Protocol S1: Derivation of the test statistic
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Model description

The disease status Y (the outcome variable in our model) is a vector of binary variables. The vector
X of explanatory variables (the genotypes) can take three values (1,2,3). We assume a logistic
model: logit [P(Y; = 1)] = a + #X;. We denote the set of fluorescent intensities by Z.

v = (a, ) describe the relation between genotype X and disease status Y. A second set of
parameter 6 describes the location of the fluorescent signal clouds. A third set ¢ describe the allelic
frequencies for the genotype X in this case-control study. The full likelihood can be written as:

P(X,Y, Z]v,¢,0) = P(X|9)P(Y|X,7)P(Z|X,Y,0)

Here, X is a missing data. We note that the dependence of the distribution P(Z|X,Y,0) on Y
results from the differential bias (the disease status affects the fluorescent signal).

Non-stratified score test

The score statistic is the derivative of the log-likelihood with respect to § taken at 8 = 0. Therefore,
the contribution of a single individual to the score is:
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We have [1, Chap. 4]:
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where mx = E(Y|X;a, ). Therefore:
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Replacing a by its MLE at 3 = 0 we have mx = Y (independent of X) and one obtains the score
statistic U by summing over all individuals:

U=> (Y- Y)E(X|Z;,Y))

Stratified score test

In the stratified version we define a geographic indicator variable S; € {1,...,S} and:

logit [P(Y; = 1) = a + BX; + > Ysls,=s

As in the non-stratified case the contribution of one individual to the likelihood is:
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where m; = E(Y;| X, Si; o, B) ) B
Replacing o,y by MLEs at 3 = 0 we have: m; = Yg, where Y; is the average Y in the strata s.
When summing over all individual we obtain:

U=> (Y- Y)E(Xi|Z;,Y;, $)

The presence of the geographic variable Z; indicates that the scoring algorithm must account for the
geographic stratification. In that test each stratum has a score (computed as in the non-stratified
case) and the overall score is the sum over strata. The score variance is also computed separately for
each stratum (as in the non-stratified case) and then summed over strata. As in the non-stratified
case the test statistic U2/V is distributed as chi-square with one degree of freedom under the null.

Computation of the score variance

Profile likelihood argument

We derive the score variance using a profile likelihood argument. The score variance is the inverse
of the marginal value (in /) of the inverse of the information matrix. Considering only the logit
model, the information matrix is:
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where X; is in our case E(X;|Y;, Z;) and mx = P(Y = 1|X). Taking the inverse at the null we
have (using #=0,7x =Y):
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Fuzzy profile likelihood argument

We now show how the score variance is modified by the presence of fuzzy calls. The uncertainty
on the calls adds a term to the score variance [2]. The problem is the dependence of f; in 8. If we
note g; = L(Z|X,Y') we have, for cases:
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Assuming that ¢ and g remain constant (which is the case if the genotyping parameters v =
(0, ¢) are not affected by variations of 3), at the null 5 = 0 we have:
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The fuzzy calls add a term in the score variance. Interestingly, it is exactly the variance of X
under the fuzzy posterior distribution. Of course if calls are known with certainty this variance is
zero and one obtains the usual test statistic. If we denote this variance by s;, the additional score
variance is:

7(1 — m)2s; for cases and 7w2(1 — 7)s; for controls

The overall variance becomes:
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