Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.

Free full text 


Logo of embojLink to Publisher's site
EMBO J. 1998 Apr 1; 17(7): 1847–1859.
PMCID: PMC1170532
PMID: 9524109

Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations.

Abstract

Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.

Full Text

The Full Text of this article is available as a PDF (722K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abarzúa P, LoSardo JE, Gubler ML, Neri A. Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res. 1995 Aug 15;55(16):3490–3494. [Abstract] [Google Scholar]
  • Abarzúa P, LoSardo JE, Gubler ML, Spathis R, Lu YA, Felix A, Neri A. Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene. 1996 Dec 5;13(11):2477–2482. [Abstract] [Google Scholar]
  • Abraham DJ, Wireko FC, Randad RS, Poyart C, Kister J, Bohn B, Liard JF, Kunert MP. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats. Biochemistry. 1992 Sep 29;31(38):9141–9149. [Abstract] [Google Scholar]
  • Bae I, Smith ML, Sheikh MS, Zhan Q, Scudiero DA, Friend SH, O'Connor PM, Fornace AJ., Jr An abnormality in the p53 pathway following gamma-irradiation in many wild-type p53 human melanoma lines. Cancer Res. 1996 Feb 15;56(4):840–847. [Abstract] [Google Scholar]
  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. [Abstract] [Google Scholar]
  • Bergh J, Norberg T, Sjögren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995 Oct;1(10):1029–1034. [Abstract] [Google Scholar]
  • Brachmann RK, Vidal M, Boeke JD. Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4091–4095. [Europe PMC free article] [Abstract] [Google Scholar]
  • Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994 Jul 21;370(6486):220–223. [Abstract] [Google Scholar]
  • Cariello NF, Douglas GR, Soussi T. Databases and software for the analysis of mutations in the human p53 gene, the human hprt gene and the lacZ gene in transgenic rodents. Nucleic Acids Res. 1996 Jan 1;24(1):119–120. [Europe PMC free article] [Abstract] [Google Scholar]
  • Caron de Fromentel C, Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992 Jan;4(1):1–15. [Abstract] [Google Scholar]
  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994 Jul 15;265(5170):346–355. [Abstract] [Google Scholar]
  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993 Apr 29;362(6423):849–852. [Abstract] [Google Scholar]
  • Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta. 1993 Aug 23;1155(2):181–205. [Abstract] [Google Scholar]
  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992 Apr;1(1):45–49. [Abstract] [Google Scholar]
  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. [Abstract] [Google Scholar]
  • Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994 Aug 26;78(4):539–542. [Abstract] [Google Scholar]
  • Freeman J, Schmidt S, Scharer E, Iggo R. Mutation of conserved domain II alters the sequence specificity of DNA binding by the p53 protein. EMBO J. 1994 Nov 15;13(22):5393–5400. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gibbs JB, Oliff A. Pharmaceutical research in molecular oncology. Cell. 1994 Oct 21;79(2):193–198. [Abstract] [Google Scholar]
  • Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta. 1996 Jun 7;1287(2-3):77–102. [Abstract] [Google Scholar]
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [Abstract] [Google Scholar]
  • Haffner R, Oren M. Biochemical properties and biological effects of p53. Curr Opin Genet Dev. 1995 Feb;5(1):84–90. [Abstract] [Google Scholar]
  • Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 1993 Dec 15;12(13):5057–5064. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hann BC, Lane DP. The dominating effect of mutant p53. Nat Genet. 1995 Mar;9(3):221–222. [Abstract] [Google Scholar]
  • Hansen R, Oren M. p53; from inductive signal to cellular effect. Curr Opin Genet Dev. 1997 Feb;7(1):46–51. [Abstract] [Google Scholar]
  • Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996 Oct 16;88(20):1442–1455. [Abstract] [Google Scholar]
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993 Oct 28;329(18):1318–1327. [Abstract] [Google Scholar]
  • Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 1995 Sep 1;9(17):2170–2183. [Abstract] [Google Scholar]
  • Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. [Abstract] [Google Scholar]
  • Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R, Harris CC. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res. 1996 Jan 1;24(1):141–146. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hupp TR, Meek DW, Midgley CA, Lane DP. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 1993 Jul 11;21(14):3167–3174. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hupp TR, Sparks A, Lane DP. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell. 1995 Oct 20;83(2):237–245. [Abstract] [Google Scholar]
  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992 May 8;256(5058):827–830. [Abstract] [Google Scholar]
  • Kinzler KW, Vogelstein B. Cancer therapy meets p53. N Engl J Med. 1994 Jul 7;331(1):49–50. [Abstract] [Google Scholar]
  • Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. [Abstract] [Google Scholar]
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. [Abstract] [Google Scholar]
  • Lowe SW. Cancer therapy and p53. Curr Opin Oncol. 1995 Nov;7(6):547–553. [Abstract] [Google Scholar]
  • Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. [Abstract] [Google Scholar]
  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993 Apr 29;362(6423):847–849. [Abstract] [Google Scholar]
  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science. 1994 Nov 4;266(5186):807–810. [Abstract] [Google Scholar]
  • Michalovitz D, Halevy O, Oren M. p53 mutations: gains or losses? J Cell Biochem. 1991 Jan;45(1):22–29. [Abstract] [Google Scholar]
  • Milner J. DNA damage, p53 and anticancer therapies. Nat Med. 1995 Sep;1(9):879–880. [Abstract] [Google Scholar]
  • Miroy GJ, Lai Z, Lashuel HA, Peterson SA, Strang C, Kelly JW. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15051–15056. [Europe PMC free article] [Abstract] [Google Scholar]
  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 1993 Nov 19;75(4):653–660. [Abstract] [Google Scholar]
  • Muhlrad D, Hunter R, Parker R. A rapid method for localized mutagenesis of yeast genes. Yeast. 1992 Feb;8(2):79–82. [Abstract] [Google Scholar]
  • Neil JC, Cameron ER, Baxter EW. p53 and tumour viruses: catching the guardian off-guard. Trends Microbiol. 1997 Mar;5(3):115–120. [Abstract] [Google Scholar]
  • Niewolik D, Vojtesek B, Kovarik J. p53 derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene. 1995 Mar 2;10(5):881–890. [Abstract] [Google Scholar]
  • Pietenpol JA, Tokino T, Thiagalingam S, el-Deiry WS, Kinzler KW, Vogelstein B. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1998–2002. [Europe PMC free article] [Abstract] [Google Scholar]
  • Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, Kern SE. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 1994 Jun 1;54(11):3025–3033. [Abstract] [Google Scholar]
  • Robzyk K, Kassir Y. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res. 1992 Jul 25;20(14):3790–3790. [Europe PMC free article] [Abstract] [Google Scholar]
  • Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, Hong WK, Komaki R, Lee JJ, Nesbitt JC, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996 Sep;2(9):985–991. [Abstract] [Google Scholar]
  • Schärer E, Iggo R. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 1992 Apr 11;20(7):1539–1545. [Europe PMC free article] [Abstract] [Google Scholar]
  • Selivanova G, Iotsova V, Okan I, Fritsche M, Ström M, Groner B, Grafström RC, Wiman KG. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997 Jun;3(6):632–638. [Abstract] [Google Scholar]
  • Shortle D, Lin B. Genetic analysis of staphylococcal nuclease: identification of three intragenic "global" suppressors of nuclease-minus mutations. Genetics. 1985 Aug;110(4):539–555. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [Europe PMC free article] [Abstract] [Google Scholar]
  • Stratton MR, Moss S, Warren W, Patterson H, Clark J, Fisher C, Fletcher CD, Ball A, Thomas M, Gusterson BA, et al. Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene. Oncogene. 1990 Sep;5(9):1297–1301. [Abstract] [Google Scholar]
  • Vidal M, Brachmann RK, Fattaey A, Harlow E, Boeke JD. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10315–10320. [Europe PMC free article] [Abstract] [Google Scholar]
  • Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. [Abstract] [Google Scholar]
  • White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996 Jan 1;10(1):1–15. [Abstract] [Google Scholar]
  • Wieczorek AM, Waterman JL, Waterman MJ, Halazonetis TD. Structure-based rescue of common tumor-derived p53 mutants. Nat Med. 1996 Oct;2(10):1143–1146. [Abstract] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41817747
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41817747

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1093/emboj/17.7.1847

Supporting
Mentioning
Contrasting
6
182
0

Article citations


Go to all (101) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (1)