded using 51 52 trypan blue staining. n=3 independent experiments. Ratio Paired t-test. (d-e) Representative 53 images and quantification of SA-β-gal staining in SK-BR-3 cells. Scale bars, 100 µm. n=3 independent experiments. Paired t-test. (f-j) Scratch wound migration assays were performed in 54 SK-BR-3 (g, h) and BT-474 (i, j) cells using conditioned media from control or MLCK siRNA-55 treated MCF10A cells. Scale bars, 200 µm. n=3-4 independent experiments. Paired *t*-test. 56 mean±s.e.m. *P<0.05, **P<0.01 57

59

Supplementary Figure 3. Downregulation of MLCK increases p53-dependent p21 60 61 **expression.** (a) Western blot analysis of control and MLCK siRNA-treated cells. β-actin is shown as a loading control. (b-c) The level of p21 protein and mRNA transcripts are downregulated after 62 silencing of p53 in MLCK-depleted cells. β-actin or GAPDH is shown as a loading control. (d-e) 63 64 The 20 µg/ml cycloheximide was used to analyze p21 protein degradation in both control and MLCK-depleted cells, with subsequent quantification of p21 protein expression levels following 65 cycloheximide treatment. β-actin is shown as a loading control. Original gels/blots are presented 66 in Supplementary Figure 6. n=2 independent experiments. Two-way ANOVA with Sidak's multiple 67 comparisons test. mean±s.e.m. *P<0.05 68

69

- 71
- 72 Supplementary Figure 4. Source data for Figure 2a and Figure 4c-e

74

75 Supplementary Figure 5. Source data for Supplementary Figure 1a and 2a

Supplementary Figure 3d

77

78 Supplementary Figure 6. Source data for Supplementary Figure 3

Supplementary Video 1. Scratch wound migration with control siRNA-treated conditioned
media. MCF10A cells were incubated with CM from control siRNA-treated cells. Cells were
imaged every 10 minutes for 16 hours. Scale bars, 100 µm.
Supplementary Video 2. Scratch wound migration with MLCK siRNA-treated conditioned
media. MCF10A cells were incubated with CM from MLCK siRNA-treated cells. Cells were
imaged every 10 minutes for 16 hours. Scale bars, 100 µm.

86

Supplementary Table 1. Reverse-phase protein array results comparing control and
MLCK-depleted MCF10A cells.