Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The founder principle has been used to explain many instances of rapid speciation. Advances from theoretical population genetics are incorporated into MAYR's original founder-effect genetic-revolution model to yield a newer model called the genetic transilience. The basic theoretical edifice lies upon the fact that founder event can sometimes lead to an accumulation of inbreeding and an induction of gametic disequilibrium. This, in turn, causes alleles to be selected more for their homozygous fitness effects and for their effects on a more stable genetic background. Selection occurring in multi-locus systems controlling integrated developmental, physiological, behavioral, etc, traits is particularly sensitive to these founder effects. If sufficient genetic variability exists in the founder population, such multilocus genetic systems can respond to drift and the altered selective forces by undergoing a rapid shift to a new adaptive peak known as the genetic transilience. A genetic transilience is, therefore, most likely to occur when the founder event causes a rapid accumulation of inbreeding without a severe reduction in genetic variability. The implications of this model are then examined for three aspects of the founder-effect genetic-transilience model: the attributes of the ancestral population, the nature of the sampling process used to generate the founders and the attributes of the founder population. The model is used to explain several features of the evolution of the Hawaiian Drosophila, and experimental designs are outlined to test the major predictions of the theory. Hence, this theory of speciation can be tested in the laboratory, using systems and techniques that already exist--a rare attribute of most models of speciation.

Free full text 


Logo of geneticsLink to Publisher's site
Genetics. 1980 Apr; 94(4): 1011–1038.
PMCID: PMC1214177
PMID: 6777243

The Theory of Speciation VIA the Founder Principle

Abstract

The founder principle has been used to explain many instances of rapid speciation. Advances from theoretical population genetics are incorporated into Mayr's original founder-effect genetic-revolution model to yield a newer model called the genetic transilience. The basic theoretical edifice lies upon the fact that founder event can sometimes lead to an accumulation of inbreeding and an induction of gametic disequilibrium. This, in turn, causes alleles to be selected more for their homozygous fitness effects and for their effects on a more stable genetic background. Selection occurring in multi-locus systems controlling integrated developmental, physiological, behavioral, etc., traits is particularly sensitive to these founder effects. If sufficient genetic variability exists in the founder population, such multilocus genetic systems can respond to drift and the altered selective forces by undergoing a rapid shift to a new adaptive peak known as the genetic transilience. A genetic transilience is, therefore, most likely to occur when the founder event causes a rapid accumulation of inbreeding without a severe reduction in genetic variability. The implications of this model are then examined for three aspects of the founder-effect genetic-transilience model: the attributes of the ancestral population, the nature of the sampling process used to generate the founders and the attributes of the founder population. The model is used to explain several features of the evolution of the Hawaiian Drosophila, and experimental designs are outlined to test the major predictions of the theory. Hence, this theory of speciation can be tested in the laboratory, using systems and techniques that already exist—a rare attribute of most models of speciation.

Full Text

The Full Text of this article is available as a PDF (2.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

Articles from Genetics are provided here courtesy of Oxford University Press

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3114057
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3114057

Article citations


Go to all (249) article citations

Other citations

Data