Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain.

Free full text 


Logo of biochemjLink to Publisher's site
Biochem J. 2003 Oct 1; 375(Pt 1): 1–16.
PMCID: PMC1223661
PMID: 12839490

Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis.

Abstract

AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain.

Full Text

The Full Text of this article is available as a PDF (265K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gale Edwin A M. The rise of childhood type 1 diabetes in the 20th century. Diabetes. 2002 Dec;51(12):3353–3361. [Abstract] [Google Scholar]
  • DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. [Abstract] [Google Scholar]
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001 Dec 13;414(6865):782–787. [Abstract] [Google Scholar]
  • King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998 Sep;21(9):1414–1431. [Abstract] [Google Scholar]
  • Astrup A, Finer N. Redefining type 2 diabetes: 'diabesity' or 'obesity dependent diabetes mellitus'? Obes Rev. 2000 Oct;1(2):57–59. [Abstract] [Google Scholar]
  • Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821–855. [Abstract] [Google Scholar]
  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem. 1996 Jan 12;271(2):611–614. [Abstract] [Google Scholar]
  • Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci. 1999 Jan;24(1):22–25. [Abstract] [Google Scholar]
  • Carling D, Woods A, Thornton C, Cheung PC, Smith FC, Ponticos M, Stein SC. Molecular characterization of the AMP-activated protein kinase and its role in cellular metabolism. Biochem Soc Trans. 1997 Nov;25(4):1224–1228. [Abstract] [Google Scholar]
  • Carlson M. Glucose repression in yeast. Curr Opin Microbiol. 1999 Apr;2(2):202–207. [Abstract] [Google Scholar]
  • Halford NG, Hardie DG. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol. 1998 Jul;37(5):735–748. [Abstract] [Google Scholar]
  • Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999 Jul;277(1 Pt 1):E1–10. [Abstract] [Google Scholar]
  • Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1362–1369. [Abstract] [Google Scholar]
  • Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem. 1973 Jan 10;248(1):378–380. [Abstract] [Google Scholar]
  • Yeh LA, Lee KH, Kim KH. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem. 1980 Mar 25;255(6):2308–2314. [Abstract] [Google Scholar]
  • Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987 Nov 2;223(2):217–222. [Abstract] [Google Scholar]
  • Beri RK, Marley AE, See CG, Sopwith WF, Aguan K, Carling D, Scott J, Carey F. Molecular cloning, expression and chromosomal localisation of human AMP-activated protein kinase. FEBS Lett. 1994 Dec 12;356(1):117–121. [Abstract] [Google Scholar]
  • Stapleton D, Gao G, Michell BJ, Widmer J, Mitchelhill K, Teh T, House CM, Witters LA, Kemp BE. Mammalian 5'-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J Biol Chem. 1994 Nov 25;269(47):29343–29346. [Abstract] [Google Scholar]
  • Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [Abstract] [Google Scholar]
  • Alderson A, Sabelli PA, Dickinson JR, Cole D, Richardson M, Kreis M, Shewry PR, Halford NG. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. [Europe PMC free article] [Abstract] [Google Scholar]
  • Smith FC, Davies SP, Wilson WA, Carling D, Hardie DG. The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett. 1999 Jun 18;453(1-2):219–223. [Abstract] [Google Scholar]
  • De Vit MJ, Waddle JA, Johnston M. Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell. 1997 Aug;8(8):1603–1618. [Europe PMC free article] [Abstract] [Google Scholar]
  • DeVit MJ, Johnston M. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol. 1999 Nov 4;9(21):1231–1241. [Abstract] [Google Scholar]
  • Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Geuskens M, Kroemer G. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene. 1997 Sep 25;15(13):1573–1581. [Abstract] [Google Scholar]
  • Halestrap Andrew P, McStay Gavin P, Clarke Samantha J. The permeability transition pore complex: another view. Biochimie. 2002 Feb-Mar;84(2-3):153–166. [Abstract] [Google Scholar]
  • Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol. 1999 Jan;276(1 Pt 1):E1–E18. [Abstract] [Google Scholar]
  • Hawley Simon A, Gadalla Anne E, Olsen Grith Skytte, Hardie D Grahame. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002 Aug;51(8):2420–2425. [Abstract] [Google Scholar]
  • Fryer Lee G D, Parbu-Patel Asha, Carling David. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002 Jul 12;277(28):25226–25232. [Abstract] [Google Scholar]
  • da Silva Xavier G, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A, Rutter GA. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023–4028. [Europe PMC free article] [Abstract] [Google Scholar]
  • da Silva Xavier Gabriela, Leclerc Isabelle, Varadi Aniko, Tsuboi Takashi, Moule S Kelly, Rutter Guy A. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J. 2003 May 1;371(Pt 3):761–774. [Europe PMC free article] [Abstract] [Google Scholar]
  • Salt IP, Johnson G, Ashcroft SJ, Hardie DG. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J. 1998 Nov 1;335(Pt 3):533–539. [Europe PMC free article] [Abstract] [Google Scholar]
  • Eto Kazuhiro, Yamashita Tokuyuki, Matsui Junji, Terauchi Yasuo, Noda Mitsuhiko, Kadowaki Takashi. Genetic manipulations of fatty acid metabolism in beta-cells are associated with dysregulated insulin secretion. Diabetes. 2002 Dec;51 (Suppl 3):S414–S420. [Abstract] [Google Scholar]
  • Zhang S, Kim KH. Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. J Endocrinol. 1995 Oct;147(1):33–41. [Abstract] [Google Scholar]
  • Minokoshi Y, Kahn BB. Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans. 2003 Feb;31(Pt 1):196–201. [Abstract] [Google Scholar]
  • Stapleton D, Woollatt E, Mitchelhill KI, Nicholl JK, Fernandez CS, Michell BJ, Witters LA, Power DA, Sutherland GR, Kemp BE. AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 1997 Jun 16;409(3):452–456. [Abstract] [Google Scholar]
  • Kemp BE, Stapleton D, Campbell DJ, Chen Z-P, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003 Feb;31(Pt 1):162–168. [Abstract] [Google Scholar]
  • Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J. 2000 Mar 15;346(Pt 3):659–669. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hardie DG, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. [Abstract] [Google Scholar]
  • Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferré P, Foufelle F, Carling D. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000 Sep;20(18):6704–6711. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chen Z, Heierhorst J, Mann RJ, Mitchelhill KI, Michell BJ, Witters LA, Lynch GS, Kemp BE, Stapleton D. Expression of the AMP-activated protein kinase beta1 and beta2 subunits in skeletal muscle. FEBS Lett. 1999 Oct 29;460(2):343–348. [Abstract] [Google Scholar]
  • Gao G, Fernandez CS, Stapleton D, Auster AS, Widmer J, Dyck JR, Kemp BE, Witters LA. Non-catalytic beta- and gamma-subunit isoforms of the 5'-AMP-activated protein kinase. J Biol Chem. 1996 Apr 12;271(15):8675–8681. [Abstract] [Google Scholar]
  • Warden SM, Richardson C, O'Donnell J, Jr, Stapleton D, Kemp BE, Witters LA. Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J. 2001 Mar 1;354(Pt 2):275–283. [Europe PMC free article] [Abstract] [Google Scholar]
  • Mitchelhill KI, Michell BJ, House CM, Stapleton D, Dyck J, Gamble J, Ullrich C, Witters LA, Kemp BE. Posttranslational modifications of the 5'-AMP-activated protein kinase beta1 subunit. J Biol Chem. 1997 Sep 26;272(39):24475–24479. [Abstract] [Google Scholar]
  • Hudson Emma R, Pan David A, James John, Lucocq John M, Hawley Simon A, Green Kevin A, Baba Otto, Terashima Tatsuo, Hardie D Grahame. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol. 2003 May 13;13(10):861–866. [Abstract] [Google Scholar]
  • Polekhina Galina, Gupta Abhilasha, Michell Belinda J, van Denderen Bryce, Murthy Sid, Feil Susanne C, Jennings Ian G, Campbell Duncan J, Witters Lee A, Parker Michael W, et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol. 2003 May 13;13(10):867–871. [Abstract] [Google Scholar]
  • Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci. 1997 Jan;22(1):12–13. [Abstract] [Google Scholar]
  • Daniel Tyrone, Carling David. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Biol Chem. 2002 Dec 27;277(52):51017–51024. [Abstract] [Google Scholar]
  • Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001 May 15;10(11):1215–1220. [Abstract] [Google Scholar]
  • Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science. 2000 May 19;288(5469):1248–1251. [Abstract] [Google Scholar]
  • Prochazka M, Farook VS, Ossowski V, Wolford JK, Bogardus C. Variant screening of PRKAB2, a type 2 diabetes mellitus susceptibility candidate gene on 1q in Pima Indians. Mol Cell Probes. 2002 Dec;16(6):421–427. [Abstract] [Google Scholar]
  • Hardie DG, Salt IP, Hawley SA, Davies SP. AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J. 1999 Mar 15;338(Pt 3):717–722. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996 Nov 1;271(44):27879–27887. [Abstract] [Google Scholar]
  • Wilkie DR. Muscular fatigue: effects of hydrogen ions and inorganic phosphate. Fed Proc. 1986 Dec;45(13):2921–2923. [Abstract] [Google Scholar]
  • Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. [Abstract] [Google Scholar]
  • DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dohm GL, Tapscott EB, Pories WJ, Dabbs DJ, Flickinger EG, Meelheim D, Fushiki T, Atkinson SM, Elton CW, Caro JF. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988 Aug;82(2):486–494. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [Abstract] [Google Scholar]
  • Ryder JW, Chibalin AV, Zierath JR. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol Scand. 2001 Mar;171(3):249–257. [Abstract] [Google Scholar]
  • Oatey PB, Van Weering DH, Dobson SP, Gould GW, Tavaré JM. GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochem J. 1997 Nov 1;327(Pt 3):637–642. [Europe PMC free article] [Abstract] [Google Scholar]
  • Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–261. [Abstract] [Google Scholar]
  • Mu J, Brozinick JT, Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001 May;7(5):1085–1094. [Abstract] [Google Scholar]
  • Moore MC, Cherrington AD. The nerves, the liver, and the route of feeding: an integrated response to nutrient delivery. Nutrition. 1996 Apr;12(4):282–284. [Abstract] [Google Scholar]
  • Burcelin Rémy, Crivelli Valerie, Perrin Christophe, Da Costa Anabela, Mu James, Kahn Barbara B, Birnbaum Morris J, Kahn C Ronald, Vollenweider Peter, Thorens Bernard. GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J Clin Invest. 2003 May;111(10):1555–1562. [Europe PMC free article] [Abstract] [Google Scholar]
  • Koretsky AP, Katz LA, Balaban RS. The mechanism of respiratory control in the in vivo heart. J Mol Cell Cardiol. 1989 Feb;21 (Suppl 1):59–66. [Abstract] [Google Scholar]
  • Hutber CA, Hardie DG, Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997 Feb;272(2 Pt 1):E262–E266. [Abstract] [Google Scholar]
  • Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997 May 16;272(20):13255–13261. [Abstract] [Google Scholar]
  • Winder WW. Intramuscular mechanisms regulating fatty acid oxidation during exercise. Adv Exp Med Biol. 1998;441:239–248. [Abstract] [Google Scholar]
  • Park Haejoe, Kaushik Virendar K, Constant Scarlet, Prentki Marc, Przybytkowski Ewa, Ruderman Neil B, Saha Asish K. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002 Sep 6;277(36):32571–32577. [Abstract] [Google Scholar]
  • Frederich Markus, Balschi James A. The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. J Biol Chem. 2002 Jan 18;277(3):1928–1932. [Abstract] [Google Scholar]
  • Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998 Aug;47(8):1369–1373. [Abstract] [Google Scholar]
  • Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol. 1997 Dec;273(6 Pt 1):E1107–E1112. [Abstract] [Google Scholar]
  • Bergeron R, Russell RR, 3rd, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999 May;276(5 Pt 1):E938–E944. [Abstract] [Google Scholar]
  • Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol. 1996;128:99–193. [Abstract] [Google Scholar]
  • Bergeron R, Russell RR, 3rd, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999 May;276(5 Pt 1):E938–E944. [Abstract] [Google Scholar]
  • Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999 Aug;48(8):1667–1671. [Abstract] [Google Scholar]
  • Barnes Kay, Ingram Jean C, Porras Omar H, Barros L Felipe, Hudson Emma R, Fryer Lee G D, Foufelle Fabienne, Carling David, Hardie D Grahame, Baldwin Stephen A. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci. 2002 Jun 1;115(Pt 11):2433–2442. [Abstract] [Google Scholar]
  • Danchin A, Buc H. Proton magnetic resonance studies on 5'- AMP site in glycogen phosphorylase b. FEBS Lett. 1972 May 15;22(3):289–293. [Abstract] [Google Scholar]
  • Thong Farah S L, Graham Terry E. The putative roles of adenosine in insulin- and exercise-mediated regulation of glucose transport and glycogen metabolism in skeletal muscle. Can J Appl Physiol. 2002 Apr;27(2):152–178. [Abstract] [Google Scholar]
  • Fryer Lee G D, Parbu-Patel Asha, Carling David. Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. FEBS Lett. 2002 Nov 6;531(2):189–192. [Abstract] [Google Scholar]
  • Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. [Abstract] [Google Scholar]
  • Chen Hubert C, Bandyopadhyay Gautam, Sajan Mini P, Kanoh Yoshinori, Standaert Mary, Farese Robert V, Jr, Farese Robert V. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem. 2002 Jun 28;277(26):23554–23562. [Abstract] [Google Scholar]
  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. J Physiol. 2000 Oct 1;528(Pt 1):221–226. [Abstract] [Google Scholar]
  • Barnes Brian R, Ryder Jeffrey W, Steiler Tatiana L, Fryer Lee G D, Carling David, Zierath Juleen R. Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction. Diabetes. 2002 Sep;51(9):2703–2708. [Abstract] [Google Scholar]
  • Beauloye C, Marsin AS, Bertrand L, Krause U, Hardie DG, Vanoverschelde JL, Hue L. Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett. 2001 Sep 21;505(3):348–352. [Abstract] [Google Scholar]
  • Marsin Anne-Sophie, Bouzin Caroline, Bertrand Luc, Hue Louis. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem. 2002 Aug 23;277(34):30778–30783. [Abstract] [Google Scholar]
  • Opie LH, Mansford KR, Owen P. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J. 1971 Sep;124(3):475–490. [Europe PMC free article] [Abstract] [Google Scholar]
  • Beauloye Christophe, Marsin Anne Sophie, Bertrand Luc, Vanoverschelde Jean Louis, Rider Mark H, Hue Louis. The stimulation of heart glycolysis by increased workload does not require AMP-activated protein kinase but a wortmannin-sensitive mechanism. FEBS Lett. 2002 Nov 6;531(2):324–328. [Abstract] [Google Scholar]
  • Neely JR, Denton RM, England PJ, Randle PJ. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972 Jun;128(1):147–159. [Europe PMC free article] [Abstract] [Google Scholar]
  • From AH, Petein MA, Michurski SP, Zimmer SD, Uğurbil K. 31P-NMR studies of respiratory regulation in the intact myocardium. FEBS Lett. 1986 Oct 6;206(2):257–261. [Abstract] [Google Scholar]
  • Viollet Benoit, Andreelli Fabrizio, Jørgensen Sebastian B, Perrin Christophe, Geloen Alain, Flamez Daisy, Mu James, Lenzner Claudia, Baud Olivier, Bennoun Myriam, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003 Jan;111(1):91–98. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. [Abstract] [Google Scholar]
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. [Abstract] [Google Scholar]
  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167–1174. [Europe PMC free article] [Abstract] [Google Scholar]
  • Minokoshi Yasuhiko, Kim Young-Bum, Peroni Odile D, Fryer Lee G D, Müller Corinna, Carling David, Kahn Barbara B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002 Jan 17;415(6869):339–343. [Abstract] [Google Scholar]
  • Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2327–2332. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000 Aug;106(4):473–481. [Europe PMC free article] [Abstract] [Google Scholar]
  • Steinberg Gregory R, Rush James W E, Dyck David J. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab. 2003 Mar;284(3):E648–E654. [Abstract] [Google Scholar]
  • Atkinson Laura L, Fischer Melanie A, Lopaschuk Gary D. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem. 2002 Aug 16;277(33):29424–29430. [Abstract] [Google Scholar]
  • Wojtaszewski Jørgen F P, Jørgensen Sebastian B, Hellsten Ylva, Hardie D Grahame, Richter Erik A. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 2002 Feb;51(2):284–292. [Abstract] [Google Scholar]
  • Halse Reza, Fryer Lee G D, McCormack James G, Carling David, Yeaman Stephen J. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes. 2003 Jan;52(1):9–15. [Abstract] [Google Scholar]
  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000 Jul;6(1):87–97. [Abstract] [Google Scholar]
  • Pagliassotti MJ, Cherrington AD. Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol. 1992;54:847–860. [Abstract] [Google Scholar]
  • Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996 Feb 29;334(9):574–579. [Abstract] [Google Scholar]
  • Wollen N, Bailey CJ. Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin. Biochem Pharmacol. 1988 Nov 15;37(22):4353–4358. [Abstract] [Google Scholar]
  • Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000 Jun 15;348(Pt 3):607–614. [Europe PMC free article] [Abstract] [Google Scholar]
  • Musi Nicolas, Hirshman Michael F, Nygren Jonas, Svanfeldt Monika, Bavenholm Peter, Rooyackers Olav, Zhou Gaochao, Williamson Joanne M, Ljunqvist Olle, Efendic Suad, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002 Jul;51(7):2074–2081. [Abstract] [Google Scholar]
  • Leclerc I, Kahn A, Doiron B. The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 1998 Jul 17;431(2):180–184. [Abstract] [Google Scholar]
  • Foretz M, Carling D, Guichard C, Ferré P, Foufelle F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem. 1998 Jun 12;273(24):14767–14771. [Abstract] [Google Scholar]
  • Hubert A, Husson A, Chédeville A, Lavoinne A. AMP-activated protein kinase counteracted the inhibitory effect of glucose on the phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes. FEBS Lett. 2000 Sep 22;481(3):209–212. [Abstract] [Google Scholar]
  • Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000 Jun;49(6):896–903. [Abstract] [Google Scholar]
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89(3):331–340. [Abstract] [Google Scholar]
  • Osborne TF. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem. 2000 Oct 20;275(42):32379–32382. [Abstract] [Google Scholar]
  • Leclerc I, Lenzner C, Gourdon L, Vaulont S, Kahn A, Viollet B. Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes. 2001 Jul;50(7):1515–1521. [Abstract] [Google Scholar]
  • Sladek FM, Zhong WM, Lai E, Darnell JE., Jr Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 1990 Dec;4(12B):2353–2365. [Abstract] [Google Scholar]
  • Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13209–13214. [Europe PMC free article] [Abstract] [Google Scholar]
  • Bartoov-Shifman Reut, Hertz Rachel, Wang Haiyan, Wollheim Claes B, Bar-Tana Jacob, Walker Michael D. Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. J Biol Chem. 2002 Jul 19;277(29):25914–25919. [Abstract] [Google Scholar]
  • Sladek FM, Dallas-Yang Q, Nepomuceno L. MODY1 mutation Q268X in hepatocyte nuclear factor 4alpha allows for dimerization in solution but causes abnormal subcellular localization. Diabetes. 1998 Jun;47(6):985–990. [Abstract] [Google Scholar]
  • Navas MA, Munoz-Elias EJ, Kim J, Shih D, Stoffel M. Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes. 1999 Jul;48(7):1459–1465. [Abstract] [Google Scholar]
  • Lausen J, Thomas H, Lemm I, Bulman M, Borgschulze M, Lingott A, Hattersley AT, Ryffel GU. Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res. 2000 Jan 15;28(2):430–437. [Europe PMC free article] [Abstract] [Google Scholar]
  • Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature. 1996 Dec 5;384(6608):458–460. [Abstract] [Google Scholar]
  • Hattersley AT. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet Med. 1998 Jan;15(1):15–24. [Abstract] [Google Scholar]
  • Hong Yu Holly, Varanasi Usha S, Yang Wenbo, Leff Todd. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem. 2003 Jul 25;278(30):27495–27501. [Abstract] [Google Scholar]
  • Arden Karen C, Biggs William H., 3rd Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch Biochem Biophys. 2002 Jul 15;403(2):292–298. [Abstract] [Google Scholar]
  • Barthel Andreas, Schmoll Dieter, Krüger Klaus-Dieter, Roth Richard A, Joost Hans-Georg. Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase. Endocrinology. 2002 Aug;143(8):3183–3186. [Abstract] [Google Scholar]
  • Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9116–9121. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kawaguchi Takumi, Osatomi Kiyoshi, Yamashita Hiromi, Kabashima Tsutomu, Uyeda Kosaku. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem. 2002 Feb 8;277(6):3829–3835. [Abstract] [Google Scholar]
  • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147–1156. [Abstract] [Google Scholar]
  • Willson TM, Lambert MH, Kliewer SA. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem. 2001;70:341–367. [Abstract] [Google Scholar]
  • Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999 Dec 23;402(6764):880–883. [Abstract] [Google Scholar]
  • Leff T. AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans. 2003 Feb;31(Pt 1):224–227. [Abstract] [Google Scholar]
  • Habinowski SA, Witters LA. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 2001 Sep 7;286(5):852–856. [Abstract] [Google Scholar]
  • Leclerc Isabelle, da Silva Xavier Gabriela, Rutter Guy A. AMP- and stress-activated protein kinases: key regulators of glucose-dependent gene transcription in mammalian cells? Prog Nucleic Acid Res Mol Biol. 2002;71:69–90. [Abstract] [Google Scholar]
  • Salt IP, Connell JM, Gould GW. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes. 2000 Oct;49(10):1649–1656. [Abstract] [Google Scholar]
  • Moule SK, Denton RM. The activation of p38 MAPK by the beta-adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS Lett. 1998 Nov 20;439(3):287–290. [Abstract] [Google Scholar]
  • Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995 Apr 15;229(2):558–565. [Abstract] [Google Scholar]
  • Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994 Oct 10;353(1):33–36. [Abstract] [Google Scholar]
  • Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [Abstract] [Google Scholar]
  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998 Dec 18;282(5397):2275–2279. [Abstract] [Google Scholar]
  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474–477. [Abstract] [Google Scholar]
  • Zwartkruis FJ, Bos JL. Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res. 1999 Nov 25;253(1):157–165. [Abstract] [Google Scholar]
  • Horman Sandrine, Browne Gareth, Krause Ulrike, Patel Jigna, Vertommen Didier, Bertrand Luc, Lavoinne Alain, Hue Louis, Proud Christopher, Rider Mark. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002 Aug 20;12(16):1419–1423. [Abstract] [Google Scholar]
  • Bolster Douglas R, Crozier Stephen J, Kimball Scot R, Jefferson Leonard S. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002 Jul 5;277(27):23977–23980. [Abstract] [Google Scholar]
  • Wang Wengong, Fan Jinshui, Yang Xiaoling, Fürer-Galban Stefanie, Lopez de Silanes Isabel, von Kobbe Cayetano, Guo Jia, Georas Steve N, Foufelle Fabienne, Hardie D Grahame, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol. 2002 May;22(10):3425–3436. [Europe PMC free article] [Abstract] [Google Scholar]
  • Schwenke WD, Soboll S, Seitz HJ, Sies H. Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo. Biochem J. 1981 Nov 15;200(2):405–408. [Europe PMC free article] [Abstract] [Google Scholar]
  • Detimary P, Jonas JC, Henquin JC. Possible links between glucose-induced changes in the energy state of pancreatic B cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. J Clin Invest. 1995 Oct;96(4):1738–1745. [Europe PMC free article] [Abstract] [Google Scholar]
  • Detimary P, Gilon P, Henquin JC. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J. 1998 Jul 15;333(Pt 2):269–274. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem. 1999 May 7;274(19):13281–13291. [Abstract] [Google Scholar]
  • Aguilar-Bryan L, Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev. 1999 Apr;20(2):101–135. [Abstract] [Google Scholar]
  • Safayhi H, Haase H, Kramer U, Bihlmayer A, Roenfeldt M, Ammon HP, Froschmayr M, Cassidy TN, Morano I, Ahlijanian MK, et al. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol. 1997 May;11(5):619–629. [Abstract] [Google Scholar]
  • Rutter GA. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol Aspects Med. 2001 Dec;22(6):247–284. [Abstract] [Google Scholar]
  • Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990 Mar;13(3):198–208. [Abstract] [Google Scholar]
  • Schuit FC. Is GLUT2 required for glucose sensing? Diabetologia. 1997 Jan;40(1):104–111. [Abstract] [Google Scholar]
  • Matschinsky FM, Ghosh AK, Meglasson MD, Prentki M, June V, von Allman D. Metabolic concomitants in pure, pancreatic beta cells during glucose-stimulated insulin secretion. J Biol Chem. 1986 Oct 25;261(30):14057–14061. [Abstract] [Google Scholar]
  • Iynedjian PB. Mammalian glucokinase and its gene. Biochem J. 1993 Jul 1;293(Pt 1):1–13. [Europe PMC free article] [Abstract] [Google Scholar]
  • Matschinsky FM, Meglasson M, Ghosh A, Appel M, Bedoya F, Prentki M, Corkey B, Shimizu T, Berner D, Najafi H, et al. Biochemical design features of the pancreatic islet cell glucose-sensory system. Adv Exp Med Biol. 1986;211:459–469. [Abstract] [Google Scholar]
  • Pralong WF, Bartley C, Wollheim CB. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 1990 Jan;9(1):53–60. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hutton JC, Sener A, Herchuelz A, Atwater I, Kawazu S, Boschero AC, Somers G, Devis G, Malaisse WJ. Similarities in the stimulus-secretion coupling mechanisms of glucose- and 2-keto acid-induced insulin release. Endocrinology. 1980 Jan;106(1):203–219. [Abstract] [Google Scholar]
  • Welsh M, Hellerström C, Andersson A. Respiration and insulin release in mouse pancreatic islets. Effects of L-leucine and 2-ketoisocaproate in combination with D-glucose and L-glutamine. Biochim Biophys Acta. 1982 Oct 11;721(2):178–184. [Abstract] [Google Scholar]
  • Aspinwall CA, Lakey JR, Kennedy RT. Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem. 1999 Mar 5;274(10):6360–6365. [Abstract] [Google Scholar]
  • Panten U, Christians J, von Kriegstein E, Poser W, Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets. Diabetologia. 1973 Dec;9(6):477–482. [Abstract] [Google Scholar]
  • Ainscow EK, Zhao C, Rutter GA. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes. 2000 Jul;49(7):1149–1155. [Abstract] [Google Scholar]
  • Patterson GH, Knobel SM, Arkhammar P, Thastrup O, Piston DW. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5203–5207. [Europe PMC free article] [Abstract] [Google Scholar]
  • Malaisse WJ, Conget I, Sener A, Rorsman P. Insulinotropic action of AICA riboside. II. Secretory, metabolic and cationic aspects. Diabetes Res. 1994;25(1):25–37. [Abstract] [Google Scholar]
  • Akkan AG, Malaisse WJ. Insulinotropic action of AICA riboside. I. Insulin release by isolated islets and the perfused pancreas. Diabetes Res. 1994;25(1):13–23. [Abstract] [Google Scholar]
  • Habinowski SA, Hirshman M, Sakamoto K, Kemp BE, Gould SJ, Goodyear LJ, Witters LA. Malonyl-CoA decarboxylase is not a substrate of AMP-activated protein kinase in rat fast-twitch skeletal muscle or an islet cell line. Arch Biochem Biophys. 2001 Dec 1;396(1):71–79. [Abstract] [Google Scholar]
  • Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes. 2000 Mar;49(3):424–430. [Abstract] [Google Scholar]
  • Corkey BE, Deeney JT, Yaney GC, Tornheim K, Prentki M. The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr. 2000 Feb;130(2S):299S–304S. [Abstract] [Google Scholar]
  • Deeney JT, Gromada J, Høy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem. 2000 Mar 31;275(13):9363–9368. [Abstract] [Google Scholar]
  • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000 Nov;49(11):1751–1760. [Abstract] [Google Scholar]
  • Woods A, Salt I, Scott J, Hardie DG, Carling D. The alpha1 and alpha2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 1996 Nov 18;397(2-3):347–351. [Abstract] [Google Scholar]
  • Varadi Aniko, Ainscow Edward K, Allan Victoria J, Rutter Guy A. Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci. 2002 Nov 1;115(Pt 21):4177–4189. [Abstract] [Google Scholar]
  • Li G, Rungger-Brändle E, Just I, Jonas JC, Aktories K, Wollheim CB. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell. 1994 Nov;5(11):1199–1213. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nelson TY, Boyd AE., 3rd Gelsolin, a Ca2+-dependent actin-binding protein in a hamster insulin-secreting cell line. J Clin Invest. 1985 Mar;75(3):1015–1022. [Europe PMC free article] [Abstract] [Google Scholar]
  • Inagaki N, Gonoi T, Clement JP, 4th, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. [Abstract] [Google Scholar]
  • Nishida Motohiko, MacKinnon Roderick. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell. 2002 Dec 27;111(7):957–965. [Abstract] [Google Scholar]
  • Piao H, Cui N, Xu H, Mao J, Rojas A, Wang R, Abdulkadir L, Li L, Wu J, Jiang C. Requirement of multiple protein domains and residues for gating K(ATP) channels by intracellular pH. J Biol Chem. 2001 Sep 28;276(39):36673–36680. [Abstract] [Google Scholar]
  • Bryan J, Aguilar-Bryan L. The ABCs of ATP-sensitive potassium channels: more pieces of the puzzle. Curr Opin Cell Biol. 1997 Aug;9(4):553–559. [Abstract] [Google Scholar]
  • Gribble FM, Reimann F. Pharmacological modulation of K(ATP) channels. Biochem Soc Trans. 2002 Apr;30(2):333–339. [Abstract] [Google Scholar]
  • Ligon B, Boyd AE, 3rd, Dunlap K. Class A calcium channel variants in pancreatic islets and their role in insulin secretion. J Biol Chem. 1998 May 29;273(22):13905–13911. [Abstract] [Google Scholar]
  • Abernethy Darrell R, Soldatov Nikolai M. Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. J Pharmacol Exp Ther. 2002 Mar;300(3):724–728. [Abstract] [Google Scholar]
  • Peterson BZ, DeMaria CD, Adelman JP, Yue DT. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 1999 Mar;22(3):549–558. [Abstract] [Google Scholar]
  • Klumpp Susanne, Krieglstein Josef. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem. 2002 Feb;269(4):1067–1071. [Abstract] [Google Scholar]
  • Meisse Delphine, Van de Casteele Mark, Beauloye Christophe, Hainault Isabelle, Kefas Benjamin A, Rider Mark H, Foufelle Fabienne, Hue Louis. Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002 Aug 28;526(1-3):38–42. [Abstract] [Google Scholar]
  • Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Van de Casteele M. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003 Apr;30(2):151–161. [Abstract] [Google Scholar]
  • Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Van de Casteele M. AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia. 2003 Feb;46(2):250–254. [Abstract] [Google Scholar]
  • Culmsee C, Monnig J, Kemp BE, Mattson MP. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci. 2001 Aug;17(1):45–58. [Abstract] [Google Scholar]
  • Blázquez C, Geelen MJ, Velasco G, Guzmán M. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001 Feb 2;489(2-3):149–153. [Abstract] [Google Scholar]
  • Kato Kazuyoshi, Ogura Tsutomu, Kishimoto Atsuhiro, Minegishi Yuji, Nakajima Nobuyuki, Miyazaki Masaru, Esumi Hiroyasu. Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 2002 Sep 5;21(39):6082–6090. [Abstract] [Google Scholar]
  • Hue L, Beauloye C, Bertrand L, Horman S, Krause U, Marsin A-S, Meisse D, Vertommen D, Rider MH. New targets of AMP-activated protein kinase. Biochem Soc Trans. 2003 Feb;31(Pt 1):213–215. [Abstract] [Google Scholar]
  • Iglesias Miguel A, Ye Ji-Ming, Frangioudakis Georgia, Saha Asish K, Tomas Eva, Ruderman Neil B, Cooney Gregory J, Kraegen Edward W. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes. 2002 Oct;51(10):2886–2894. [Abstract] [Google Scholar]
  • Wu MS, Johnston P, Sheu WH, Hollenbeck CB, Jeng CY, Goldfine ID, Chen YD, Reaven GM. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care. 1990 Jan;13(1):1–8. [Abstract] [Google Scholar]
  • Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995 Aug 31;333(9):550–554. [Abstract] [Google Scholar]
  • Kulkarni RN, Wang ZL, Wang RM, Hurley JD, Smith DM, Ghatei MA, Withers DJ, Gardiner JV, Bailey CJ, Bloom SR. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest. 1997 Dec 1;100(11):2729–2736. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes. 1997 Jun;46(6):1087–1093. [Europe PMC free article] [Abstract] [Google Scholar]
  • Seufert J, Kieffer TJ, Habener JF. Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):674–679. [Europe PMC free article] [Abstract] [Google Scholar]
  • Harvey J, McKay NG, Walker KS, Van der Kaay J, Downes CP, Ashford ML. Essential role of phosphoinositide 3-kinase in leptin-induced K(ATP) channel activation in the rat CRI-G1 insulinoma cell line. J Biol Chem. 2000 Feb 18;275(7):4660–4669. [Abstract] [Google Scholar]
  • Gregorio F, Filipponi P, Ambrosi F, Cristallini S, Marchetti P, Calafiore R, Navalesi R, Brunetti P. Metformin potentiates B-cell response to high glucose: an in vitro study on isolated perfused pancreas from normal rats. Diabete Metab. 1989 May-Jun;15(3):111–117. [Abstract] [Google Scholar]
  • Lupi R, Marchetti P, Giannarelli R, Coppelli A, Tellini C, Del Guerra S, Lorenzetti M, Carmellini M, Mosca F, Navalesi R. Effects of glibenclamide and metformin (alone or in combination) on insulin release from isolated human pancreatic islets. Acta Diabetol. 1997 Mar;34(1):46–48. [Abstract] [Google Scholar]
  • Giannaccini G, Lupi R, Trincavelli ML, Navalesi R, Betti L, Marchetti P, Lucacchini A, Del Guerra S, Martini C. Characterization of sulfonylurea receptors in isolated human pancreatic islets. J Cell Biochem. 1998 Nov 1;71(2):182–188. [Abstract] [Google Scholar]
  • Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998 Dec;21(12):2191–2192. [Abstract] [Google Scholar]
  • Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001 Feb;50 (Suppl 1):S118–S121. [Abstract] [Google Scholar]
  • McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia. 1999 Feb;42(2):128–138. [Abstract] [Google Scholar]
  • Prentki M, Corkey BE. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. [Abstract] [Google Scholar]
  • Andreolas Chrysovalantis, da Silva Xavier Gabriela, Diraison Frederique, Zhao Chao, Varadi Aniko, Lopez-Casillas Fernando, Ferré Pascal, Foufelle Fabienne, Rutter Guy A. Stimulation of acetyl-CoA carboxylase gene expression by glucose requires insulin release and sterol regulatory element binding protein 1c in pancreatic MIN6 beta-cells. Diabetes. 2002 Aug;51(8):2536–2545. [Abstract] [Google Scholar]
  • Wang Haiyan, Maechler Pierre, Antinozzi Peter A, Herrero Laura, Hagenfeldt-Johansson Kerstin A, Bjorklund Anneli, Wollheim Claes B. The transcription factor SREBP-1c is instrumental in the development of beta-cell dysfunction. J Biol Chem. 2003 May 9;278(19):16622–16629. [Abstract] [Google Scholar]
  • Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor: similarities to and differences from pancreatic beta-cell mechanisms. Diabetes. 1999 Sep;48(9):1763–1772. [Abstract] [Google Scholar]
  • Levin BE, Dunn-Meynell AA, Routh VH. Brain glucose sensing and body energy homeostasis: role in obesity and diabetes. Am J Physiol. 1999 May;276(5 Pt 2):R1223–R1231. [Abstract] [Google Scholar]
  • Levin Barry E. Metabolic sensors: viewing glucosensing neurons from a broader perspective. Physiol Behav. 2002 Jul;76(3):397–401. [Abstract] [Google Scholar]
  • Jetton TL, Liang Y, Pettepher CC, Zimmerman EC, Cox FG, Horvath K, Matschinsky FM, Magnuson MA. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994 Feb 4;269(5):3641–3654. [Abstract] [Google Scholar]
  • Navarro M, Rodriquez de Fonseca F, Alvarez E, Chowen JA, Zueco JA, Gomez R, Eng J, Blázquez E. Colocalization of glucagon-like peptide-1 (GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as an inhibitory signal for food and water intake. J Neurochem. 1996 Nov;67(5):1982–1991. [Abstract] [Google Scholar]
  • Dunn-Meynell Ambrose A, Routh Vanessa H, Kang Ling, Gaspers Larry, Levin Barry E. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes. 2002 Jul;51(7):2056–2065. [Abstract] [Google Scholar]
  • Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci. 2001 May;4(5):507–512. [Abstract] [Google Scholar]
  • Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001 Jan;50(1):1–11. [Abstract] [Google Scholar]
  • Ainscow Edward K, Mirshamsi Shirin, Tang Teresa, Ashford Michael L J, Rutter Guy A. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol. 2002 Oct 15;544(Pt 2):429–445. [Abstract] [Google Scholar]
  • Burdakov Denis, Ashcroft Frances M. Shedding new light on brain metabolism and glial function. J Physiol. 2002 Oct 15;544(Pt 2):334–334. [Abstract] [Google Scholar]
  • Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000 Mar 24;275(12):9047–9054. [Abstract] [Google Scholar]
  • Hirosumi Jiro, Tuncman Gürol, Chang Lufen, Görgün Cem Z, Uysal K Teoman, Maeda Kazuhisa, Karin Michael, Hotamisligil Gökhan S. A central role for JNK in obesity and insulin resistance. Nature. 2002 Nov 21;420(6913):333–336. [Abstract] [Google Scholar]
  • De Fea K, Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem. 1997 Dec 12;272(50):31400–31406. [Abstract] [Google Scholar]
  • da Silva Xavier G, Varadi A, Ainscow EK, Rutter GA. Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase. J Biol Chem. 2000 Nov 17;275(46):36269–36277. [Abstract] [Google Scholar]
  • Leibiger IB, Leibiger B, Moede T, Berggren PO. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell. 1998 May;1(6):933–938. [Abstract] [Google Scholar]
  • Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE. 5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem. 2001 Dec 14;276(50):46912–46916. [Abstract] [Google Scholar]
  • Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dennis PB, Pullen N, Kozma SC, Thomas G. The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol. 1996 Nov;16(11):6242–6251. [Europe PMC free article] [Abstract] [Google Scholar]
  • Scherer PE, Bickel PE, Kotler M, Lodish HF. Cloning of cell-specific secreted and surface proteins by subtractive antibody screening. Nat Biotechnol. 1998 Jun;16(6):581–586. [Abstract] [Google Scholar]
  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999 Apr 2;257(1):79–83. [Abstract] [Google Scholar]
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002 Nov;8(11):1288–1295. [Abstract] [Google Scholar]
  • Tomas Eva, Tsao Tsu-Shuen, Saha Asish K, Murrey Heather E, Zhang Cc Cheng cheng, Itani Samar I, Lodish Harvey F, Ruderman Neil B. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16309–16313. [Europe PMC free article] [Abstract] [Google Scholar]
  • Buhl Esben S, Jessen Niels, Pold Rasmus, Ledet Thomas, Flyvbjerg Allan, Pedersen Steen B, Pedersen Oluf, Schmitz Ole, Lund Sten. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes. 2002 Jul;51(7):2199–2206. [Abstract] [Google Scholar]
  • Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999 Jun 2;281(21):2005–2012. [Abstract] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/19643169
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/19643169

Article citations


Go to all (210) article citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Funding 


Funders who supported this work.

Diabetes UK (1)