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1 Introduction

This report studies data created by Mary Lewinski and others in and associated
with the laboratory of Frederic Bushman at the University of Pennsylvania.

The aim of this report is to assess the tendency of different integration com-
plexes — in this case retroviral vectors composed of HIV, MLV, or elements of
both — to select particular genomic loci as favored integration targets. Previ-
ously, it has been shown that HIV and MLV favor different sites for integration.
It is of particular interest to characterize the degree to which different integra-
tion complexes favor the same or different sites.

With a very large number of integration events (of the order of 10 per base
by complex or 150,000,000,000 for this study), this could be done directly by
counting the number of events at each genomic locus for each integration com-
plex, then comparing the counts. Integration complexes that tend to share high
counts at some loci and share low counts at other loci presumably share features
that govern integration targetting. On the other hand, integration complexes
whose counts do not correlate in this fashion presumably do not share features
relevant to integration targetting.
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Practically, it is not now possible to collect such large samples of integration
events, so another strategy is needed. A number of genomic features (e.g. local
GC percentage, exons, actively transcribing genes ) have been identified that
correlate with integration of HIV and/or MLV. By applying a machine learning
algorithm to a sample of integration events, a function can be created that maps
the local genomic features to a vector of probabilities of integration of different
types.

The overall strategy used here is to characterize the integration intensity for
different integration complexes at particular genomic positions according to a
collection of features associated with each position. This will be done by using
a supervised machine learning algorithm to form a classification rule. Once this
rule is in hand it is of interest to see which complexes are easily distinguished
based on their genomic features — and therefore have profiles of genetic features
that are distinct — and which are not easily distinguished.

2 Data Used

The number of integration sites used for each integration complex used summa-
rized here:

count
HIVmIN 350
HIVPuro 524
HIVmGAGmIN 526
HIVmGAG 493
MLVPuro 543
matchedControl 2436

The ’matchedControl’ sites are randomly sampled in silico from the genome
(according to Chromosome, Position on the chromosome, and Strand), but at
a similar distance from the restriction site used in these experiments as one of
the actual insertion sites. A second set of randomly sampled sites is later used
to compare the predicted targets of the different integration complexes.

The features used are are as follows:

In Gene The position is or is not in a gene according to each of these annota-
tion schemes: Acembly, RefSeq, UniGene, and GenScan. (4 features)

In Exon The position is or is not in an exon according to each of these anno-
tation schemes: Acembly, RefSeq, UniGene, and GenScan. (4 features)

Gene Density The density of genes according to each of the annotation schemes
and within windows with widths of±50,000 bases, ±100,000 bases, ±250,000
bases, ±500,000 bases, and ±1,000,000 bases. Each density is the number
of genes counted divided by the number of bases.(20 features)
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Density of Expressed Genes Using the genes on the Affymetrix Hu-133a
GeneChip, the number of such genes, the numbers whose ’average differ-
ence score’ were characterized as at least ’low’ (above the median), at least
’medium’ (above the 75th percentile), and at least ’high’(above teh 87.5th

percentile) were counted in windows of widths ±12,500 bases, ±25,000
bases,±50,000 bases,±125,000 bases,±250,000 bases,±500,000 bases,±1,000,000
bases,±2,000,000 bases,±4,000,000 bases,±8,000,000 bases and±16,000,000
bases.(44 features)

GC percentage In running windows of width 5120 bases. Derived from the
file gc5Base.txt.gz from the GoldenPath website
(http://hgdownload.cse.ucsc.edu/goldenPath/hg17/database/). (1
feature)

In CpG Island In or not in a CpG island according to the cpgIsland.txt.gz
from the GoldePath website. (1 feature)

CpG Island Neighborhoods Whether site is within ±500, ±2,500, ±5,000,
±12,500, or ±25,000 bases of a CpG island. (5 features)

CpG Island Density The density of CpG islands in windows of widths±12,500,±25,000,
±50,000, ±125,000, , ±250,000, ±500,000, ±1,000,000, ±2,000,000, ±4,000,000,
±8,000,000, and ±16,000,000 bases. Each density is the number of island
counted divided by the number of bases. (11 features)

DNAse I Site Density The number of DNAse I sites in windows of widths
±500, ±1000, and ±5000 bases. Each density is the number of sites
counted divided by the number of bases. (3 features)

Juxtaposition of Transcription Start/Stop Sites Various measures are used:
The width of the gene if the insertion site is in one or else the width of the
intergeneic region, the fraction of that distance from/to the nearest gene
boundary, the absolute distance to the nearest transcription start site,
and the signed distance to the nearset start site (negative values preceed
start sites). These are calculated for each of these annotation schemes:
Acembly, RefSeq, UniGene, and GenScan. (16 features)

3 Training the Predictive Algorithm

The algorithm used in this report is the randomForest algorithm of Breiman
[Breiman, 2001]. It was chosen for its proven ability to perform classification
(including estimation of posterior probabilities) on data sets with modest num-
bers of observations but with many variables. In addition, accurate estimates
of classification error and measures of the marginal importance of classifying
variables are obtained as a by-product of the bagging algorithm used by the
procedure.

Roughly speaking the algorithm grows a collection of binary trees — split-
ting the data recursively to create branches in which the one or a few classes
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dominate. The use of resampling procedures for selecting the objects to be
classified and the predictor variables for which candidate splits are allowed gen-
erates a collection of trees. These sampling procedures counter the tendency to
overfit the training data and are responsible for the excellent performance of the
randomForest algorithm. Each tree in the collection will produce a predicted
class for a vector of predictor variables, and the ’votes’ of the collection of trees
is used to assign the ultimate prediction.

The implementation used is that of Liaw and Wiener [Liaw and Wiener, 2002]
(’randomForest’ version 4.5-12 — an R package [R Development Core Team, 2005])
and is based on the Fortran code of Leo Breiman and Adele Cutler.

The default values for options in the randomForest function that govern the
approach to training the classifier were used with the exception of the cutoff
values which were proportional to one for the integration complexes and to 5 for
the match cotrol sequences. These values were chosen for the cutoff vector to
balance the approximately fivefold larger number of matched control sequences.
In subsequent runs, the number of variables screened for each candidate split
was varied to half and twice the default number; there was little effect on the
classification results and those results are not reported here.

4 Results

4.1 Classification of the Training Data

The classifications made on the training dataset are summarized in the following
table:

HIVmIN HIVPuro HIVmGAGmIN HIVmGAG MLVPuro matchedControl
HIVmIN 52 48 58 43 96 53
HIVPuro 11 246 39 150 48 30
HIVmGAGmIN 25 61 149 81 161 49
HIVmGAG 10 110 44 223 51 55
MLVPuro 24 70 130 62 223 34
matchedControl 34 104 249 295 203 1551

As is evident from inspection of the table, matched control sites are usu-
ally not mistaken as bona fide integration sites ( 1551 of 2436 were correctly
classified). Close inspection also shows that several rows have roughly similar
patterns of counts. HIVMGAGmIN and MLVPuro are similar as are HIVPuro
and HIVmGAG. This is more easily seen by displaying the table as a color map
and clustering the rows and columns. This was performed by percentaging each
row in the table above and applying the R heatmap function. (The clustering
uses Euclidean distance between the resulting rows of percents and the ’com-
plete’ clustering method). The text in each cell shows the actual row percentage
obtained from the table above. The color map is arranged so that green corre-
sponds to values less than 16.7%, red to values more than 16.7%, and black to
≈ 16.7%. The results appear in the following graph:
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The merges that form clusters are the same for both the rows and the
columns. As one might expect the MLVPuro - HIVmGAGmIN pair merge
and joined with HIVmIN, the HIVmGAGmIN - HIVmIN pair merge, and the
matched controls are last to merge.

Assessing Variable Importance The marginal importance of a variable can
be judged by randomly permuting its values among those available for splitting
a tree at a given point and computing the decrease in accuracy (i.e. the fraction
correctly classified). When many variables are available as candidate predictors,
it often happens that there is redundancy among them and that omitting one
will not adversely affect the classifacation accuracy. The difference in accuracy
between a classification based on just one variable and that based on its per-
mutation is shown in the first column of the table below. The values in the
second column reflect the decrease in accuracy for each variable when included
in the full collection of variables The summary measure is the mean decrease
in accuracy averaged over all 6 classes. Each class receives equal weight in this
computation even though sample sizes may vary.

Sole Predictor Variable One of Many
acembly.genes 0.000 0.002
acembly.exon 0.000 0.001
refGene.genes 0.000 0.006
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refGene.exon 0.001 0.000
genScan.genes 0.000 0.000
genScan.exon 0.000 0.000
uniGene.genes 0.000 0.002
uniGene.exon 0.000 0.000
ace.100k 0.042 0.013
ace.200k 0.056 0.015
ace.500k 0.068 0.018
ace.1M 0.073 0.011
ace.2M 0.076 0.009
ref.100k 0.019 0.002
ref.200k 0.020 0.002
ref.500k 0.039 0.005
ref.1M 0.045 0.003
ref.2M 0.053 0.004
uni.100k 0.026 0.008
uni.200k 0.038 0.011
uni.500k 0.043 0.012
uni.1M 0.053 0.009
uni.2M 0.068 0.007
gen.100k 0.004 0.000
gen.200k 0.011 0.001
gen.500k 0.013 0.001
gen.1M 0.022 0.002
gen.2M 0.034 0.002
onco.100k 0.000 0.000
onco.200k 0.001 0.000
onco.500k 0.005 0.000
onco.1M 0.002 0.000
onco.2M 0.008 0.000
onco.4M 0.020 0.000
plus.oncogenes 0.001 0.000
minus.oncogenes 0.000 0.000
dens.25k 0.019 0.001
low.ex.25k 0.026 0.000
med.ex.25k 0.019 0.000
high.ex.25k 0.012 0.000
dens.50k 0.029 0.001
low.ex.50k 0.034 0.001
med.ex.50k 0.026 0.000
high.ex.50k 0.021 0.000
dens.100k 0.039 0.001
low.ex.100k 0.042 0.004
med.ex.100k 0.029 0.001
high.ex.100k 0.022 0.000
dens.250k 0.064 0.003
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low.ex.250k 0.065 0.007
med.ex.250k 0.046 0.002
high.ex.250k 0.021 0.001
dens.500k 0.075 0.004
low.ex.500k 0.079 0.009
med.ex.500k 0.060 0.005
high.ex.500k 0.034 0.002
dens.1M 0.087 0.003
low.ex.1M 0.086 0.006
med.ex.1M 0.080 0.003
high.ex.1M 0.053 0.001
dens.2M 0.091 0.005
low.ex.2M 0.087 0.005
med.ex.2M 0.081 0.004
high.ex.2M 0.066 0.003
dens.4M 0.081 0.003
low.ex.4M 0.083 0.004
med.ex.4M 0.086 0.004
high.ex.4M 0.071 0.003
dens.8M 0.069 0.003
low.ex.8M 0.071 0.003
med.ex.8M 0.081 0.003
high.ex.8M 0.075 0.003
dens.16M 0.080 0.002
low.ex.16M 0.072 0.002
med.ex.16M 0.076 0.003
high.ex.16M 0.081 0.002
dens.32M 0.061 0.002
low.ex.32M 0.065 0.002
med.ex.32M 0.081 0.001
high.ex.32M 0.072 0.002
gcpct 0.035 0.009
is.cpg 0.003 0.000
cpg.1k 0.031 0.001
cpg.5k 0.038 0.001
cpg.10k 0.001 0.001
cpg.25k 0.000 0.000
cpg.50k 0.000 0.001
cpg.dens.25k 0.002 0.001
cpg.dens.50k 0.004 0.001
cpg.dens.100k 0.003 0.002
cpg.dens.250k 0.005 0.003
cpg.dens.500k 0.010 0.002
cpg.dens.1M 0.006 0.002
cpg.dens.2M 0.021 0.001
cpg.dens.4M 0.022 0.001
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cpg.dens.8M 0.026 0.001
cpg.dens.16M 0.021 0.001
cpg.dens.32M 0.023 0.001
dnaseI.1k 0.010 0.000
dnaseI.2k 0.020 0.000
dnaseI.10k 0.032 0.001
dnaseI.25k 0.037 0.002
dnaseI.50k 0.039 0.004
dnaseI.100k 0.047 0.008
dnaseI.1M 0.063 0.008
dnaseI.5M 0.063 0.005
dnaseI.20M 0.034 0.002
boundary.dx.ace 0.003 0.001
start.dx.ace 0.009 0.001
signed.dx.ace 0.039 0.008
general.wd.ace 0.026 0.003
boundary.dx.ref 0.007 0.001
start.dx.ref 0.013 0.001
signed.dx.ref 0.057 0.012
general.wd.ref 0.079 0.011
boundary.dx.gens 0.000 0.000
start.dx.gens 0.003 0.001
signed.dx.gens 0.010 0.001
general.wd.gens 0.037 0.001
boundary.dx.uni 0.005 0.000
start.dx.uni 0.009 0.001
signed.dx.uni 0.042 0.008
general.wd.uni 0.065 0.006

See appendix A for explanation of variable names

As can be seen many of the variables that have values of 0.05 or larger when
considered as a sole predictor variable usually have values of less than 0.01 when
considered along with the other predictor variables. No doubt this is due to the
considerable redundancy between the variables in this collection.

The values in the table below reflect the decreases in accuracy for each class
(i.e. the fraction correctly classified in each class) for selected members of a the
full collection of variables. Each selected variable is among the top 5 for at least
one of the classes of integration complex or matched control)

HIVmIN HIVPuro HIVmGAGmIN HIVmGAG MLVPuro matchedControl
general.wd.ref 0.016 0.036 0.016 0.019 0.024 0.000
signed.dx.ref 0.014 0.039 0.015 0.026 0.021 0.001
gcpct 0.011 0.008 0.008 0.023 0.024 0.002
signed.dx.uni 0.008 0.022 0.009 0.013 0.012 0.003
signed.dx.ace 0.007 0.024 0.008 0.016 0.012 0.001
refGene.genes 0.006 0.024 0.008 0.017 0.009 -0.002
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general.wd.uni 0.006 0.009 0.007 0.006 0.012 0.004
ace.500k 0.004 0.012 0.001 0.000 0.005 0.031
ace.200k 0.003 0.014 0.000 0.003 0.004 0.025
ace.100k 0.002 0.013 0.000 0.004 0.000 0.023
uni.500k 0.004 0.005 0.001 -0.002 0.004 0.022
ace.1M 0.003 0.008 0.000 0.000 0.003 0.019

See appendix A for explanation of variable names

As is evident the more important variables for distinguishing between inte-
gration sites and matched control sites tend not to be so important for distin-
guishing among the different integration events (and vice versa). In particu-
lar, the juxtaposition of transcription start sites and being in a gene are at or
near the top of each list for the integration sites, and gcpct is important for
MLVPuro. However,this does not hold for the matched control sites. Measures
of gene density are most important for classifying matched controls, but not for
discriminating among integration complexes.

It is interesting to consider whether these 12 variables classify the integration
complexes as well as the full collection of 123 variables used earlier. Here is the
table of classification results.

HIVmIN HIVPuro HIVmGAGmIN HIVmGAG MLVPuro matchedControl
HIVmIN 46 50 74 40 98 42
HIVPuro 18 236 34 162 58 16
HIVmGAGmIN 36 66 156 67 166 35
HIVmGAG 16 128 57 208 33 51
MLVPuro 40 82 148 43 203 27
matchedControl 75 110 250 266 185 1550

These results differ only slightly from those seen above. It is probably worth
taking another look at the variable importance measure now that many re-
dundant variables have been eliminated. This table shows the revised variable
importance measures:

HIVmIN HIVPuro HIVmGAGmIN HIVmGAG MLVPuro matchedControl
general.wd.ref 0.034 0.059 0.034 0.036 0.038 0.007
signed.dx.ref 0.041 0.093 0.043 0.069 0.059 0.008
gcpct 0.030 0.019 0.019 0.051 0.062 0.004
signed.dx.uni 0.018 0.024 0.010 0.017 0.011 0.019
signed.dx.ace 0.017 0.045 0.017 0.016 0.017 0.009
refGene.genes 0.027 0.088 0.037 0.068 0.039 -0.018
general.wd.uni 0.016 0.021 0.015 0.008 0.025 0.016
ace.500k 0.021 0.042 0.008 0.007 0.017 0.065
ace.200k 0.018 0.043 0.009 0.004 0.016 0.062
ace.100k 0.012 0.035 0.003 0.016 0.004 0.052
uni.500k 0.012 0.022 0.002 0.010 0.017 0.050
ace.1M 0.016 0.062 -0.003 0.009 0.024 0.043
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See appendix A for explanation of variable names

Again, different variables tend to register as important for discriminating
among integration comlpexes as opposed to discriminating between them and
the match control sites.

4.2 Classification of Genomic Locations

To get a better sense of the relation between the attractiveness of a genomic
location to different integration complexes the weighted votes for a set of random
matched control loci are heuristically taken as predicted probabilities. These are
computed applying the randomForest classification trees developed earlier to a
new sample of genomic loci and tallying the votes for each integration complex
or matched control.

The fractions of votes for each integration complex (or the matched control)
are presented as scatterplots in the figure below. The numbers in the lower
triangle are the correlations among the votes.
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When viewed on-screen as a pdf document, it is helpful to zoom in on this
plot to better reveal the locations of extreme data points. As might have been
guessed from the earlier results, when there are many votes for the matched
control, the number of votes for any of the integration complexes tends to be
low. Among the integration complexes the number of votes for HIVmIN tends
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to be highest when the number is also high for HIVPuro, and the number tends
to be high for MLVPuro when the number for HIVmGAGmIN is also high.

It may also be helpful to restrict attention to only votes for integration
complexes. In the following plots, the fraction of votes for each integration
complex is divided by the fraction of votes for all integration complexes.
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Only MLVPuro and HIVmGAGmIN have a positive correlation, which im-
plies that similar genomic sites are favored by those two integration complexes.
On the other hand the most negative correlation is between MLVPuro and
HIVmGAG.

Similar observations can also be made from inspecting a dendrogram of suit-
ably constructed distances between the vote counts for the different complexes.
Taking pij , the fraction of votes for integration complex category j for genomic
location i, a normalization is performed:

p̃ij = pij/
∑

i

pij

Then the symmetrized Kullback-Leibler distance is calculated as

KL(j, k) =
∑

i

p̃ij log(p̃ij/p̃ik) + p̃ik log(p̃ik/p̃ij)

Hierarchical clustering of these distances is presented in the following graph:
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The same nodes are merged to form this tree as were merged earlier on.
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A Appendix: Variable Names Described

The following table describes the variable names used in this document.

variable name description

acembly.genes In acembly gene

acembly.exon In acembly exon

refGene.genes In refGene gene

refGene.exon In refGene exon

genScan.genes In genScan gene
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genScan.exon In genScan exon

uniGene.genes In uniGene gene

uniGene.exon In uniGene exon

ace.100k acembly Density in 100kBase window

ace.200k acembly Density in 200kBase window

ace.500k acembly Density in 500kBase window

ace.1M acembly Density in 1MBase window

ace.2M acembly Density in 2MBase window

ref.100k refGene Density in 100kBase window

ref.200k refGene Density in 200kBase window

ref.500k refGene Density in 500kBase window

ref.1M refGene Density in 1MBase window

ref.2M refGene Density in 2MBase window

uni.100k uniGene Density in 100kBase window

uni.200k uniGene Density in 200kBase window

uni.500k uniGene Density in 500kBase window

uni.1M uniGene Density in 1MBase window

uni.2M uniGene Density in 2MBase window

gen.100k genScan Density in 100kBase window

gen.200k genScan Density in 200kBase window

gen.500k genScan Density in 500kBase window

gen.1M genScan Density in 1MBase window

gen.2M genScan Density in 2MBase window

onco.100k onco.100k

onco.200k onco.200k

onco.500k onco.500k

onco.1M onco.1M

onco.2M onco.2M

onco.4M onco.4M

plus.oncogenes plus.oncogene

minus.oncogenes minus.oncogene

dens.25k Affymetrix Gene Density in 25kBase window

low.ex.25k Density of Affymetrix Expr > 50%ile in 25kBase window

med.ex.25k Density of Affymetrix Expr > 75%ile in 25kBase window

high.ex.25k Density of Affymetrix Expr > 87.5%ile in 25kBase window

dens.50k Affymetrix Gene Density in 50kBase window

low.ex.50k Density of Affymetrix Expr > 50%ile in 50kBase window

med.ex.50k Density of Affymetrix Expr > 75%ile in 50kBase window

high.ex.50k Density of Affymetrix Expr > 87.5%ile in 50kBase window

dens.100k Affymetrix Gene Density in 100kBase window

low.ex.100k Density of Affymetrix Expr > 50%ile in 100kBase window

med.ex.100k Density of Affymetrix Expr > 75%ile in 100kBase window

high.ex.100k Density of Affymetrix Expr > 87.5%ile in 100kBase window

dens.250k Affymetrix Gene Density in 250kBase window

low.ex.250k Density of Affymetrix Expr > 50%ile in 250kBase window

med.ex.250k Density of Affymetrix Expr > 75%ile in 250kBase window

high.ex.250k Density of Affymetrix Expr > 87.5%ile in 250kBase window

dens.500k Affymetrix Gene Density in 500kBase window

low.ex.500k Density of Affymetrix Expr > 50%ile in 500kBase window

med.ex.500k Density of Affymetrix Expr > 75%ile in 500kBase window
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high.ex.500k Density of Affymetrix Expr > 87.5%ile in 500kBase window

dens.1M Affymetrix Gene Density in 1MBase window

low.ex.1M Density of Affymetrix Expr > 50%ile in 1MBase window

med.ex.1M Density of Affymetrix Expr > 75%ile in 1MBase window

high.ex.1M Density of Affymetrix Expr > 87.5%ile in 1MBase window

dens.2M Affymetrix Gene Density in 2MBase window

low.ex.2M Density of Affymetrix Expr > 50%ile in 2MBase window

med.ex.2M Density of Affymetrix Expr > 75%ile in 2MBase window

high.ex.2M Density of Affymetrix Expr > 87.5%ile in 2MBase window

dens.4M Affymetrix Gene Density in 4MBase window

low.ex.4M Density of Affymetrix Expr > 50%ile in 4MBase window

med.ex.4M Density of Affymetrix Expr > 75%ile in 4MBase window

high.ex.4M Density of Affymetrix Expr > 87.5%ile in 4MBase window

dens.8M Affymetrix Gene Density in 8MBase window

low.ex.8M Density of Affymetrix Expr > 50%ile in 8MBase window

med.ex.8M Density of Affymetrix Expr > 75%ile in 8MBase window

high.ex.8M Density of Affymetrix Expr > 87.5%ile in 8MBase window

dens.16M Affymetrix Gene Density in 16MBase window

low.ex.16M Density of Affymetrix Expr > 50%ile in 16MBase window

med.ex.16M Density of Affymetrix Expr > 75%ile in 16MBase window

high.ex.16M Density of Affymetrix Expr > 87.5%ile in 16MBase window

dens.32M Affymetrix Gene Density in 32MBase window

low.ex.32M Density of Affymetrix Expr > 50%ile in 32MBase window

med.ex.32M Density of Affymetrix Expr > 75%ile in 32MBase window

high.ex.32M Density of Affymetrix Expr > 87.5%ile in 32MBase window

gcpct GC percent in 5120 Base window

is.cpg In CpG Island

cpg.1k CpG Island in 1kBase window

cpg.5k CpG Island in 5kBase window

cpg.10k CpG Island in 10kBase window

cpg.25k CpG Island in 25kBase window

cpg.50k CpG Island in 50kBase window

cpg.dens.25k CpG Island Density in 25kBase window

cpg.dens.50k CpG Island Density in 50kBase window

cpg.dens.100k CpG Island Density in 100kBase window

cpg.dens.250k CpG Island Density in 250kBase window

cpg.dens.500k CpG Island Density in 500kBase window

cpg.dens.1M CpG Island Density in 1MBase window

cpg.dens.2M CpG Island Density in 2MBase window

cpg.dens.4M CpG Island Density in 4MBase window

cpg.dens.8M CpG Island Density in 8MBase window

cpg.dens.16M CpG Island Density in 16MBase window

cpg.dens.32M CpG Island Density in 32MBase window

dnaseI.1k Density of DNase Sites in 1kBase window

dnaseI.2k Density of DNase Sites in 2kBase window

dnaseI.10k Density of DNase Sites in 10kBase window

dnaseI.25k Density of DNase Sites in 25kBase window

dnaseI.50k Density of DNase Sites in 50kBase window

dnaseI.100k Density of DNase Sites in 100kBase window

dnaseI.1M Density of DNase Sites in 1MBase window
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dnaseI.5M Density of DNase Sites in 5MBase window

dnaseI.20M Density of DNase Sites in 20MBase window

boundary.dx.ace Distance to Nearest acembly Gene Boundary

start.dx.ace Distance to Nearest acembly Gene Start

signed.dx.ace Distance from(+)/to(-) Nearest acembly Gene Start

general.wd.ace Width of acembly (Inter-)Gene (Region)

boundary.dx.ref Distance to Nearest refGene Gene Boundary

start.dx.ref Distance to Nearest refGene Gene Start

signed.dx.ref Distance from(+)/to(-) Nearest refGene Gene Start

general.wd.ref Width of refGene (Inter-)Gene (Region)

boundary.dx.gens Distance to Nearest genScans Gene Boundary

start.dx.gens Distance to Nearest genScans Gene Start

signed.dx.gens Distance from(+)/to(-) Nearest genScans Gene Start

general.wd.gens Width of genScans (Inter-)Gene (Region)

boundary.dx.uni Distance to Nearest uniGene Gene Boundary

start.dx.uni Distance to Nearest uniGene Gene Start

signed.dx.uni Distance from(+)/to(-) Nearest uniGene Gene Start

general.wd.uni Width of uniGene (Inter-)Gene (Region)
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