
Supplementary Methods 
 
 
Error estimation  
 
General measure 
To get an unbiased estimate of the predictive power of our method, we determined relative 
errors (prediction minus actual genome size, divided by known genome size) for the 50% of 
simulated genomes that were not used for fitting. Errors were approximately normally 
distributed (Shapiro-Wilks test P=0.88; additional Figure 1). Median unsigned error was 5.3%, 
and standard deviation was 8.7% (additional Figure 1). Relative errors showed no systematic 
dependence on genome size or read length (additional Figure 1). 
 
Errors in predictions derived from simulated data stem from three sources: remaining 
biological variation in total marker gene count per genome, inaccuracies of read assignment to 
marker gene OGs via BLAST, and stochastic errors due to limited sequencing coverage. Due 
to the stringent choice of marker genes, biological variation in total marker gene count is low 
(standard deviation ∆xbio/x = 2.3%). To estimate the stochastic error due to limited sequencing 
depth, we assume that at a given ‘true’ marker gene density x, each randomly chosen read has a 
priori an equal chance p∝x of belonging to a marker gene OG. The number of actually 
observed marker genes n then follows a binomial distribution with variance (∆n)2 = n × (1 – p) 
≈ n. Assuming that all three error contributions are statistically independent, we can add the 
associated variances, resulting in the predicted standard deviation 
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We can validate the coverage dependence of this formula, and estimate ∆xblast, by comparison 
to the errors observed for the reference genomes at different simulated coverages (fixed read 
length L=800bp; additional Figure 1), resulting in ∆xblast/x ≈ 8.5%. Thus, in a typical 
environmental sample, approximately 2/3 of the variance can be attributed to BLAST, 1/4 to 
limited sequencing depth, and the remaining 1/12 to biological variation in marker gene count. 
 
After adjustment of the formula to compensate for cloning bias using real shotgun reads  (see 
Methods), the errors associated with the wide range of actual experiments included in this data 
set give rise to additional variance compared to the simulated data (Figure 2), resulting in a 
median unsigned error of 7.8% (standard deviation 14.4%). This error is approximately 
normally distributed (P=0.67 from Shapiro-Wilks test), and is independent of genome size 
(additional Figure 3). Decomposing the error into fixed and sequencing depth dependent parts 
results in the estimated standard deviation (SD)  
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Eq.(3) was used to calculate an approximate z-score when comparing predictions from 
different data sets a and b,  
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This was converted to an approximate P-value assuming a normal distribution of z. 

 
Bacterial-specific measure 
Errors were determined as above; they were approximately normally distributed (Shapiro-
Wilks test P=0.074;), and showed no systematic dependence on genome size or read length 
(additional Figure 4). Median unsigned error for simulated reads was 8.5%, and standard 
deviation was 14.3%.  
 
Comparison to real reads as above revealed an average bias of 5.2%, which led to adjusted 
parameter values of a=0.0370 and b=0.770. After this correction, we found an unsigned 
median error of 8.0% (standard deviation 14.6%) for real reads (additional Figure 5), and we 
estimated the sequencing-depth dependent standard deviation as  
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EGS estimation for species admixtures 
The effective genome size (EGS) for a mixture of species is defined as the average genome 
size, weighted by the fraction of genomes each species contributes to the sequences: 

21 EGSEGSEGS ×+×= βα , 
where α and β are the fractions of genomes contributed by two species with effective genome 
sizes EGS1 and EGS2, and α+β=1. At fixed read length L, we can write the prediction equation 
for EGS, Eq.(1) of the main text, as 
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where we have written out the marker gene density x as the ratio of the number of hits to 
marker gene OGs, H1, and the number of base pairs from this species, N1; an analogous 
equation holds for species 2. Hence, we can write the total effective genome size as 
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The marker gene OGs were chosen such that the total number of BLAST hits to them is 
independent of genome size of any given species, and depends only on the fraction of genomes 
in the sequenced reads from this species. Thus, we have H1=α H and H2=β H with the overall 
number of hits to marker genes H, and hence 
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with the overall marker gene density x=H/N. This confirms the intuitive understanding that the 
total number of genomes present in the sample is estimated by H, regardless of whether these 
represent one individual species or a species mix; mean EGS is then given by the number of 
base pairs per sequenced genome, i.e., is proportional to N divided by H (see also additional 
Figure 2). 

Mixing reads of different lengths 
Eq.(1) for individual read lengths is – over the range of relevant read lengths – very close to an 
inverse linear relationship,   
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with R2=99.8% for L in 1-bp steps between 300bp and 1200bp at any given x. 
 
Here, we will show that the above equation can be applied exactly to mixes of two read 
lengths; this can then be trivially generalized to higher numbers of different read lengths. We 
conclude that Eq.(1) is then also approximately applicable to mixes of different read lengths, 
which we confirmed by simulations (See below and additional Figure 2). 
 
When mixing reads of two different lengths L1 and L2, the total number of hits to marker gene 
OGs H is the sum of the hits in each read length class, H = H1+H2, and hence the marker gene 
density is  
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Where N=N1+N2 is the total number of base pairs analyzed.  
 
We now want to estimate the parameter c, which can a priori depend both on H and on L, in 
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We can estimate the effective genome size individually at each read length,  
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With x1=H1/N1, we can rewrite H1 as: 
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and analogous for H2. Inserting this into the equation for c, we find 
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The number of base pairs N is given by the number of reads R of a given length L times that 
length, N=R×L, with the total number of reads the sum of reads from each read length, 
R=R1+R2. With this (and with N=N1+N2), we have 
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and hence the same formula as applied to individual read lengths can be applied to read length 
admixtures. 

 


