
Genomic Surveillance of Canadian Airport
Wastewater Samples Allows Early
Detection of Emerging SARS-CoV-2
Lineages

Alyssa K. Overton1 *, Jennifer J. Knapp1, Opeyemi U. Lawal2, Richard Gibson3, Anastasia A. Fedynak2,

Adebowale I. Adebiyi3, Brittany Maxwell4, Lydia Cheng5, Carina Bee7, Asim Qasim7, Kyle Atanas5, Mark

Payne7, Rebecca Stuart6, Manon D. Fleury8, Natalie C. Knox8, Delaney Nash1,9, Yemurayi C. Hungwe1,

Samran R. Prasla1, Hannifer Ho1, Simininuoluwa O. Agboola1, Su-Hyun Kwon1, Shiv Naik1, Valeria R.

Parreira2, Fozia Rizvi2, Melinda J. Precious2, Steven Thomas4, Marcos Zambrano4, Vixey Fang7, Elaine

Gilliland5, Monali Varia5, Maureen Horn5, Chrystal Landgraff8, Eric J. Arts3, Lawrence Goodridge2, Devan

Becker10, Trevor C. Charles1,9 *

1University of Waterloo

2University of Guelph

3Western University

4Greater Toronto Airports Authority

5Regional Municipality of Peel

6Toronto Public Health

7York Region Public Health

8Public Health Agency of Canada

9Metagenom Bio Life Science Inc.

10Wilfrid Laurier University

Supplementary Figures S1-S7, Supplementary table S3 and
Supplementary methods

Supplementary Figures and Tables

Supplementary Figure S1. Frequency of BQ* lineages in WW samples from Toronto Pearson and surrounding municipal
sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line represents the date
of the first clinical sequence for BQ* in Ontario from PHO reports.

Supplementary Figure S2. Frequency of BA.2.75* lineages in WW samples from Toronto Pearson and surrounding
municipal sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line
represents the date of the first clinical sequence for BA.2.75* in Ontario from PHO reports. Pink dashed line represents
the date of the first clinical sequence for BA.2.75 available in GISAID.

Supplementary Figure S3. Frequency of BF* lineages in WW samples from Toronto Pearson and surrounding municipal
sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line represents the date
of the first clinical sequence of BF* in Ontario from PHO reports.

Supplementary Figure S4. Frequency of XBB* lineages in WW samples from Toronto Pearson and surrounding municipal
sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line represents the date
of the first clinical sequence of XBB* in Ontario from PHO reports. Pink dashed line represents the date of the first clinical
sequence for XBB* available in GISAID.

Supplementary Figure S5. Frequency of XBB.1.5* lineages in WW samples from Toronto Pearson and surrounding
municipal sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line
represents the date of the first clinical sequence of XBB.1.5* in Ontario from PHO reports. Pink dashed line represents the
date of the first clinical sequence for XBB.1.5* available in GISAID.

Supplementary Figure S6. Frequency of XBB.1.16* lineages in WW samples from Toronto Pearson and surrounding
municipal sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line
represents the date of the first clinical sequence of XBB.1.16* in Ontario from PHO reports. Pink dashed line represents
the date of the first clinical sequence for XBB.1.16* available in GISAID.

Supplementary Figure S7. Frequency of XBB.1.9* lineages in WW samples from Toronto Pearson and surrounding
municipal sites in Toronto, York, and Peel regions. Each point represents a single WW sample. Red dashed line
represents the date of the first clinical sequence of XBB.1.9* in Ontario from PHO reports. Pink dashed line represents the
date of the first clinical sequence for XBB.1.9* available in GISAID.

Supplementary Tables S1 and S2 are attached as spreadsheets

Supplementary Table S3: Breadth of Coverage Analysis

Sample SequencingPartner AverageBOC Median BOC st dev

Region

Terminal 1 and 3 Waterloo 76.55423729 82 18.38826839

Pooled Aircraft Guelph 80.87124464 96 27.17438024

York Waterloo 71.46892655 76 20.65701603

Peel Waterloo 77.07142857 83.5 19.06012982

Toronto Western 66.75618375 76 25.45294117

Terminal

Terminal 1 75.35932203 80 18.03216635

Terminal 3 77.74915254 84 18.66124755

Pooled Aircraft Sample Method

Aircraft passive sampler 73.07801418 90 30.11492665

Aircraft auto sampler 92.81521739 98 15.63714179

Municipal Sample Method

Municipal Grab 74.45132743 79 19.93041

Municipal Composite 24hr 69.42917548 78 23.75998187

Sequencing Partner

 Waterloo 75.61659193 81 19.07687053

 Guelph 80.87124464 96 27.17438024

 Western 66.75618375 76 25.45294117

Table showing average, median and st dev of BOC > 10 data broken into different sample groups as

indicated by sub-headers for comparison. All sequenced samples were included even if they were

discarded from lineage calling analysis.

Supplementary Methods

Sum Frequencies for Lineages - Python
import pandas as pd
import json

Load the alias key
with open('/Users/jennk/Documents/Data_Chales_Lab/paper_airport/alias_key.json', 'r') as f:
 alias_key = json.load(f)

Load the CSV file
csv_file_path = '/Users/jennk/Documents/Data_Chales_Lab/paper_airport/all_samples_lineages.csv'
df = pd.read_csv(csv_file_path)

Long form names for specified lineages
lineages_of_interest = {
 'BQ': 'B.1.1.529.5.3.1.1.1.1',
 'BA.2.75': 'B.1.1.529.2.75',
 'BF': 'B.1.1.529.5.2.1',
 'XBB': 'XBB', # Special handling required
 'XBB.1.5': 'XBB.1.5',
 'XBB.1.16': 'XBB.1.16',
 'XBB.1.9': 'XBB.1.9'
}

Function to get all child lineages for a given lineage
def get_subset_keys(dictionary, start_string):
 return {key for key, value in dictionary.items() if isinstance(value, str) and

value.startswith(start_string) or isinstance(value, list) and any(isinstance(item, str) and

item.startswith(start_string) for item in value)}

lineage_results = {}

for lineage, start_string in lineages_of_interest.items():
 lineage_keys = get_subset_keys(alias_key, start_string)
 lineage_keys.add(lineage) # Include the lineage itself
 lineage_results[lineage] = lineage_keys

Exclude XBF from BF lineage
lineage_results['BF'] = {key for key in lineage_results['BF'] if not key.startswith('XBF')}

Initialize dictionary to store lineage columns
lineage_columns = {lineage: set() for lineage in lineage_results.keys()}

Identify columns matching each lineage and its children
for lineage, child_keys in lineage_results.items():
 for col in df.columns:
 col_lineages = col.split(' or ')
 if all(any(child_key in lineage_part for child_key in child_keys) for lineage_part in col_lineages):
 lineage_columns[lineage].add(col)

Debugging: print identified columns for each lineage
for lineage, columns in lineage_columns.items():
 print(f"{lineage}: {columns}")

Function to sum columns for each lineage and round to 3 decimal places
def sum_lineage_columns(df, lineage, columns):
 if columns:
 df[f'{lineage}_summary'] = df[list(columns)].sum(axis=1).round(3)

 else:
 df[f'{lineage}_summary'] = 0

Sum the columns and create summary columns
for lineage, columns in lineage_columns.items():
 sum_lineage_columns(df, lineage, columns)

Reorder columns to insert summary columns after 'BreadthOfCoverage'
summary_columns = [f'{lineage}_summary' for lineage in lineages_of_interest]
cols = list(df.columns)
for col in summary_columns:
 cols.insert(3, cols.pop(cols.index(col)))

df = df[cols]

Save the modified DataFrame back to a CSV file
output_csv_file_path =

'/Users/jennk/Documents/Data_Chales_Lab/paper_airport/summary_all_samples_lineages.csv'
df.to_csv(output_csv_file_path, index=False)

Data Preparation for Plots
suppressPackageStartupMessages({
 library(readxl)
 library(dplyr)
 library(tidyr)
 library(ggplot2)
 theme_set(theme_bw())
 library(lubridate)
})
NOT RUN
Processing script to remove unused columns and
give columns standardized names.

This was run once then copied here for posterity.

air1 <- read_excel("summary_all_samples_lineages.xlsx")
air <- air1[, 1:10]
names(air) <- c("Sample_Name", "Sample_Date", "Breadth_of_Coverage",
 "XBB.1.9*", "XBB.1.16*", "XBB.1.5*",
 "XBB*", "BF*", "BA.2.75*", "BQ*")

air <- air %>%
 mutate(Location = gsub("(20\\d+)|(-\\d+)", "", Sample_Name)) %>%
 mutate(Location = ifelse(

 Location %in% c("Ashbridges", "AshbridgesBay", "AshbridgeBay"),
 yes = "Ashbridges",
 no = ifelse(
 Location %in% c("HighlandCreek", "Highland", "HighlandCR"),
 yes = "HighlandCreek",
 no = Location)
)) %>%
 mutate(Group = case_when(
 Location %in% c("Humber", "Ashbridges", "HighlandCreek", "NorthToronto") ~ "Toronto",
 Location %in% c("As", "At") ~ "Pooled Aircraft Sewage",
 Location %in% c("A1", "A3") ~ "Airport Terminal 1 and 3",
 Location %in% c("P1", "P2") ~ "Peel",
 Location %in% c("Y1", "Y5", "Y6") ~ "York",
 TRUE ~ "Devan Missed One"
))
air <- select(air, -Sample_Name) %>%
 pivot_longer(cols = !c(Group, Location, Sample_Date, Breadth_of_Coverage),
 values_to = "Frequency", names_to = "Lineage") %>%
 mutate(Sample_Date = ymd(Sample_Date),
 Frequency = ifelse(Frequency > 1, 1, Frequency))
write.csv(air, file = "summary_all_samples_clean.csv")
rm(air1)
END NOT RUN
air <- read.csv("summary_all_samples_clean.csv") %>%
 filter(Breadth_of_Coverage >= 20)

gisaid <- data.frame(
 Lineage = c("BQ*", "BA.2.75*", "BF*", "XBB*",
 "XBB.1.5*", "XBB.1.16*", "XBB.1.9*"),
 Gisaid_Sample = ymd(c("", "2022-06-09", "", "2022-09-22",
 "2022-11-28", "2023-02-28", "2023-01-19")),
 Gisaid_Report = ymd(c("", "2022-06-21", "", "2022-10-03",
 "2022-12-12", "2023-04-24", ""))
)
pho <- data.frame(
 Lineage = c("BQ*", "BA.2.75*", "BF*", "XBB*",
 "XBB.1.5*", "XBB.1.16*", "XBB.1.9*"),
 Pho_Week = c(37, 29, 23, 41,
 49, 52 + 10, 52 + 5) + 52
)

date_seq <- seq(ymd("2022-01-01"), ymd("2024-12-31"), 1)
epiweeks <- data.frame(
 EpiWeek = epiweek(date_seq) + 52 * (year(date_seq) - 2021),

 date = date_seq)
epiweeks <- epiweeks[epiweeks$EpiWeek %in% pho$Pho_Week,]

air2 <- left_join(air, gisaid, by = "Lineage") %>%
 mutate(Lead_Sample = as.numeric(ymd(Sample_Date) - ymd(Gisaid_Sample)),
 Lead_Report = as.numeric(ymd(Sample_Date) - ymd(Gisaid_Report)),
 Epi_Week = 52 * (year(Sample_Date) - 2021) + epiweek(Sample_Date)) %>%
 left_join(pho, by = "Lineage") %>%
 mutate(Lead_Epi = Epi_Week - Pho_Week) %>%
 mutate(Detection = Frequency >= 0.01) %>%
 mutate(Group = ordered(Group, levels = levels(factor(Group))[c(1,3,4,5,2)]))

air4 <- air2 %>%
 filter(Lead_Epi > -17) %>%
 group_by(Lineage, Group) %>%
 arrange(Sample_Date) %>%
 mutate(`Freq >= 0.01` = cumsum(Frequency > 0.01),
 `Freq >= 0.05` = cumsum(Frequency > 0.05)) %>%
 pivot_longer(cols = c(`Freq >= 0.01`, `Freq >= 0.05`))

air5 <- air2 %>%
 filter(Lead_Epi > -17) %>%
 group_by(Lineage, Group) %>%
 arrange(Sample_Date) %>%
 mutate(`Freq >= 0.01` = cumsum(Frequency > 0.01),
 `Freq >= 0.05` = cumsum(Frequency > 0.05)) %>%
 pivot_longer(cols = c(`Freq >= 0.01`, `Freq >= 0.05`))
https://stackoverflow.com/questions/54438495/shift-legend-into-empty-facets-of-a-faceted-plot-in-

ggplot2
shift_legend3 <- function(p) {
 pnls <- cowplot::plot_to_gtable(p) %>% gtable::gtable_filter("panel") %>%
 with(setNames(grobs, layout$name)) %>%
 purrr::keep(~identical(.x, zeroGrob()))

 if (length(pnls) == 0) stop("No empty facets in the plot")

 lemon::reposition_legend(p, "center",
 panel = names(pnls))
}

Frequency Plots (log scale)
g <- ggplot(filter(air2, Lead_Epi > -17, Lead_Epi < 10, Frequency > 0)) +
 theme_bw() +

https://stackoverflow.com/questions/54438495/shift-legend-into-empty-facets-of-a-faceted-plot-in-ggplot2
https://stackoverflow.com/questions/54438495/shift-legend-into-empty-facets-of-a-faceted-plot-in-ggplot2

 aes(x = Lead_Epi, y = Frequency, colour = Group) +
 geom_point(size = 1, mapping = aes(alpha = Detection)) +
 scale_alpha_manual(values = c(0.4, 1)) +
 facet_wrap(~ Lineage, ncol = 2) +
 geom_vline(xintercept = 0) +
 geom_hline(yintercept = c(0.01), col = "grey", linetype = 2) +
 geom_hline(yintercept = c(0.05), col = "grey", linetype = 2) +
 labs(x = "Epiweeks to/from First Clinical Case",
 y = "Relative Demixing Frequency of Lineage from Alcov (log scale)",
 title = "", colour = NULL) +
 guides(alpha = "none") +
 scale_y_log10() +
 scale_colour_brewer(palette = "Dark2")
 shift_legend3(g)

Cumulative Plots
g <- filter(air4, Lead_Epi > -20, Lead_Epi < 10) %>%
 mutate(name = ordered(name, levels = rev(levels(factor(name))))) %>%
 ggplot() +
 theme_bw() +
 geom_vline(xintercept = 0, colour = "darkgreen", linewidth = 1.25) +
 aes(x = Lead_Epi, y = value, colour = Group, linetype = name) +
 geom_step() +
 facet_wrap(~ Lineage, ncol = 2) +
 coord_cartesian(ylim = c(0, 10)) +
 labs(x = "Epiweeks Since First Clinical Case",
 y = "Cumulative Detections",
 linetype = "Detection Threshold",
 colour = "Location") +
 scale_y_continuous(minor_breaks = 0:10, breaks = seq(0, 10, 2)) +
 scale_x_continuous(minor_breaks = -20:20, breaks = seq(-20, 20, 2)) +
 scale_colour_brewer(palette = "Dark2") +
 theme(legend.box = "horizontal")

 shift_legend3(g)

Summary Statistics
air4 %>%
 filter(Lead_Epi > -20, value == 1) %>%
 mutate(Detection_Threshold = case_when(
 Detection ~ 0.01,
 TRUE ~ 0.05
)) %>%
 group_by(Group, Detection_Threshold) %>%
 summarise(
 earliest_first_date = min(Lead_Epi),

 mean_first_date = mean(Lead_Epi),
 sd_first_date = sd(Lead_Epi)
) %>%
 arrange(Group, Detection_Threshold) %>%
 knitr::kable()

Summary Statistics GISAID
air5 %>%
 filter(Lead_Epi > -20, value == 1) %>%
 mutate(Detection_Threshold = case_when(
 Detection ~ 0.01,
 TRUE ~ 0.05
)) %>%
 group_by(Group, Detection_Threshold) %>%
 summarise(
 earliest_first_date = min(Lead_Sample, na.rm = TRUE),
 mean_first_date = mean(Lead_Sample, na.rm = TRUE),
 sd_first_date = sd(Lead_Sample, na.rm = TRUE)
) %>%
 arrange(Group, Detection_Threshold) %>%
 knitr::kable()

Supplementary Scatter Plots - R
suppressPackageStartupMessages({
 library(readxl)
 library(dplyr)
 library(magrittr)
 library(tidyr)
 library(ggplot2)
 theme_set(theme_bw())
 library(lubridate)
 library(epitools)
})

air <- read.csv("summary_all_samples_clean.csv") %>%
 filter(Breadth_of_Coverage >= 20)

gisaid <- data.frame(
 Lineage = c("BQ*", "BA.2.75*", "BF*", "XBB*",
 "XBB.1.5*", "XBB.1.16*", "XBB.1.9*"),
 Gisaid_Sample = ymd(c("", "2022-06-09", "", "2022-09-22",
 "2022-11-28", "2023-02-28", "2023-01-19")),
 Gisaid_Report = ymd(c("", "2022-06-21", "", "2022-10-03",
 "2022-12-12", "2023-04-24", ""))
)

pho <- data.frame(
 Lineage = c("BQ*", "BA.2.75*", "BF*", "XBB*",
 "XBB.1.5*", "XBB.1.16*", "XBB.1.9*"),
 Pho_Week = c(37, 29, 23, 41,
 49, 10, 5),
 Year = c(2022, 2022, 2022, 2022, 2022, 2023, 2023)
)

Convert Pho_Week and Year to dates
pho <- pho %>%
 mutate(Pho_Date = as.Date(paste(Year, Pho_Week, 1, sep = "-"), "%Y-%U-%u"))

Ensure Sample_Date is a Date object and add Epiweek and Year columns
air <- air %>%
 mutate(Sample_Date = as.Date(Sample_Date),
 Epiweek = as.numeric(as.week(Sample_Date)$week),
 Year = year(Sample_Date),
 Epiweek_Year = paste(Year, sprintf("%02d", as.numeric(Epiweek)), sep = "-"))

Function to calculate start date 16 weeks before a given date
start_date <- function(date) {
 date - weeks(16)
}

Define the end date
end_date <- ymd("2023-03-31")

Unique lineages
lineages <- unique(air$Lineage)

Loop through each lineage and create a scatter plot
for (lineage in lineages) {
 print(paste("Processing lineage:", lineage)) # Print the lineage being processed

 air_lineage <- air %>%
 filter(Lineage == lineage)

 # Get the first PHO clinical detection date for the current lineage
 first_pho_detection_date <- pho %>%
 filter(Lineage == lineage) %>%
 pull(Pho_Date)

 # Get the first GISAID clinical sample date for the current lineage
 first_gisaid_sample_date <- gisaid %>%
 filter(Lineage == lineage) %>%
 pull(Gisaid_Sample)

 # Calculate the start date 16 weeks before the first clinical detection date
 start_date_lineage <- start_date(first_pho_detection_date)

 # Filter air_lineage based on the calculated start date and end date
 air_lineage <- air_lineage %>%
 filter(Sample_Date >= start_date_lineage & Sample_Date <= end_date)

 # Create breaks at weekly intervals
 breaks <- seq(min(air_lineage$Sample_Date), max(air_lineage$Sample_Date), by = "week")

 # Create labels for the breaks
 labels <- paste(year(breaks), sprintf("%02d", as.numeric(as.week(breaks)$week)), sep = "-")

 # Adjust breaks and labels for specific lineages
 if (lineage %in% c("BQ*", "BA.2.75*", "BF*")) {
 breaks <- breaks[seq(1, length(breaks), by = 2)]
 labels <- labels[seq(1, length(labels), by = 2)]
 }

 # Define the order of legend labels
 legend_order <- c("Airport Terminal 1 and 3", "Pooled Aircraft Sewage", "Peel", "Toronto", "York")

 p <- ggplot(air_lineage,
 aes(x = Sample_Date, y = Frequency, color = Group)) +
 geom_point() +
 labs(title = paste("Emergence of ", lineage, "Lineages in Airport and surrounding municipal sites"),
 x = "Sample Date / Epi Week",
 y = paste("Frequency of ", lineage, "in Sample"),
 color = "Location") +
 scale_color_manual(values = c("Toronto" = "blue", "Peel" = "purple", "York" = "green",
 "Pooled Aircraft Sewage" = "orange", "Airport Terminal 1 and 3" = "yellow2"),
 limits = legend_order) +
 scale_x_date(breaks = breaks, labels = labels) +
 geom_vline(xintercept = first_pho_detection_date, linetype = "dashed", color = "red") +
 annotate("text", x = first_pho_detection_date, y = Inf, label = paste("First PHO clinical detection of",
lineage),
 angle = 90, vjust = -0.5, hjust = 1, color = "red", size = 3) +
 geom_vline(xintercept = first_gisaid_sample_date, linetype = "dashed", color = "pink") +
 annotate("text", x = first_gisaid_sample_date, y = Inf, label = paste("First GISAID sample date of",
lineage),
 angle = 90, vjust = -0.5, hjust = 1, color = "pink", size = 3) +

 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 scale_y_continuous(breaks = seq(0, max(air$Frequency, na.rm = TRUE), by = 0.1)) # Adjust y-axis
breaks

 # Display plot
 print(p)

 # Save plot
 ggsave(filename = paste0("scatter_plot_", lineage, ".png"), plot = p, width = 10, height = 6)
}

S:R346T Plot – R
suppressPackageStartupMessages({
 library(readxl)
 library(dplyr)
 library(magrittr)
 library(tidyr)
 library(ggplot2)
 theme_set(theme_bw())
 library(lubridate)
 library(epitools)
})

airS1 <- read.csv("all_samples_SR346T_mutations.csv")
airS <- airS1[, 1:4]
names(airS) <- c("Sample_Name", "Sample_Date", "Breadth_of_Coverage",
 "S:R346T")

airS <- airS %>%
 mutate(Location = gsub("(20\\d+)|(-\\d+)", "", Sample_Name)) %>%
 mutate(Location = ifelse(
 Location %in% c("Ashbridges", "AshbridgesBay", "AshbridgeBay"),
 yes = "Ashbridges",
 no = ifelse(
 Location %in% c("HighlandCreek", "Highland", "HighlandCR"),
 yes = "HighlandCreek",
 no = Location)
)) %>%
 mutate(Group = case_when(
 Location %in% c("Humber", "Ashbridges", "HighlandCreek", "NorthToronto") ~ "Toronto",
 Location %in% c("As", "At") ~ "Pooled Aircraft Sewage",
 Location %in% c("A1", "A3") ~ "Airport Terminal 1 and 3",
 Location %in% c("P1", "P2") ~ "Peel",
 Location %in% c("Y1", "Y5", "Y6") ~ "York",
 TRUE ~ "Devan Missed One"
))
airS <- select(airS, -Sample_Name) %>%
 pivot_longer(cols = !c(Group, Location, Sample_Date, Breadth_of_Coverage),
 values_to = "Frequency", names_to = "Mutation") %>%
 mutate(Sample_Date = ymd(Sample_Date),
 Frequency = ifelse(Frequency > 1, 1, Frequency))
write.csv(airS, file = "summary_all_samples_SR346T_clean.csv")

rm(airS1)

airS <- read.csv("summary_all_samples_clean.csv") %>%
 # Remove samples with less than 20% BOC and no coverage of S:R346T (Frequency = -1)
 filter(Breadth_of_Coverage >= 20 & Frequency >= 0)

Ensure Sample_Date is a Date object and add Epiweek and Year columns
airS <- airS %>%
 mutate(Sample_Date = as.Date(Sample_Date),
 Epiweek = as.numeric(as.week(Sample_Date)$week),
 Year = year(Sample_Date),
 Epiweek_Year = paste(Year, sprintf("%02d", as.numeric(Epiweek)), sep = "-"))

Define the start and end dates
start_date <- ymd("2022-04-01")
end_date <- ymd("2023-03-31")

Filter airS based on the calculated start date and end date
airS <- airS %>%
 filter(Sample_Date >= start_date & Sample_Date <= end_date)

Create breaks at weekly intervals
breaks <- seq(min(airS$Sample_Date), max(airS$Sample_Date), by = "week")

Create labels for the breaks
labels <- paste(year(breaks), sprintf("%02d", as.numeric(as.week(breaks)$week)), sep = "-")

Adjust breaks and labels for readability
breaks <- breaks[seq(1, length(breaks), by = 2)]
labels <- labels[seq(1, length(labels), by = 2)]

Define the order of legend labels
legend_order <- c("Airport Terminal 1 and 3", "Pooled Aircraft Sewage", "Peel", "Toronto", "York")

p <- ggplot(airS,
 aes(x = Sample_Date, y = Frequency, color = Group)) +
 geom_point() +
 labs(title = paste("Emergence of S:R346T mutation in Airport and surrounding municipal sites"),
 x = "Sample Date / Epi Week",
 y = paste("Frequency of S:R346T in Sample"),
 color = "Location") +
 scale_color_manual(values = c("Toronto" = "blue", "Peel" = "purple", "York" = "green",
 "Pooled Aircraft Sewage" = "orange", "Airport Terminal 1 and 3" = "yellow2"),
 limits = legend_order) +
 scale_x_date(breaks = breaks, labels = labels) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

 scale_y_continuous(breaks = seq(0, max(airS$Frequency, na.rm = TRUE), by = 0.1)) # Adjust y-axis
breaks

Display plot
print(p)

Save plot
ggsave(filename = paste0("scatter_plot_SR346T.png"), plot = p, width = 10, height = 6)

	Supplementary Figures and Tables
	Supplementary Methods
	Sum Frequencies for Lineages - Python
	Data Preparation for Plots
	Frequency Plots (log scale)
	Cumulative Plots
	Summary Statistics
	Summary Statistics GISAID
	Supplementary Scatter Plots - R
	S:R346T Plot – R

