Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Salmonella typhimurium strains lacking the CorA Mg2+ transport system retain Mg2+ transport and the ability to grow in medium containing a low concentration of Mg2+. Mutagenesis of a corA strain followed by ampicillin selection allowed isolation of a strain that required Mg2+-supplemented media for growth. This strain contained mutations in at least two loci in addition to corA, designated mgtA and mgtB (for magnesium transport). Strains with mutations at all three loci (corA, mgtA, and mgtB) exhibited no detectable Mg2+ uptake and required 10 mM Mg2+ in the medium for growth at the wild-type rate. A wild-type allele at any one of the three loci was sufficient to restore both Mg2+ transport and growth on 50 microM Mg2+. P22 transduction was used to map the mgt loci. The mgtA mutation was located to approximately 98 map units (cotransducible with pyrB), and mgtB mapped at about 80.5 map units (near gltC). A chromosomal library from S. typhimurium was screened for clones that complemented the Mg2+ requirement of a corA mgtA mgtB mutant. The three classes of plasmids obtained could each independently restore Mg2+ transport to this strain and corresponded to the corA, mgtA, and mgtB loci. Whereas the corA locus of S. typhimurium is analogous to the corA locus previously described for Escherichia coli, neither of the mgt loci described in this report appears analogous to the single mgt locus described in E. coli. Our data in this and the accompanying papers (M. D. Snavely, J. B. Florer, C. G. Miller, and M. E. Maguire, J. Bacteriol. 171:4752-4760, 4761-4766, 1989) indicate that the corA, mgtA, and mgtB loci of S. typhimurium represent three distinct systems that transport Mg2+.

Free full text 


Logo of jbacterLink to Publisher's site
J Bacteriol. 1989 Sep; 171(9): 4742–4751.
PMCID: PMC210275
PMID: 2548998

Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci.

Abstract

Salmonella typhimurium strains lacking the CorA Mg2+ transport system retain Mg2+ transport and the ability to grow in medium containing a low concentration of Mg2+. Mutagenesis of a corA strain followed by ampicillin selection allowed isolation of a strain that required Mg2+-supplemented media for growth. This strain contained mutations in at least two loci in addition to corA, designated mgtA and mgtB (for magnesium transport). Strains with mutations at all three loci (corA, mgtA, and mgtB) exhibited no detectable Mg2+ uptake and required 10 mM Mg2+ in the medium for growth at the wild-type rate. A wild-type allele at any one of the three loci was sufficient to restore both Mg2+ transport and growth on 50 microM Mg2+. P22 transduction was used to map the mgt loci. The mgtA mutation was located to approximately 98 map units (cotransducible with pyrB), and mgtB mapped at about 80.5 map units (near gltC). A chromosomal library from S. typhimurium was screened for clones that complemented the Mg2+ requirement of a corA mgtA mgtB mutant. The three classes of plasmids obtained could each independently restore Mg2+ transport to this strain and corresponded to the corA, mgtA, and mgtB loci. Whereas the corA locus of S. typhimurium is analogous to the corA locus previously described for Escherichia coli, neither of the mgt loci described in this report appears analogous to the single mgt locus described in E. coli. Our data in this and the accompanying papers (M. D. Snavely, J. B. Florer, C. G. Miller, and M. E. Maguire, J. Bacteriol. 171:4752-4760, 4761-4766, 1989) indicate that the corA, mgtA, and mgtB loci of S. typhimurium represent three distinct systems that transport Mg2+.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bochner BR, Savageau MA. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. [Europe PMC free article] [Abstract] [Google Scholar]
  • Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. [Europe PMC free article] [Abstract] [Google Scholar]
  • Castilho BA, Olfson P, Casadaban MJ. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. [Europe PMC free article] [Abstract] [Google Scholar]
  • Chumley FG, Menzel R, Roth JR. Hfr formation directed by tn10. Genetics. 1979 Apr;91(4):639–655. [Europe PMC free article] [Abstract] [Google Scholar]
  • Grubbs RD, Maguire ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium. 1987;6(3):113–127. [Abstract] [Google Scholar]
  • Gutterson NI, Koshland DE., Jr Replacement and amplification of bacterial genes with sequences altered in vitro. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4894–4898. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hmiel SP, Snavely MD, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol. 1986 Dec;168(3):1444–1450. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hughes KT, Roth JR. Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics. 1988 May;119(1):9–12. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kingsbury DT, Helinski DR. DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenic factor E1. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1538–1544. [Abstract] [Google Scholar]
  • Kukral AM, Strauch KL, Maurer RA, Miller CG. Genetic analysis in Salmonella typhimurium with a small collection of randomly spaced insertions of transposon Tn10 delta 16 delta 17. J Bacteriol. 1987 May;169(5):1787–1793. [Europe PMC free article] [Abstract] [Google Scholar]
  • MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. [Europe PMC free article] [Abstract] [Google Scholar]
  • Miller CG. Gentic mapping of Salmonella typhimurium peptidase mutations. J Bacteriol. 1975 Apr;122(1):171–176. [Europe PMC free article] [Abstract] [Google Scholar]
  • Nelson DL, Kennedy EP. Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J Biol Chem. 1971 May 10;246(9):3042–3049. [Abstract] [Google Scholar]
  • Nelson DL, Kennedy EP. Transport of magnesium by a repressible and a nonrepressible system in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1091–1093. [Europe PMC free article] [Abstract] [Google Scholar]
  • Park MH, Wong BB, Lusk JE. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol. 1976 Jun;126(3):1096–1103. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sanderson KE, Roth JR. Linkage map of Salmonella typhimurium, edition VII. Microbiol Rev. 1988 Dec;52(4):485–532. [Europe PMC free article] [Abstract] [Google Scholar]
  • Silver S. Active transport of magnesium in escherichia coli. Proc Natl Acad Sci U S A. 1969 Mar;62(3):764–771. [Europe PMC free article] [Abstract] [Google Scholar]
  • Silver S, Johnseine P, Whitney E, Clark D. Manganese-resistant mutants of Escherichia coli: physiological and genetic studies. J Bacteriol. 1972 Apr;110(1):186–195. [Europe PMC free article] [Abstract] [Google Scholar]
  • Snavely MD, Florer JB, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems. J Bacteriol. 1989 Sep;171(9):4752–4760. [Europe PMC free article] [Abstract] [Google Scholar]
  • Snavely MD, Florer JB, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol. 1989 Sep;171(9):4761–4766. [Europe PMC free article] [Abstract] [Google Scholar]
  • Walker GM. Magnesium and cell cycle control: an update. Magnesium. 1986;5(1):9–23. [Abstract] [Google Scholar]
  • Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. [Abstract] [Google Scholar]
  • Webb M. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria. Biochim Biophys Acta. 1970 Nov 24;222(2):428–439. [Abstract] [Google Scholar]
  • Whitfield HJ, Levine G. Isolation and characterization of a mutant of Salmonella typhimurium deficient in a major deoxyribonucleic acid polymerase activity. J Bacteriol. 1973 Oct;116(1):54–58. [Europe PMC free article] [Abstract] [Google Scholar]
  • Wu TT. A model for three-point analysis of random general transduction. Genetics. 1966 Aug;54(2):405–410. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

Citations & impact 


Impact metrics

Jump to Citations
Jump to Data

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3239015
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3239015

Article citations


Go to all (94) article citations

Other citations

Data 


Funding 


Funders who supported this work.

NIGMS NIH HHS (2)