Association of Genomic Features with Integration: Unselected vs. Puromycin-Selected MLV

April 21, 2006

Contents

1	Intr	oduction	3
2	Pref	ference for Genes	4
	2.1	Acembly Genes	4
	2.2	refGenes	6
	2.3	ensGenes	8
	2.4	genScan Genes	10
	2.5	uniGenes	12
3	CpG	- J Island Neighborhoods	14
	3.1	1 kilobase neighborhoods	14
	3.2	5 kilobase neighborhoods	15
	3.3	10 kilobase neighborhoods	16
	3.4	25 kilobase neighborhoods	17
	3.5	50 kilobase neighborhoods	18
4	Gen	e Density, Expression 'Density', and CpG Island Density	19
	4.1	25 kiloBase Window	20
	4.2	50 kiloBase Window	26
	4.3	100 kiloBase Window	31
	4.4	250 kiloBase Window	36
	4.5	500 kiloBase Window	41
	4.6	1 megaBase Window	46
	4.7	2 megaBase Window	51
	4.8	4 megaBase Window	56
	4.9	8 megaBase Window	61
	4.10	16 megaBase Window	66
	4.11	32 megaBase Window	71

5	Jux	taposition with Gene Start and End Positions	76
	5.1	Acembly Annotations	76
	5.2	RefSeq Annotations	80
	5.3	genScan Annotations	84
	5.4	uniGene Annotations	88
6	GC	content	92
7	Cyt	obands	93

1 Introduction

In this document, I examine the association of integration siting with various genomic features.

The numbers are shown below:

Origin.of.data	a.set
MLV-Burgess	MLVPuro
917	544

The distribution of relative frequency of insertions across the chromosomes is given in this barplot:

Are there chromosomes that are particularly favored for integration by one group over the other? This was tested for statistical significance. The test performed used the likelihood ratio statistic for the logistic regression model (reviewed in [1]) as implemented by the glm function of R using the binomial family. The null hypothesis tested is the ratio of true integration events in the two groups is constant across all chromosomes. This test attains a p-value of 1.6095e - 05.

2 Preference for Genes

2.1 Acembly Genes

Here we examine the relative preference that integration events in the two groups have for genes. In the following plot we show the relative frequency of integrations in genes according to the 'Acembly' annotation. The bars grouped over the label "In Gene" give the relative frequency of integration events (compared to control sites) between bases located within Acembly gene annotations, while the label "Not in Gene" give the relative frequency of integration events (compared to control sites) between bases not located within Acembly gene annotations.

Is there is a difference in the tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.12085. In the following plot we show the relative frequency of insertions in exons according to the 'Acembly' annotation The bars grouped over the label "In Exon" give the relative frequency of integration events (compared to control sites) between bases located in exons according to the Acembly annotation, while the label "Not in Exon" give the relative frequency of integration events (compared to control sites) between bases between bases not located in exons according to the Acembly gene annotation.

Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	Z	р
(Intercept)	-0.63800	0.0929	-6.8700	6.62e-12
in.gene	0.17800	0.1180	1.5100	1.32e-01
in.exon	-0.00828	0.1780	-0.0466	9.63e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.2 refGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'refGene' annotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.65712.

In the following plot we show the relative frequency of insertions in exons according to the 'refGene' annotation.

Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coei	se	Z	р
(Intercept)	-0.5430	0.0723	-7.510	5.87e-14
in.gene	0.0387	0.1100	0.350	7.26e-01
in.exon	0.2170	0.3910	0.555	5.79e-01

_

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.3 ensGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'ensGene' annotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.28032.

In the following plot we show the relative frequency of insertions in exons according to the 'ensGene' annotation.

Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coei	se	Z	р
(Intercept)	-0.578	0.0752	-7.690	1.51e-14
in.gene	0.112	0.1100	1.020	3.10e-01
in.exon	0.110	0.3580	0.307	7.59e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.4 genScan Genes

Here we examine the p erence that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'genScan' annotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.8604.

In the following plot we show the relative frequency of insertions in exons according to the 'genScan' annotation.

Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	Z	р
(Intercept)	-0.5090	0.0941	-5.4100	6.40e-08
in.gene	-0.0112	0.1150	-0.0969	9.23e-01
in.exon	-0.3450	0.4270	-0.8090	4.19e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

2.5 uniGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'uniGene' annotation.

Is there is a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.76307.

In the following plot we show the relative frequency of insertions in exons according to the 'uniGene' annotation.

Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	Z	р
(Intercept)	-0.5070	0.0746	-6.790	1.11e-11
in.gene	-0.0664	0.1140	-0.583	5.60e-01
in.exon	0.2140	0.2140	0.998	3.18e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.

3 CpG Island Neighborhoods

Here we study the effect of being in the neighborhood of CpG Islands. Following Wu et al [2], who found that the neighborhoods within ± 1 kb of CpG islands are enriched for MLV insertions, we study such neighborhoods.

3.1 1 kilobase neighborhoods

The following plot shows the effect of being in or within ± 1 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.92303.

3.2 5 kilobase neighborhoods

The following plot shows the effect of being in or within ± 5 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.20711.

3.3 10 kilobase neighborhoods

The following plot shows the effect of being in or within ± 10 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.024048.

3.4 25 kilobase neighborhoods

The following plot shows the effect of being in or within ± 25 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 8.0113e-06.

3.5 50 kilobase neighborhoods

The following plot shows the effect of being in or within ± 50 kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 8.9273e - 09.

4 Gene Density, Expression 'Density', and CpG Island Density

In this section the association with gene density is examined. The 'genes' that are counted are the genes represented on the microarray. In addition, we the number of such genes expressed at various levels. The levels are

- **low.ex** Count genes whose expression is in the upper half and divide by number of bases
- **med.ex** Count genes whose expression is in the upper $1/8^{th}$ and divide by number of bases
- **high.ex** Count genes whose expression is in the upper $1/16^{th}$ and divide by number of bases

The bolded terms are used as abbreviations in what follows. The abbreviation **dens** is used to indicate gene density as number of genes per base.

4.1 25 kiloBase Window

In the barplot that follows we examine the association of insertion sites with gene density in a 25 kilobase window surrounding each locus. More such plots will follow and the method of their construction is always to try to divide the data according to the deciles of density. However, it often happens that there is a very skewed distribution of density and often even the 90^{th} percentile is zero. In that case, the barplots simply show the sites for which the density is zero and those for which it is non-zero. If there are fewer than ten groups of bars, then the groupings contain ten percent of the sites each except for the leftmost grouping which will contain all of the remaining sites.

Also note that the title of the plot contains clues as to its content; the prefix indicates the type of variable studied while the suffix indicates the window width in the number of bases. The p-value given is the result of fitting a cubic polynomial to the gene density values.

The following expression data and probe set were used for this report:

[1] "HeLa_exp_data-HU133a"

[1] "HG-U133"

Category limits

lower category upper 1 0e+00 group.1 8.0e-06 2 8e-06 group.2 4.0e-05 3 4e-05 group.3 2.4e-04

dens.25k - p-value = 0.058192

Here are the results for expression density. First, we count just genes that are in the upper half.

	lower	category	upper
1	0e+00	group.1	0.00002
2	2e-05	group.2	0.00014

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
0%	0.000000e+00	group.1	6.666667e-06
100%	6.666667e-06	group.2	1.400000e-04

med.ex.25k - p-value = 0.00043909

And here we count genes in the upper $1/16^{th}$:

	lower	category	upper
0%	0.00000e+00	group.1	6.666667e-06
100%	6.666667e-06	group.2	1.00000e-04

high.ex.25k - p-value = 0.051816

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0e+00	group.1	0.00002
2	2e-05	group.2	0.00004
3	4e-05	group.3	0.00006
4	6e-05	group.4	0.00026

cpg.dens.25k - p-value = 0.65373

4.2 50 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 50 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

lower	category	upper
0e+00	group.1	0.00001
1e-05	group.2	0.00002
2e-05	group.3	0.00002
2e-05	group.4	0.00016
	lower 0e+00 1e-05 2e-05 2e-05	lower category 0e+00 group.1 1e-05 group.2 2e-05 group.3 2e-05 group.4

dens.50k - p-value = 0.00039696

Here are the results for expression density. First, we count just genes that are in the upper half.

	lower	category	upper
1	0e+00	group.1	1e-05
2	1e-05	group.2	2e-05
3	2e-05	group.3	9e-05

low.ex.50k - p-value = 0.0030384

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0e+00	group.1	1e-05
2	1e-05	group.2	7e-05

med.ex.50k - p-value = 0.0005986

And here we count genes in the upper $1/16^{th}$:

	lower	category	upper
0%	0.0e+00	group.1	2.5e-06
100%	2.5e-06	group.2	5.0e-05

high.ex.50k - p-value = 0.020289

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0e+00	group.1	0.00001
2	1e-05	group.2	0.00002
3	2e-05	group.3	0.00003
4	3e-05	group.4	0.00005
5	5e-05	group.5	0.00022

cpg.dens.50k - p-value = 0.80214

4.3 100 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 100 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	0.00000e+00	group.1	3.333333e-06
2	3.333333e-06	group.2	6.666667e-06
3	6.666667e-06	group.3	1.000000e-05
4	1.00000e-05	group.4	1.346667e-05
5	1.346667e-05	group.5	2.200000e-05
6	2.20000e-05	group.6	1.050000e-04

dens.100k - p-value = 2.4677e-05

Here are the results for expression density. First, we count just genes that are in the upper half.

	lower	category	upper
1	0.0e+00	group.1	2.5e-06
2	2.5e-06	group.2	5.0e-06
3	5.0e-06	group.3	1.0e-05
4	1.0e-05	group.4	1.4e-05
5	1.4e-05	group.5	5.5e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0e+00	group.1	5e-06
2	5e-06	group.2	1e-05
3	1e-05	group.3	5e-05

med.ex.100k - p-value = 0.0010961

And here we count genes in the upper $1/16^{th}$:

	lower	category	upper
1	0e+00	group.1	5.00e-06
2	5e-06	group.2	3.25e-05

high.ex.100k - p-value = 0.044116

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0.0e+00	group.1	0.000005
2	5.0e-06	group.2	0.000010
3	1.0e-05	group.3	0.000015
4	1.5e-05	group.4	0.000020
5	2.0e-05	group.5	0.000025
6	2.5e-05	group.6	0.000045
7	4.5e-05	group.7	0.000175

cpg.dens.100k - p-value = 0.15775

4.4 250 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 250 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

ower e+00	category	upper
e+00	group 1	0 00000 00
	group.r	2.000000e-06
e-06	group.2	4.00000e-06
e-06	group.3	4.571429e-06
e-06	group.4	6.666667e-06
e-06	group.5	9.333333e-06
e-06	group.6	1.200000e-05
e-05	group.7	1.866667e-05
e−05	group.8	8.466667e-05
	e-06 e-06 e-06 e-06 e-06 e-05 e-05	<pre>le+00 group.1 le-06 group.2 le-06 group.3 le-06 group.4 'e-06 group.5 le-06 group.6 le-05 group.7 'e-05 group.8</pre>

dens.250k - p-value = 9.8932e-11
	lower	category	upper
1	0.00000e+00	group.1	1.333333e-06
2	1.333333e-06	group.2	2.00000e-06
3	2.00000e-06	group.3	4.00000e-06
4	4.00000e-06	group.4	5.00000e-06
5	5.00000e-06	group.5	7.00000e-06
6	7.00000e-06	group.6	1.000000e-05
7	1.00000e-05	group.7	4.60000e-05

low.ex.250k - p-value = 1.1407e-10

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	1.333333e-06
2	1.333333e-06	group.2	2.666667e-06
3	2.666667e-06	group.3	4.00000e-06
4	4.00000e-06	group.4	6.00000e-06
5	6.00000e-06	group.5	2.733333e-05

0.6 0.5 0.4 0.3 0.2 0.1 0.0 group.1 group.2 group.3 group.4 group.5

med.ex.250k - p-value = 2.4297e-06

And here we count genes in the upper $1/16^{th}\colon$

lower	category	upper
0e+00	group.1	1e-06
1e-06	group.2	2e-06
2e-06	group.3	4e-06
4e-06	group.4	2e-05
	lower 0e+00 1e-06 2e-06 4e-06	lower category 0e+00 group.1 1e-06 group.2 2e-06 group.3 4e-06 group.4

high.ex.250k - p-value = 0.00067273

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0.0e+00	group.1	0.000002
2	2.0e-06	group.2	0.00004
3	4.0e-06	group.3	0.00006
4	6.0e-06	group.4	0.00008
5	8.0e-06	group.5	0.000010
6	1.0e-05	group.6	0.000014
7	1.4e-05	group.7	0.000018
8	1.8e-05	group.8	0.000026
9	2.6e-05	group.9	0.000042
10	4.2e-05	group.10	0.000164

cpg.dens.250k - p-value = 0.040590

4.5 500 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 500 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	0.000000e+00	group.1	1.480000e-06
2	1.480000e-06	group.2	2.500000e-06
3	2.50000e-06	group.3	3.666667e-06
4	3.666667e-06	group.4	5.00000e-06
5	5.00000e-06	group.5	6.666667e-06
6	6.666667e-06	group.6	8.926667e-06
7	8.926667e-06	group.7	1.150000e-05
8	1.150000e-05	group.8	1.666667e-05
9	1.666667e-05	group.9	7.566667e-05

dens.500k - p-value = < 2.22e-16

	lower	category	upper
1	0.00000e+00	group.1	1.777778e-07
2	1.777778e-07	group.2	1.000000e-06
3	1.000000e-06	group.3	2.00000e-06
4	2.00000e-06	group.4	2.50000e-06
5	2.50000e-06	group.5	3.333333e-06
6	3.333333e-06	group.6	4.50000e-06
7	4.50000e-06	group.7	6.295238e-06
8	6.295238e-06	group.8	9.00000e-06
9	9.00000e-06	group.9	3.633333e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	6.666667e-07
2	6.666667e-07	group.2	1.000000e-06
3	1.000000e-06	group.3	2.00000e-06
4	2.00000e-06	group.4	2.40000e-06
5	2.40000e-06	group.5	3.666667e-06
6	3.666667e-06	group.6	5.333333e-06
7	5.333333e-06	group.7	2.066667e-05

med.ex.500k - p-value = 3.1218e-12

And here we count genes in the upper $1/16^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	6.666667e-07
2	6.666667e-07	group.2	1.400000e-06
3	1.400000e-06	group.3	2.00000e-06
4	2.00000e-06	group.4	3.00000e-06
5	3.00000e-06	group.5	1.40000e-05

0.6 0.5 0.4 0.3 0.2 0.1 0.0 group.1 group.2 group.3 group.4 group.5

high.ex.500k - p-value = 4.7864e-09

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0.0e+00	group.1	0.000002
2	2.0e-06	group.2	0.00004
3	4.0e-06	group.3	0.000006
4	6.0e-06	group.4	0.00008
5	8.0e-06	group.5	0.000010
6	1.0e-05	group.6	0.000013
7	1.3e-05	group.7	0.000017
8	1.7e-05	group.8	0.000025
9	2.5e-05	group.9	0.000037
10	3.7e-05	group.10	0.000151

cpg.dens.500k - p-value = 0.030598

4.6 1 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 1 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	0.00000e+00	group.1	8.190476e-07
2	8.190476e-07	group.2	1.750000e-06
3	1.750000e-06	group.3	2.666667e-06
4	2.666667e-06	group.4	3.700000e-06
5	3.700000e-06	group.5	4.84444e-06
6	4.84444e-06	group.6	6.250000e-06
7	6.250000e-06	group.7	8.161905e-06
8	8.161905e-06	group.8	1.101576e-05
9	1.101576e-05	group.9	1.656333e-05
10	1.656333e-05	group.10	5.716667e-05

	lower	category	upper
1	0.00000e+00	group.1	7.000000e-07
2	7.00000e-07	group.2	1.250000e-06
3	1.250000e-06	group.3	1.750000e-06
4	1.750000e-06	group.4	2.333333e-06
5	2.333333e-06	group.5	3.083333e-06
6	3.083333e-06	group.6	4.166667e-06
7	4.166667e-06	group.7	5.416667e-06
8	5.416667e-06	group.8	8.353333e-06
9	8.353333e-06	group.9	2.891667e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	1.111111e-07
2	1.111111e-07	group.2	5.00000e-07
3	5.00000e-07	group.3	9.00000e-07
4	9.00000e-07	group.4	1.200000e-06
5	1.200000e-06	group.5	1.666667e-06
6	1.666667e-06	group.6	2.200000e-06
7	2.200000e-06	group.7	3.00000e-06
8	3.00000e-06	group.8	4.500000e-06
9	4.50000e-06	group.9	1.60000e-05

med.ex.1M - p-value = 4.6488e-14

And here we count genes in the upper $1/16^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	2.50000e-07
2	2.50000e-07	group.2	5.00000e-07
3	5.00000e-07	group.3	1.000000e-06
4	1.000000e-06	group.4	1.122222e-06
5	1.122222e-06	group.5	1.666667e-06
6	1.666667e-06	group.6	2.50000e-06
7	2.50000e-06	group.7	1.050000e-05

high.ex.1M - p-value = 5.7933e-10

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0.00e+00	group.1	3.00e-06
2	3.00e-06	group.2	4.50e-06
3	4.50e-06	group.3	6.00e-06
4	6.00e-06	group.4	7.50e-06
5	7.50e-06	group.5	9.50e-06
6	9.50e-06	group.6	1.25e-05
7	1.25e-05	group.7	1.65e-05
8	1.65e-05	group.8	2.25e-05
9	2.25e-05	group.9	3.33e-05
10	3.33e-05	group.10	1.48e-04

cpg.dens.1M - p-value = 0.060626

4.7 2 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 2 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	0.00000e+00	group.1	1.250000e-06
2	1.250000e-06	group.2	1.916667e-06
3	1.916667e-06	group.3	2.736508e-06
4	2.736508e-06	group.4	3.619167e-06
5	3.619167e-06	group.5	4.648810e-06
6	4.648810e-06	group.6	5.837143e-06
7	5.837143e-06	group.7	7.583333e-06
8	7.583333e-06	group.8	1.008750e-05
9	1.008750e-05	group.9	1.575000e-05
10	1.575000e-05	group.10	3.950000e-05

dens.2M - p-value = < 2.22e-16

	lower	category	upper
1	0.00000e+00	group.1	4.185714e-07
2	4.185714e-07	group.2	8.750000e-07
3	8.750000e-07	group.3	1.250000e-06
4	1.250000e-06	group.4	1.713333e-06
5	1.713333e-06	group.5	2.216667e-06
6	2.216667e-06	group.6	2.750000e-06
7	2.750000e-06	group.7	3.655000e-06
8	3.655000e-06	group.8	5.250000e-06
9	5.250000e-06	group.9	7.683333e-06
10	7.683333e-06	group.10	1.933333e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	7.619048e-08
2	7.619048e-08	group.2	3.333333e-07
3	3.333333e-07	group.3	5.833333e-07
4	5.833333e-07	group.4	8.316667e-07
5	8.316667e-07	group.5	1.125000e-06
6	1.125000e-06	group.6	1.481667e-06
7	1.481667e-06	group.7	1.995000e-06
8	1.995000e-06	group.8	2.602778e-06
9	2.602778e-06	group.9	4.083333e-06
10	4.083333e-06	group.10	1.108333e-05

med.ex.2M - p-value = 4.0348e-16

And here we count genes in the upper $1/16^{th}$:

Tome	er	category	upper
1 0.00000e+0	00	group.1	2.50000e-07
2 2.50000e-0	07	group.2	4.166667e-07
3 4.166667e-0	07	group.3	5.416667e-07
4 5.416667e-0	07	group.4	7.50000e-07
5 7.50000e-0	07	group.5	1.000000e-06
6 1.00000e-0	06	group.6	1.408333e-06
7 1.408333e-0	06	group.7	2.075000e-06
8 2.075000e-0	06	group.8	6.875000e-06

high.ex.2M - p-value = 6.5308e-13

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	0.000e+00	group.1	0.000032500
2	3.250e-06	group.2	0.0000045000
3	4.500e-06	group.3	0.000057500
4	5.750e-06	group.4	0.000070000
5	7.000e-06	group.5	0.000087500
6	8.750e-06	group.6	0.0000123500
7	1.235e-05	group.7	0.0000162500
8	1.625e-05	group.8	0.0000220500
9	2.205e-05	group.9	0.0000370000
10	3.700e-05	group.10	0.0001313264

cpg.dens.2M - p-value = 0.017862

4.8 4 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 4 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	0.00000e+00	group.1	1.462121e-06
2	1.462121e-06	group.2	2.162857e-06
3	2.162857e-06	group.3	2.758750e-06
4	2.758750e-06	group.4	3.453571e-06
5	3.453571e-06	group.5	4.229167e-06
6	4.229167e-06	group.6	5.488333e-06
7	5.488333e-06	group.7	7.319167e-06
8	7.319167e-06	group.8	9.755714e-06
9	9.755714e-06	group.9	1.441848e-05
10	1.441848e-05	group.10	3.462917e-05

dens.4M - p-value = < 2.22e-16

	lower	category	upper
1	0.00000e+00	group.1	5.955357e-07
2	5.955357e-07	group.2	9.583333e-07
3	9.583333e-07	group.3	1.208333e-06
4	1.208333e-06	group.4	1.562500e-06
5	1.562500e-06	group.5	2.000000e-06
6	2.00000e-06	group.6	2.614167e-06
7	2.614167e-06	group.7	3.550794e-06
8	3.550794e-06	group.8	4.844167e-06
9	4.844167e-06	group.9	6.855357e-06
10	6.855357e-06	group.10	1.792917e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	2.50000e-07
2	2.50000e-07	group.2	4.154762e-07
3	4.154762e-07	group.3	5.938095e-07
4	5.938095e-07	group.4	7.708333e-07
5	7.708333e-07	group.5	1.041667e-06
6	1.041667e-06	group.6	1.360000e-06
7	1.360000e-06	group.7	1.854167e-06
8	1.854167e-06	group.8	2.550000e-06
9	2.550000e-06	group.9	3.588333e-06
10	3.588333e-06	group.10	9.337500e-06

med.ex.4M - p-value = < 2.22e-16

And here we count genes in the upper $1/16^{th}\colon$

	lower	category	upper
1	0.000000e+00	group.1	5.00000e-08
2	5.00000e-08	group.2	1.696429e-07
3	1.696429e-07	group.3	2.915793e-07
4	2.915793e-07	group.4	3.773061e-07
5	3.773061e-07	group.5	5.208333e-07
6	5.208333e-07	group.6	6.666667e-07
7	6.666667e-07	group.7	8.958333e-07
8	8.958333e-07	group.8	1.250000e-06
9	1.250000e-06	group.9	1.742760e-06
10	1.742760e-06	group.10	5.766667e-06

high.ex.4M - p-value = 1.5645e-13

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	5.00000e-07	group.1	3.375000e-06
2	3.375000e-06	group.2	4.375000e-06
3	4.375000e-06	group.3	5.750000e-06
4	5.750000e-06	group.4	6.875000e-06
5	6.875000e-06	group.5	8.875000e-06
6	8.875000e-06	group.6	1.162500e-05
7	1.162500e-05	group.7	1.475000e-05
8	1.475000e-05	group.8	2.065000e-05
9	2.065000e-05	group.9	3.623310e-05
10	3.623310e-05	group.10	1.122037e-04

cpg.dens.4M - p-value = 0.0045673

4.9 8 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 8 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	2.083333e-07	group.1	1.636001e-06
2	1.636001e-06	group.2	2.194223e-06
3	2.194223e-06	group.3	2.689183e-06
4	2.689183e-06	group.4	3.294554e-06
5	3.294554e-06	group.5	4.201190e-06
6	4.201190e-06	group.6	5.327738e-06
7	5.327738e-06	group.7	6.808690e-06
8	6.808690e-06	group.8	8.450099e-06
9	8.450099e-06	group.9	1.359810e-05
10	1.359810e-05	group.10	2.813750e-05

	lower	category	upper
1	6.250000e-08	group.1	7.002976e-07
2	7.002976e-07	group.2	8.975000e-07
3	8.975000e-07	group.3	1.178750e-06
4	1.178750e-06	group.4	1.489167e-06
5	1.489167e-06	group.5	1.870238e-06
6	1.870238e-06	group.6	2.560417e-06
7	2.560417e-06	group.7	3.239821e-06
8	3.239821e-06	group.8	4.160417e-06
9	4.160417e-06	group.9	6.275545e-06
10	6.275545e-06	group.10	1.238347e-05

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	0.00000e+00	group.1	2.812500e-07
2	2.812500e-07	group.2	4.410256e-07
3	4.410256e-07	group.3	5.937500e-07
4	5.937500e-07	group.4	7.908333e-07
5	7.908333e-07	group.5	1.008333e-06
6	1.008333e-06	group.6	1.300620e-06
7	1.300620e-06	group.7	1.674167e-06
8	1.674167e-06	group.8	2.164815e-06
9	2.164815e-06	group.9	3.285476e-06
10	3.285476e-06	group.10	6.927083e-06

med.ex.8M - p-value = 8.6076e-16

And here we count genes in the upper $1/16^{th}\colon$

	lower	category	upper
1	0.00000e+00	group.1	1.250000e-07
2	1.250000e-07	group.2	2.039881e-07
3	2.039881e-07	group.3	2.844290e-07
4	2.844290e-07	group.4	3.946429e-07
5	3.946429e-07	group.5	4.866071e-07
6	4.866071e-07	group.6	6.458333e-07
7	6.458333e-07	group.7	8.440164e-07
8	8.440164e-07	group.8	1.094014e-06
9	1.094014e-06	group.9	1.540278e-06
10	1.540278e-06	group.10	4.458333e-06

high.ex.8M - p-value = 7.4982e-13

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	8.125000e-07	group.1	3.625000e-06
2	3.625000e-06	group.2	4.562500e-06
3	4.562500e-06	group.3	5.865175e-06
4	5.865175e-06	group.4	7.250000e-06
5	7.250000e-06	group.5	8.812500e-06
6	8.812500e-06	group.6	1.068750e-05
7	1.068750e-05	group.7	1.449859e-05
8	1.449859e-05	group.8	1.876250e-05
9	1.876250e-05	group.9	2.829574e-05
10	2.829574e-05	group.10	8.290307e-05

cpg.dens.8M - p-value = 0.015535

4.10 16 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 16 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

1 6.166667e-07 group.1 1.857909e-06 2 1.857909e-06 group.2 2.288328e-06 3 2.288328e-06 group.3 2.728423e-06 4 2.728423e-06 group.4 3.297317e-06 5 3.297317e-06 group.5 3.984970e-06 6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
2 1.857909e-06 group.2 2.288328e-06 3 2.288328e-06 group.3 2.728423e-06 4 2.728423e-06 group.4 3.297317e-06 5 3.297317e-06 group.5 3.984970e-06 6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
3 2.288328e-06 group.3 2.728423e-06 4 2.728423e-06 group.4 3.297317e-06 5 3.297317e-06 group.5 3.984970e-06 6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
4 2.728423e-06 group.4 3.297317e-06 5 3.297317e-06 group.5 3.984970e-06 6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
5 3.297317e-06 group.5 3.984970e-06 6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
6 3.984970e-06 group.6 4.808304e-06 7 4.808304e-06 group.7 6.038077e-06
7 4.808304e-06 group.7 6.038077e-06
0 1
8 6.038077e-06 group.8 7.897006e-06
9 7.897006e-06 group.9 1.119436e-05
10 1.119436e-05 group.10 1.928929e-05

	lower	category	upper
1	1.666667e-07	group.1	7.923160e-07
2	7.923160e-07	group.2	9.843750e-07
3	9.843750e-07	group.3	1.193839e-06
4	1.193839e-06	group.4	1.406250e-06
5	1.406250e-06	group.5	1.859598e-06
6	1.859598e-06	group.6	2.321042e-06
7	2.321042e-06	group.7	2.761047e-06
8	2.761047e-06	group.8	3.579107e-06
9	3.579107e-06	group.9	5.516101e-06
10	5.516101e-06	group.10	9.091874e-06

low.ex.16M - p-value = 8.0215e-15

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	6.250000e-08	group.1	3.498512e-07
2	3.498512e-07	group.2	4.889583e-07
3	4.889583e-07	group.3	6.076306e-07
4	6.076306e-07	group.4	7.614583e-07
5	7.614583e-07	group.5	9.724702e-07
6	9.724702e-07	group.6	1.186458e-06
7	1.186458e-06	group.7	1.431250e-06
8	1.431250e-06	group.8	1.899306e-06
9	1.899306e-06	group.9	2.853750e-06
10	2.853750e-06	group.10	4.848850e-06

med.ex.16M - p-value = 9.4351e-15

And here we count genes in the upper $1/16^{th}\colon$

	lower	category	upper
1	0.00000e+00	group.1	1.583333e-07
2	1.583333e-07	group.2	2.447917e-07
3	2.447917e-07	group.3	3.160417e-07
4	3.160417e-07	group.4	3.906250e-07
5	3.906250e-07	group.5	4.812500e-07
6	4.812500e-07	group.6	5.795833e-07
7	5.795833e-07	group.7	7.750000e-07
8	7.750000e-07	group.8	9.510417e-07
9	9.510417e-07	group.9	1.339583e-06
10	1.339583e-06	group.10	2.718750e-06

high.ex.16M - p-value = 6.1283e-12

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	1.312500e-06	group.1	4.020451e-06
2	4.020451e-06	group.2	5.156250e-06
3	5.156250e-06	group.3	6.093750e-06
4	6.093750e-06	group.4	7.250000e-06
5	7.250000e-06	group.5	8.638967e-06
6	8.638967e-06	group.6	1.065000e-05
7	1.065000e-05	group.7	1.324375e-05
8	1.324375e-05	group.8	1.729446e-05
9	1.729446e-05	group.9	2.161923e-05
10	2.161923e-05	group.10	6.622230e-05

cpg.dens.16M - p-value = 0.043687

4.11 32 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 32 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

	lower	category	upper
1	6.308649e-07	group.1	1.911353e-06
2	1.911353e-06	group.2	2.404606e-06
3	2.404606e-06	group.3	2.775409e-06
4	2.775409e-06	group.4	3.330213e-06
5	3.330213e-06	group.5	3.968424e-06
6	3.968424e-06	group.6	4.736310e-06
7	4.736310e-06	group.7	5.246540e-06
8	5.246540e-06	group.8	6.878760e-06
9	6.878760e-06	group.9	8.908811e-06
10	8.908811e-06	group.10	1.858283e-05

dens.32M - p-value = 3.576e-10

	lower	category	upper
1	2.794834e-07	group.1	8.289446e-07
2	8.289446e-07	group.2	1.060074e-06
3	1.060074e-06	group.3	1.252016e-06
4	1.252016e-06	group.4	1.472961e-06
5	1.472961e-06	group.5	1.736979e-06
6	1.736979e-06	group.6	2.105536e-06
7	2.105536e-06	group.7	2.529449e-06
8	2.529449e-06	group.8	3.353331e-06
9	3.353331e-06	group.9	4.258287e-06
10	4.258287e-06	group.10	8.892661e-06

low.ex.32M - p-value = 1.0011e-10

Now we count genes in the upper $1/8^{th}$:

	lower	category	upper
1	1.551484e-07	group.1	4.047619e-07
2	4.047619e-07	group.2	5.375000e-07
3	5.375000e-07	group.3	6.435583e-07
4	6.435583e-07	group.4	7.867708e-07
5	7.867708e-07	group.5	9.072917e-07
6	9.072917e-07	group.6	1.078542e-06
7	1.078542e-06	group.7	1.315626e-06
8	1.315626e-06	group.8	1.793056e-06
9	1.793056e-06	group.9	2.168327e-06
10	2.168327e-06	group.10	4.529922e-06

med.ex.32M - p-value = 2.5708e-10

And here we count genes in the upper $1/16^{th}\colon$

	lower	category	upper
1	5.202368e-08	group.1	2.008088e-07
2	2.008088e-07	group.2	2.716076e-07
3	2.716076e-07	group.3	3.322716e-07
4	3.322716e-07	group.4	3.939286e-07
5	3.939286e-07	group.5	4.685497e-07
6	4.685497e-07	group.6	5.973958e-07
7	5.973958e-07	group.7	7.083723e-07
8	7.083723e-07	group.8	8.227806e-07
9	8.227806e-07	group.9	9.995536e-07
10	9.995536e-07	group.10	2.177009e-06

high.ex.32M - p-value = 7.8043e-09

Here the effect of density of CpG islands is studied:

	lower	category	upper
1	3.00000e-06	group.1	4.609375e-06
2	4.609375e-06	group.2	5.531250e-06
3	5.531250e-06	group.3	6.406250e-06
4	6.406250e-06	group.4	7.179893e-06
5	7.179893e-06	group.5	7.896610e-06
6	7.896610e-06	group.6	9.633538e-06
7	9.633538e-06	group.7	1.148158e-05
8	1.148158e-05	group.8	1.508771e-05
9	1.508771e-05	group.9	1.917786e-05
10	1.917786e-05	group.10	3.888930e-05

cpg.dens.32M - p-value = 0.23734

5 Juxtaposition with Gene Start and End Positions

5.1 Acembly Annotations

In this section we study the effect of juxtaposition in terms of gene start and end positions. The first barplot shows the effect of gene width for those insertions that are located within an Acembly gene.

Category	limits
Category	⊥ım

	lower	category	upper
1	326.0	group.1	8389.5
2	8389.5	group.2	18419.0
3	18419.0	group.3	28768.0
4	28768.0	group.4	44126.0
5	44126.0	group.5	66097.5
6	66097.5	group.6	94890.0
7	94890.0	group.7	130663.0
8	130663.0	group.8	197164.0
9	197164.0	group.9	310763.0
10	310763.0	group.10	1468602.0

acembly gene.width - p-value = 0.0031508

The next plot uses the width of a non-gene region for insertions that fall into such regions.

	lower	category	upper
1	598.0	group.1	5814.0
2	5814.0	group.2	14692.0
3	14692.0	group.3	23137.8
4	23137.8	group.4	31492.4
5	31492.4	group.5	41490.0
6	41490.0	group.6	65738.0
7	65738.0	group.7	87563.0
8	87563.0	group.8	136570.4
9	136570.4	group.9	214759.0
10	214759.0	group.10	733739.0

acembly non-gene width - p-value = 0.07905

The next plot studies the distance to the nearest boundary between a gene and a non-gene region. The distance is expressed as a fraction of the length of the region. Thus, '0.25' refers to one quarter of the distance from the site to nearest boundary divided by the total width of the region.

	lower	category	upper
1	0.0001629966	group.1	0.02422400
2	0.0242239990	group.2	0.06169855
3	0.0616985504	group.3	0.10831464
4	0.1083146372	group.4	0.15879184
5	0.1587918380	group.5	0.21012944
6	0.2101294427	group.6	0.26253887
7	0.2625388740	group.7	0.32510730
8	0.3251073039	group.8	0.38227968
9	0.3822796821	group.9	0.43986921
10	0.4398692059	group.10	0.49962244

acembly boundary.dist - p-value = 0.14643

This plot studies the effect of nearness to the beginning of a transcript. For sites in genes, it is the distance to the start of the gene divided by the width of the gene. For other sites it is the distance from the site to the nearer gene if that gene boundary is also a transcription starting point. Locations near '0' are relatively near the beginning of transcription, while those near '1' are near the termination of the transcript.

	lower	category	upper
1	0.0001629966	group.1	0.03194402
2	0.0319440186	group.2	0.10429321
3	0.1042932149	group.3	0.18197543
4	0.1819754324	group.4	0.27825009
5	0.2782500880	group.5	0.36999400
6	0.3699939971	group.6	0.47428155
7	0.4742815470	group.7	0.60099307
8	0.6009930664	group.8	0.74663747
9	0.7466374667	group.9	0.86910984
10	0.8691098371	group.10	0.99970222

acembly start.dist - p-value = 0.55714

5.2 RefSeq Annotations

Category limits

	lower	category	upper
1	437.0	group.1	15657.2
2	15657.2	group.2	29811.6
3	29811.6	group.3	53185.2
4	53185.2	group.4	73121.2
5	73121.2	group.5	102946.0
6	102946.0	group.6	137449.4
7	137449.4	group.7	183002.4
8	183002.4	group.8	248874.0
9	248874.0	group.9	388421.4
10	388421.4	group.10	1468599.0

refSeq gene.width - p-value = 0.031322

	lower	category	upper
1	720.0	group.1	16279.7
2	16279.7	group.2	36052.6
3	36052.6	group.3	60577.1
4	60577.1	group.4	90361.2

5	90361.2	group.5	142155.5
6	142155.5	group.6	245814.6
7	245814.6	group.7	382797.0
8	382797.0	group.8	619811.6
9	619811.6	group.9	1274970.3
10	1274970.3	group.10	5474543.0

refSeq non-gene width - p-value = 3.4359e-10

	lower	category	upper
1	0.0001676227	group.1	0.02314041
2	0.0231404114	group.2	0.05673877
3	0.0567387687	group.3	0.10346024
4	0.1034602352	group.4	0.15794733
5	0.1579473307	group.5	0.20902820
6	0.2090282002	group.6	0.27251156
7	0.2725115616	group.7	0.33133189
8	0.3313318905	group.8	0.38102827
9	0.3810282654	group.9	0.44537610
10	0.4453760992	group.10	0.49986464

refSeq boundary.dist - p-value = 0.08173

	lower	category	upper
1	0.001022040	group.1	0.0424551
2	0.042455097	group.2	0.1183958
3	0.118395781	group.3	0.2124120
4	0.212412046	group.4	0.3155718
5	0.315571838	group.5	0.4104853
6	0.410485296	group.6	0.5073843
7	0.507384290	group.7	0.6460025
8	0.646002524	group.8	0.7796176
9	0.779617614	group.9	0.9022631
10	0.902263084	group.10	0.9998324

refSeq start.dist - p-value = 0.80345

5.3 genScan Annotations

Category limits

	lower	category	upper
1	528.0	group.1	18950.5
2	18950.5	group.2	32159.0
3	32159.0	group.3	44187.0
4	44187.0	group.4	59619.0
5	59619.0	group.5	77935.0
6	77935.0	group.6	95755.0
7	95755.0	group.7	120931.5
8	120931.5	group.8	161743.0
9	161743.0	group.9	221476.0
10	221476.0	group.10	646561.0

genScan gene.width - p-value = 0.059774

	lower	category	upper
1	778.0	group.1	6125.6
2	6125.6	group.2	9893.2
3	9893.2	group.3	16013.2
4	16013.2	group.4	20307.8

5	20307.8	group.5	22644.0
6	22644.0	group.6	29514.0
7	29514.0	group.7	37045.6
8	37045.6	group.8	55001.6
9	55001.6	group.9	81036.0
10	81036.0	group.10	283599.0

genScan non-gene width - p-value = 0.010348

	lower	category	upper
1	0.0002773669	group.1	0.03163856
2	0.0316385574	group.2	0.07389331
3	0.0738933124	group.3	0.12543881
4	0.1254388101	group.4	0.17225923
5	0.1722592265	group.5	0.22848296
6	0.2284829603	group.6	0.27822067
7	0.2782206676	group.7	0.33569052
8	0.3356905161	group.8	0.38824016
9	0.3882401608	group.9	0.44344987
10	0.4434498657	group.10	0.49997099

genScan boundary.dist - p-value = 0.032223

	lower	category	upper
1	0.0002773669	group.1	0.04896258
2	0.0489625790	group.2	0.14423475
3	0.1442347542	group.3	0.24692466
4	0.2469246614	group.4	0.33433309
5	0.3343330876	group.5	0.42112499
6	0.4211249898	group.6	0.53551710
7	0.5355171033	group.7	0.64369593
8	0.6436959281	group.8	0.78417772
9	0.7841777172	group.9	0.89494284
10	0.8949428355	group.10	0.99897901

genScan start.dist - p-value = 0.047501

5.4 uniGene Annotations

Category limits

	lower	category	upper
1	528.0	group.1	18950.5
2	18950.5	group.2	32159.0
3	32159.0	group.3	44187.0
4	44187.0	group.4	59619.0
5	59619.0	group.5	77935.0
6	77935.0	group.6	95755.0
7	95755.0	group.7	120931.5
8	120931.5	group.8	161743.0
9	161743.0	group.9	221476.0
10	221476.0	group.10	646561.0

uniGene gene.width - p-value = 0.059774

	lower	category	upper
1	778.0	group.1	6125.6
2	6125.6	group.2	9893.2
3	9893.2	group.3	16013.2
4	16013.2	group.4	20307.8

5	20307.8	group.5	22644.0
6	22644.0	group.6	29514.0
7	29514.0	group.7	37045.6
8	37045.6	group.8	55001.6
9	55001.6	group.9	81036.0
10	81036.0	group.10	283599.0

uniGene non-gene width - p-value = 0.010348

	lower	category	upper
1	0.0002773669	group.1	0.03163856
2	0.0316385574	group.2	0.07389331
3	0.0738933124	group.3	0.12543881
4	0.1254388101	group.4	0.17225923
5	0.1722592265	group.5	0.22848296
6	0.2284829603	group.6	0.27822067
7	0.2782206676	group.7	0.33569052
8	0.3356905161	group.8	0.38824016
9	0.3882401608	group.9	0.44344987
10	0.4434498657	group.10	0.49997099

uniGene boundary.dist - p-value = 0.032223

	lower	category	upper
1	0.0002773669	group.1	0.04896258
2	0.0489625790	group.2	0.14423475
3	0.1442347542	group.3	0.24692466
4	0.2469246614	group.4	0.33433309
5	0.3343330876	group.5	0.42112499
6	0.4211249898	group.6	0.53551710
7	0.5355171033	group.7	0.64369593
8	0.6436959281	group.8	0.78417772
9	0.7841777172	group.9	0.89494284
10	0.8949428355	group.10	0.99897901

uniGene start.dist - p-value = 0.047501

6 GC content

Here we study the effect of GC content on insertion. The GC content is taken from the Human Genome Draft at GoldenPath from the table

 $\verb+http://genome.ucsc.edu/goldenPath/hg17/database/gc5Base.txt.gz.$

Following the plot is a table of fitted coefficients based on splitting the GC percent data at the median.

	lower	category	upper
1	28.88672	group.1	36.07422
2	36.07422	group.2	38.51562
3	38.51562	group.3	40.50781
4	40.50781	group.4	42.01172
5	42.01172	group.5	43.82812
6	43.82812	group.6	45.72266
7	45.72266	group.7	47.98828
8	47.98828	group.8	50.33203
9	50.33203	group.9	54.10156
10	54.10156	group.10	67.44141

gcpct - p-value = 4.524e-11

7 Cytobands

Here we study the association of cytoband with insertion intensity. The data are obtained from

http://genome.ucsc.edu/goldenPath/hg17/database/cytoBand.txt.gz.

A formal test of significance attains a p-value of 0.080486.

References

- P. McCullagh and John A. Nelder. *Generalized linear models*. (Chapman & Hall ltd, 1999).
- [2] Xiaolin Wu, Yuan Li, Bruce Crise, Shawn M. Burgess "Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration," *Science*, **300**(5626), (June 2003): 1749-1751.