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The transforming growth factor β (TGFβ) cytokines are a multi-

functional family that exert a wide variety of effects on both

normal and transformed mammalian cells. The secretion and

activation ofTGFβs is regulated by their associationwith latency-

associated proteins and latent TGFβ binding proteins (LTBPs).

Over the past few years, three members of the LTBP family have

been identified, in addition to the protoype LTBP1 first sequenced

in 1990. Three of the LTBP family are expressed in a variety of

isoforms as a consequence of alternative splicing. This review

summarizes the differences between the isoforms in terms of

the effects on domain structure and hence possible function. The

INTRODUCTION

Transforming growth factor β (TGFβ) exists as three mammalian

isoforms (TGFβ1, TGFβ2 and TGFβ3). Each of these is usually

secreted in large latent complexes (LLCs) which have no bio-

logical activity and comprise three components : a disulphide-

bonded homodimer of mature TGFβ associated non-covalently

with latentcy-associated proteins (LAPs; homodimers of the N-

terminal fragment of precursor TGFβ) and a covalently attached

molecule of latent TGFβ binding protein (LTBP) (Figure 1)

[1–6]. Four LTBP genes have been identified: LTBP1 [4,6,7],

LTBP2 [8–11], LTBP3 [12,13] and LTBP4 [14]. LAPs are

sufficient to render the mature homodimer inactive, and removal

of both the LAPs and LTBP or modulation of their interaction

is essential for any of the TGFβ isoforms to function.

The TGFβ cytokines modulate the growth and functions of a

wide variety of mammalian cell types. TGFβ inhibits the pro-

liferation of most types of cells [15], although it was first identified

as sarcoma growth factor, synthesized by virally or chemically

transformed fibroblasts [16–18]. It is now established that TGFβ

isoforms can act as growth-promoting factors in some cell types

[19,20], in addition to their more familiar role as growth inhibitors

of many normal and transformed cells, with lung epithelial cells

and keratinocytes being particularly susceptible [15]. TGFβ can

also stimulate extracellular matrix (ECM) biosynthesis [21,22],

induce monocyte chemotaxis [23], suppress lymphocyte function

[24], and regulate both angiogenesis [22,25,26] and bone forma-

tion [27]. The implication of TGFβ in such a wide range of

biological responses suggests that it plays important roles in
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SLC, small latent complex ; SMC, smooth muscle cells ; SMC/EC, smooth muscle cells/endothelial cells ; TGFβ, transforming growth factor β ; TSP1,
thrombospondin 1 ; VSMC, vascular smooth muscle cells .
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close identity between LTBPs and members of the fibrillin

family, mutations in which have been linked directly to Marfan’s

syndrome, suggests that anomalous expression of LTBPs may be

associated with disease. Recent data indicating that differential

expression of LTBP1 isoforms occurs during the development of

coronary heart disease is considered, together with evidence that

modulation of LTBP function, and hence of TGFβ activity, is

associated with a variety of cancers.

Key words: atherosclerosis, cancer, fibrillin, Marfan’s syndrome,

TGFβ.

many normal cellular functions. Consistent with these multiple

roles, anomalous regulation of TGFβ activity has been associated

with the development of a number of diseases, most notably

several forms of cancer [28–33]. In breast and colon carcinomas

in particular, elevated levels of immunoreactive TGFβ and}or

mutations in TGFβ signal transduction components have been

detected [34–37]. Indeed, it is possible that in some pathological

tissues overexpression of the protein represents an attempt to

compensate for loss of signal transduction [38,39]. The role of

TGFβ in human cardiovascular development and disease is

unclear and controversial, although it has been hypothesized

that expression of TGFβ is necessary for the maintenance of

vascular homoeostasis [40–42]. The study of TGFβ function has

been confounded by the fact that antibodies raised against

mature TGFβ may also bind to the small latent complex (SLC)

of TGFβ associated with LAPs ([43] ; R. O$ klu$ , P. Ellis, A. Grace

and J. Metcalfe, unpublished work). Thus it has been difficult to

determine the level of active TGFβ in tissues and samples, as

distinct from the amount of total (active plus sequestered) TGFβ

present.

It has become evident in recent years that LTBPs may be

involved in the assembly, secretion and targeting of TGFβ to

sites at which it is stored and}or activated (Table 1). Thus these

proteins may play critical roles in controlling and directing the

activity of TGFβs. LTBPs may also exert effects independently

of those associated with TGFβ, for example as structural matrix

proteins. In this review we describe the family of LTBP proteins

and the diverse roles that they appear to play, before discussing

the evidence linking changes in the expression of LTBPs with

cancer and atherosclerosis.
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Figure 1 Structure of TGFβ latent complexes

The SLC comprises an active TGFβ homodimer associated non-covalently with a LAP homodimer. The LLC contains an additional protein, LTBP, which is disulphide-bonded to LAP.

Table 1 Tissue distribution of LTBP mRNAs

Gene Tissue Refs

LTBP1 Widely expressed. [4,6,7,57,58]

LTBP2 Lung, heart, testes, placenta, spleen, liver and skeletal muscle. Expressed during elastic fibre formation in the aorta and cartilage perichondrium

and blood vessels of mouse embryo.

[8,9,11,99]

LTBP3 Mainly liver ; some in heart, central nervous system, bone, pancreas, artery and kidney. [12]

LTBP4 Heart, skeletal muscle, pancreas, aorta, uterus and small intestine. Some expression in lung, placenta, liver and kidney. [14,56]

Table 2 LTBP gene family

Gene Species/chromosome mRNA (kb) No. of residues Molecular mass (kDa) EGF-like domains 8Cys domains Refs

LTBP1 Human/2p22–24 5.2/7.0 1394, 1740 125–210 16–17 3 [4,7,131]

LTBP1 Rat 5.3/6.2 1712 186 18 4 [6]

LTBP2 Human/14q22–q33 7.5/9.0 1842 240–310 20 4 [9,10]

Mouse/12D 6.8 1810 197 20 4 [11]

LTBP3 Human/11q12

Mouse/19B 4.6 1251 135 15 3 [12,13]

LTBP4 Human/19q13.1 5.0 1587 160 20 4 [14,56]

STRUCTURES OF LTBPs

LTBPs may be regarded structurally as a subfamily of the

extracellular microfibrillar proteins fibrillin 1 and 2. LTBP and

fibrillin proteins have several domains that contain a conserved

pattern of eight cysteine residues (8Cys), found thus far only in

this family (three to four in LTBPs, and seven to nine in fibrillins)

[4,44]. Alternative use of promoters produces two major isoforms

of LTBP1, defined as LTBP1S and LTBP1L [45]. LTBP1L

contains an additional 346 amino acids from the N-terminal

region of LTBP1S [7]. The third 8Cys domain of human LTBP1,

which includes a putative N-glycosylation site, is necessary and

sufficient for disulphide bonding to the TGFβ SLC [46,47]. The

second and third 8Cys domains of mouse LTBP2 (mLTBP2) and

mLTBP3 are also reported to bind covalently to TGFβ SLCs

[48]. The solution structure of the 8Cys domain of fibrillin

suggests that hydrophobic contacts may be important in the

recognition of LAP by LTBP1 [49].
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In addition to the 8Cys domains, LTBPs and fibrillins contain

long tandem arrays of epidermal growth factor (EGF)-like

domains (Table 2). Some EGF-like domains include a consensus

sequence for calcium binding [50–52], and the effect of calcium

binding to LTBP and fibrillin may be to confer resistance to

proteolysis [53–55]. Human LTBPs 1, 2 and 4 and bovine LTBP2

contain an Arg-Gly-Asp (RGD) sequence that potentially pro-

motes interaction with integrin(s), although interaction of LTBPs

with integrins has not been detected in �itro [4,8,9,56]. LTBP1

also contains a single consensus heparin binding site, but

interaction between LTBP1 and heparin sulphates has not been

reported [57].

ALTERNATIVE SPLICING OF LTBP RNA

Alternatively spliced forms of LTBP1, LTBP3 and LTBP4 have

been identified, with the variations between isoforms mainly

involving exons encoding the 8Cys and EGF-like domains.

LTBP1 RNA is alternatively spliced to give three shorter forms,

denoted as LTBP1∆41, LTBP1∆53 and LTBP1∆55 [57–59].

LTBP1∆41 has the twelfth EGF-like domain completely deleted;

the sequence deleted in LTBP1∆53 encodes the eighth cysteine

of the first 8Cys domain (Figure 2a). A single consensus heparin

binding sequence is also deleted in LTBP1∆53. The deleted

region in LTBP1∆55 encodes two putative N-glycosylation sites

Figure 2 Alternative splicing of LTBP1, mLTBP3 and LTBP4

(a) LTBP1 RNA can be alternatively spliced to produce isoforms defined as LTBP1∆55, LTBP1∆53 and LTBP1∆41. LTBP1∆41 and LTBP1∆53 are common to both the LTBP1L and LTBP1S

isoforms. (b) mLTBP3 RNA can be alternatively spliced to produce transcripts with deletions of 51 bp and 159 bp. (c) LTBP4 RNA is alternatively spliced to produce isoforms defined as LTBP4∆EGF

and LTBP4∆2EGF.

that have no known functional significance (Figure 2a). Two

alternatively spliced variants of mLTBP3 RNA have been

described, in which 51 bp and 159 bp respectively of the full-

length gene are deleted (Figure 2b) [60]. The 51 bp deleted from

the N-terminal region of mLTBP3 encode a sequence rich in

proline and glycine. The 159 bp deletion encodes seven cysteines

of the third 8Cys domain. LTBP4 has two alternatively spliced

forms, generating LTBP4∆EGF and LTBP4∆2EGF (Figure 2c).

LTBP4∆EGF has the 14th EGF-like domain (which contains a

calcium binding site) deleted; in LTBP4∆2EGF the 14th and

15th EGF-like domains are deleted [56].

FUNCTIONAL EFFECTS OF ALTERNATIVE SPLICING

There is no experimental evidence for the functional effects of the

deletion of EGF-like domains or the truncation of 8Cys domains

in alternatively spliced LTBPs. Structural studies of an isolated

8Cys domain from fibrillin have indicated that the cysteine

repeat is stabilized by four intradomain disulphide bonds [49].

Deletion of the eighth cysteine residue of the first 8Cys domain

in LTBP1∆53 may affect disulphide bonding and have important

consequences for LTBP1 function, since loss of the eighth cysteine

in 8Cys domains of fibrillin 1, arising from point mutations [61]

or from exon skipping [62,63], results in Marfan’s syndrome, a

severe form of connective tissue disease. Although there are no
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reports of mutations in LTBP1 in patients with Marfan’s

syndrome, mutations in LTBP2 have been reported in these

patients [64], but their functional significance has not been

resolved. In LTBP1∆53 there is no neighbouring cysteine to

replace the residue deleted by alternative splicing, and it is

therefore probable that the structure in this region of the protein

will be altered.

Deletion of the region containing the single consensus heparin

binding site in LTBP1S blocks binding to the ECM, although

specific inactivation of the binding site by site-directed muta-

genesis, to demonstrate that it is required for interaction with the

ECM, has not been reported [65]. Similar studies of heparin

binding sites in growth factors such as vascular endothelial

growth factor suggest, but do not prove, that these sites are

required for localization to the ECM. For example, deletion of

the exon that encodes the heparin binding site in vascular

endothelial growth factor results in a protein that does not bind

efficiently to the ECM [66]. By analogy, LTBP1∆53, which lacks

the heparin binding site, may differ from LTBP1 in its interactions

with the ECM.

Alternative splicing of mLTBP3 results in deletion of seven

cysteine residues in the third 8Cys domain that are necessary for

covalent binding to LAP. This truncated form of mLTBP3 may

therefore be secreted unattached to TGFβ SLCs [60]. Analogous

deletions of the LAP-binding cysteine in the other isoforms of

LTBP have not been reported.

Removal of calcium-binding EGF-like domains due to altern-

ative splicing, which occurs in LTBP1 and LTBP4, may reduce

the resistance to proteolytic degradation normally conferred by

calcium. EGF-like domains may also be important for protein–

protein interactions, as exemplified by the association of Notch

and its ligands Delta and Serrate via EGF domains [67].

Furthermore, a number of other genes (e.g. those encoding

aggrecan and PREF-1) give rise to alternatively spliced variants

in which EGF-like domains are lost or modified [68,69], although

the functional consequences of this are not known. However, in

addition to the cysteine deletion in fibrillin in Marfan’s syndrome,

severe forms of this disease also result from mutations with-

in EGF-like domains or from the skipping of exons that encode

EGF-like domains [70]. These findings suggest that it will be of

interest to determine whether the variant forms of LTBP1 and

LTBP4 that lack EGF-like repeats present in the full-length

proteins play a role in normal tissues or whether they are

involved in the development of disease (see the section on

‘Latent TGFβ complexes and human and atherosclerosis ’

below).

ASSEMBLY AND SECRETION OF TGFβ

Expression of TGFβ1 and LTBP1 mRNAs and proteins are co-

ordinated in human erythroleukaemia (HEL) cells in response to

PMA treatment [71]. In human foreskin fibroblast cells, ex-

pression of TGFβ1 and LTBP1 occurs with a similar time course

after treatment with exogenous TGFβ1 (5 ng}ml; [72]). Fur-

thermore, the addition of 1,25-dihydroxyvitamin D
$

to the

oestrogen-receptor-negative breast cancer cell line, BT-20, also

increases LTBP1 protein expression in parallel with that of

TGFβ1, suggesting that they are co-ordinately regulated [73]. In

contrast, the addition of TGFβ1 protein (0.1–5 ng}ml) to the

osteoblast-like cell lines MG63, ROS 17}2.8 and UMR-106

suggests that the expression of LTBP1 and TGFβ1 is not co-

ordinately regulated in these cell types. Furthermore, LTBP1 is

undetectable in UMR-106 cells, which secretes almost exclusively

the SLC [72].

There is evidence from pulse–chase studies (e.g. in HEL cells)

that LTBP1 becomes covalently associated with the SLC, which

comprises TGFβ1 associated non-covalently with LAP, within

15 min of its synthesis, and that secretion of the LLC occurs

within 30 min of the synthesis of LTBP1 [71]. Secretion and

folding of the SLC not associated with LTBP1 occurs much

more slowly, with the complex being mainly retained in an

immature form in the Golgi apparatus [71,74]. In addition,

immunoprecipitation studies of cell lysates and conditioned

media show that the TGFβ precursor may form anomalous

disulphide bonds, suggesting that LTBP1 may be essential for

the normal assembly and secretion of latent TGFβ1 [71]. It is

clear from such studies that, in some cells, the assembly and

secretion of TGFβ may require the co-expression of LTBP.

However, in other cell types the expression of TGFβ and

LTBP do not correlate. For example, in UMR-106 cells (which

secrete almost exclusively the SLC), the folding, processing and

rapid secretion of TGFβ does not depend on the co-expression

of LTBP1, since LTBP1 is not expressed in these cells [72]. Fur-

thermore, human glioblastoma cells (U-1240 MG) also secrete

the SLC and active TGFβ in the absence of LTBP [1].

TISSUE TARGETING AND ACTIVATION

Activation of latent TGFβ in �itro has been studied in a variety

of cellular systems. Some systems require co-cultures for the

activation of TGFβ, e.g. co-cultures of smooth muscle cells and

endothelial cells (SMC}EC), whereas in other cellular systems an

isolated cell line is sufficient for the activation of TGFβ, e.g.

human aortic SMC [75,76].

Endogenous activation of latent TGFβ occurs in bovine

SMC}EC co-cultures [77,78]. Activation in this cell system in

�itro requires the TGFβ LLC to be targeted to a cell surface,

where it is activated proteolytically by plasmin [77,78]. Both

mannose 6-phosphate (M6P; 100 µM) and antibodies directed

against the insulin-like growth factor 2 receptor (IGF2R)}M6P

receptor (M6PR) inhibit the activation of TGFβ in SMC}EC co-

cultures [79]. In these experiments, activation of TGFβ in

conditioned medium from the co-cultures was assayed by the

suppression of TGFβ-dependent migration and protease pro-

duction of bovine aortic endothelial cells [79]. As these responses

were not inhibited when exogenous active TGFβ was added with

M6P or anti-M6PR antibody to the SMC}EC co-cultures, it

appears that binding of latent TGFβ to the IGF2R}M6PR is

required for activation [79]. Furthermore, latent TGFβ com-

plexes purified from human platelets can also bind isolated

IGF2Rs}M6PRs [80]. In some human gastrointestinal tumours,

mutation of this receptor prevents LAP binding, giving rise to

reduced levels of active TGFβ1 [81]. These findings are consistent

with a model in which latent TGFβ is localized specifically to the

IGF2R}M6PR by binding M6P on LAP.

The oligosaccharide moieties at Asn)# and Asn"$' of LAP

contain M6P and sialic acid [82,83], and their enzymic removal

or the addition of free M6P or sialic acid generates active TGFβ

[84]. However, the M6PR is widely expressed at high levels, and

this mechanism would therefore appear to lack specificity as well

as possibly promoting the endocytosis of TGFβ.

Activation of the LLC may also involve targeting by LTBP1

through its RGD domain, the eight-amino-acid region identical

to the cell binding domain of laminin α2, or its heparin binding

domain [4,57]. The addition of excess free LTBP1, antibody

directed against native platelet LTBP1 or a peptide fragment of

LTBP1 to bovine SMC}EC co-cultures inhibits TGFβ activation

in a dose-dependent manner [78]. This suggests that LTBP1 plays
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a role in regulating the activation of TGFβ by concentrating the

latent complex at appropriate cell surface sites. There is also

evidence that LTBP1 targets the SLC to the ECM, and that

LTBP1 is present with TGFβ as an extracellular fibrillar structure

[85,86]. Subsequent proteolytic cleavage of LTBP1 by plasmin

releases the TGFβ complex [87].

In contrast with these suggestions, other studies using bovine

SMC}EC co-cultures indicate that anti-LTBP1 antibodies, M6P

(300 µM) or a synthetic RGDS peptide do not affect TGFβ

activation, but that an antibody directed against LAP blocks the

binding of "#&I-labelled LLCs to SMC and inhibits TGFβ1

activation [88]. Thus the domain of LAP involved in cell surface

targeting may not be related to M6P or the RGD sequence

[88,89], despite the evidence that such regions comprise the

cellular binding domains within LAP.

Another mechanism that appears to contribute to the locali-

zation of latent TGFβ is cross-linking of LTBP1 in the LLC to

the ECM. In �itro studies with human lung fibroblast and

fibrosarcoma cells have shown that the majority of secreted

LTBP1 associates rapidly and covalently with the ECM [90]. The

N-terminal amino acids of LTBP1 (residues 294–441) are cross-

linked by the action of transglutaminase [65,91]. The plasmin-

mediated activation of TGFβ by SMC}EC co-cultures or by

bovine aortic endothelial cells treated with retinoids is blocked

either by inhibitors of transglutaminase or by antibodies that

neutralize bovine endothelial cell type II transglutaminase [92].

Inhibition of transglutaminase activity reduces the generation of

active TGFβ, measured by the mink lung epithelial cell luciferase

assay [93], but the transglutaminase inactivators do not them-

selves interfere with the direct action of TGFβ, the release of

latent TGFβ from cells, or its activation by plasmin or by

transient acidification [92]. Furthermore, the expression of trans-

glutaminase increases in bovine aortic endothelial cells following

retinoid addition, in parallel with the activation of TGFβ,

consistent with the conclusion that type II transglutaminase is

required for cell surface activation of latent TGFβ by plasmin

[92].

A functional role for LTBP in regulating the local activity of

TGFβ has emerged from several studies using antibodies to

LTBP1. Foetal rat calvarial cells form mineralized bone-like

nodules in long-term cultures, a development that is inhibited

either by anti-LTBP1 antibodies or by antisense oligonucleotides

directed against LTBP1 [94]. This suggests that, in osteoblast-

like cells at least, modulation of the LTBP1 content of latent

TGFβ complexes may act to regulate their function. LTBP1 also

surrounds the endocardial cushion mesenchymal cells of the

mouse embryonic heart and, as anti-LTBP1 antiserum inhibits

the endothelial–mesenchymal transformation in atrio-ventricular

endocardial cells (an effect that is reversed by TGFβ), LTBP1

appears to act as a regulator of TGFβ availability during

embryonic development [95].

These observations suggest that LTBPs may play important

roles in the localization and consequent activation of TGFβ in

�itro. Furthermore, in �itro experiments suggest that plasmin is

required in the latent TGFβ activation model [15,41,87,96].

However, in �i�o studies have indicated that other growth factors

and proteins regulate the release of active TGFβ from latent

complexes. Deletion of the murine plasminogen gene by hom-

ologous recombination does not reproduce the phenotype of

TGFβ1 knock-out mice [97,98]. In �i�o experiments are therefore

consistent with either a minor or a redundant role for plasmin

in the activation of latent TGFβ1. The only LTBP-null mice

to have been generated, LTBP2−/−), die at the implantation

stage [99], a phenotype that differs markedly from that of

TGFβ1-null mice [98]. This indicates that LTBP2 has an uniden-

tified activity in early development that cannot be provided by

other members of the family. This function may or may not

involve TGFβ.

Recently, thrombospondin 1 (TSP1) was described as an

important activator of TGFβ1 under normal physiological

conditions [100]. The phenotypes of TGFβ1-null mice and TSP1-

null mice are similar in many organs. An increase in mitosis

occurs in the testes and the gastric epithelium of both strains of

null mice, which may be a consequence of loss of TGFβ1-

mediated inhibition of cell proliferation [100]. In the bronchiolar

arteries of both strains, the vessel wall is thickened and laden

with vascular smooth muscle cells (VSMC), suggesting an

important role for TGFβ1 in regulating the proliferation of

VSMC [100]. Furthermore, TGFβ1–3 immunostaining is mark-

edly reduced in the vessel wall of TSP1-null mice compared with

the vessel wall of wild-type mice [100]. These pathological changes

are correlated with the loss of TSP1 and the consequent decrease

in active TGFβ.

Treatment of TSP1-null mice with a peptide fragment derived

from TSP1 partially restored the normal phenotype, presumably

due to the fragment interacting with the latent complexes to

enable the generation of active TGFβ1 [100]. Moreover, treat-

ment of wild-type mice with a peptide fragment derived from

LAP1, which inhibits activation of TGFβ1 by TSP1 in �itro,

produced multiple organ pathologies similar to those observed in

TSP1- and TGFβ1-null mice [100]. These observations strongly

suggest that TSP1 is an important activator of TGFβ1 from

latent complexes in �i�o.

As summarized above, a number of LTBPs have been shown

to associate directly with the ECM, including LTBP1 secreted

from fibroblasts and fibrosarcoma cells [85,91], LTBP2 se-

creted from human fibroblast cells [9,101], and LTBP4 also

secreted from human fibroblast cells [56]. Furthermore, in adult

rat bone and cultured human fibroblasts, LTBP1 shows a fibrillar

staining pattern [85,94], which has prompted speculation that

LTBP may have a structural role in the ECM.

LATENT TGFβ COMPLEXES AND HUMAN ATHEROSCLEROSIS

Data relating to the function of TGFβ in the arterial wall are

variable and often contradictory. The data from some animal

studies suggest that TGFβ1 is pro-atherogenic [102–107]. In

contrast with these animal studies, the data from the TSP1-null

mice described above [100] suggest that reduced TGFβ1 activity

resulted in VSMC hyperplasia in the arterial wall. Grainger and

co-workers proposed a ‘protective cytokine hypothesis ’, in which

TGFβ1 is postulated to be an inhibitor of lesion development

and lesion progression [42,96,108,109]. There is evidence sug-

gesting that abnormal levels of TGFβ1 in serum and in the vessel

wall are associated with the development of atherosclerosis [42].

Furthemore, the protective properties of drugs such as tamoxifen

for the cardiovascular system of mice and monkeys [110–112]

and in breast cancer clinical trials [113] may be derived in part

from their capacity to increase the concentration of active TGFβ1

in the vessel wall. Control of TGFβ1 activity is therefore likely

to be important in regulating its effect on the arterial wall.

The studies of immunoreactive TGFβ1 and its receptors in

atherosclerotic plaques and in the vessel walls of animal models

described above have not addressed the question of whether the

immunoreactive TGFβ1 that is detected is active or whether it is

present in latent complexes. Activity of the cytokine was generally

inferred indirectly from the distribution of the TGFβ1 antigen

and its receptors. The assumption that TGFβ1 activity can be

inferred from co-localization of the TGFβ1 antigen and its
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receptors may well be misleading. However, in some studies the

presence of active TGFβ1 in arterial tissue was assayed by

immunostaining using the fluorescein isothiocyanate-labelled

truncated extracellular domain of the TGFβ type II receptor [41].

The role of TGFβ1 in human atherosclerosis will depend on (i)

whether the cytokine is active, and (ii) whether it activates the

TGFβ signalling pathways, neither of which can be inferred from

immunohistochemistry, since TGFβ is normally secreted in

inactive complexes covalently associated with the LTBPs. We

have shown that LTBP1 mRNA and protein are detected at all

of the sites in the neointima of coronary atherosclerotic plaques

where TGFβ1 is detected (R. Oklu$ and J. Metcalfe, unpublished

work).

Expression of human LTBP∆41 mRNA, as assayed by quan-

titative competitor reverse transcription–PCR, is increased in

diseased coronary arteries, although the splice variants

LTBP1∆53 and LTBP1∆55 show no association with athero-

sclerotic disease (R. O$ klu$ and J. Metcalfe, unpublished work).

The finding that a variant of LTBP1 (LTBP1∆41) is associated

with arterial disease raises the question of the function of this

isoform. There is currently no direct evidence concerning the

roles of LTBP1; however, as the deletion in LTBP∆41 removes

a consensus calcium binding site, LTBP1∆41 may be degraded

more rapidly than LTBP1. Alternatively, as the deletions in

LTBP1∆41 include an EGF-like domain, it is possible that

overexpression of LTBP1∆41 causes anomalous targeting of

TGFβ.

Defining the role of TGFβ in human atherosclerosis will be

considerably more challenging, given the limited opportunities

for experimental interventions. Indeed, it remains entirely poss-

ible that TGFβ1 mayhave opposing effects on lesion development

in the media and the neointima. Definitive experiments to resolve

this issue will be possible in transgenic mice in which TGFβ1

expression is regulated in a vascular-cell-specific manner. How-

ever, no definitive experiments for human atherosclerosis appear

feasible at present, and it is by no means certain that TGFβ1

activity is coupled to atherogenesis in the same way in mice and

humans.

LTBPs AND CANCER

Data relating to the anomalous expression of LTBPs in human

cancers are derived mainly from comparative immunoassays.

The general pattern appears to be one of reduced expression of

LTBPs in malignant tissue, with increased amounts being present

in the surrounding ECM. In colorectal adenomas (the presumed

precursors of most colorectal adenocarcinomas) and in normal

colonic mucosa, TGFβ1–LAP is expressed in both epithelial cells

and stromal cells. However, LTBP1 is expressed only in stromal

cells and in the ECM. There is no evident correlation between

TGFβ1–LAP expression and the grade of dysplasia, but LTBP1

expression in the ECM is closely associated with regions of

higher dysplasia [114]. In prostatic carcinoma there is immuno-

histochemical evidence that TGFβ1 is produced without asso-

ciated LTBP1 in malignant cells, although TGFβ1–LTBP1

complexes are present in cystectomized prostatic and benign

prostatic hyperplastic tissues [115]. In neuroendocrine tumours

of the digestive system (midgut carcinoid tumours and endocrine

pancreatic tumours), expression of all three TGFβ isoforms

occurs, but LTBP1 is expressed only weakly compared with the

pattern in surrounding stromal tissues, where there is high

expression of LTBP1 and TGFβ1 but low levels of TGFβ2 and

TGFβ3 [116]. In pancreatic neoplasms, expression of TGFβ1–

LAP has been detected in the cytoplasm of tumour cells, while

LTBP1 is found only in stromal cells and the surrounding ECM

[117]. These patterns are consistent with the possibility that

TGFβmight exert differential effects on tumour cells and adjacent

stromal cells in terms of the induction of ECM-modulating

enzymes and angiogenic factors. Human malignant ovarian

tumours show increased expression of all three TGFβ isoforms

compared with normal epithelial cells, whereas in the blood

vessels of such tumours TGFβ1 is increased and TGFβ2 is

decreased. However, LTBP1 immunoreactivity is generally

greater in normal epithelium with respect to that in tumour cells

[118]. In this latter study, patients with malignant tumours

having blood vessels in which TGFβ, the TGFβ type I receptor

or endoglin was expressed had a better prognosis than those with

vessels negative for these proteins. Taken together, these data

indicate the probable importance of the TGFβ system in modu-

lating ovarian tumorigenesis. LTBP1 is not expressed in normal

epithelial cells or in cancer cells in gastrointestinal tumours, but

is detectable in the stroma cells surrounding the tumour [119].

We know of no data relating to LTBP1 expression in breast

cancer.

Finally, levels of LTBP1 are also altered in other pathological

conditions, including solar elastosis, solar keratosis and pseudo-

xanthoma elasticum [120], pancreatitis [121], rheumatoid

arthritis [122], glomerulosclerosis [123–125], hypertension

[126,127], muscular dystrophy [128], carcinoid heart disease [129]

and tuberculous pleurisy [130]. However, the role of LTBP1 in

these diseases remains to be determined.

CONCLUSIONS

LTBPs are emerging as a substantial and complex group within

the extracellular microfibrillar protein family. LTBPs are secreted

covalently bound to an LAP in complexes with TGFβ, and

removal of LTBP is essential for the activation of TGFβ. LTBPs

thus normally act to sequester TGFβ during its assembly and

secretion, although TGFβ expression can occur in the absence of

LTBPs, most notably in some types of tumour cell. However,

there is evidence that LTBPs may play a more direct role in the

activation of TGFβ by directing secreted complexes to localized

cell surface or ECM sites through the action of RGD or heparin

binding domains. In addition to regulating TGFβ function,

LTBPs may also function as structural components of the ECM.

Of the four known members of the LTBP family, three (LTBP1,

LTBP3 and LTBP4) can be expressed in a variety of alternatively

spliced forms, the variable regions comprising conserved EGF-

like and Cys8 domains, putative N-glycosylation sites and a

consensus heparin binding sequence. The functional conse-

quences of the loss of one or more of these regions are unknown,

but analogy with fibrillin suggests that differing forms may

exhibit variations in location, protein–protein interactions and}
or proteolytic susceptibility.

The role of LTBPs in disease remains unclear, but the evidence

that the level of active TGFβ is critical in maintaining homoeo-

stasis in the vascular wall is consistent with the suggestion that

anomalous expression of LTBPs plays a role in arterial disease.

Evidence that one isoform (LTBP∆41) is expressed specifically in

human atherosclerotic tissues suggests that, as with the closely

related fibrillins, loss of critical domains in LTBP proteins may

promote the development of disease.

The limited data presently available for human cancers indicate

that levels of LTBP proteins tend to be reduced in malignant cells

by comparison with corresponding normal tissue. Whether this
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relates to the frequently observed increase in activity of TGFβ

isoforms in tumour tissue remains to be established.

R.O$ . is the recipient of a Koç scholarship from Ali Y. Koç, Koç Holding, Istanbul,
Turkey.
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