
Isolation and Characterization of a Regulated Form of Actin 
Depolymerizing Factor 
T. E. Morgan, R. O. Lockerbie, L. S. Minamide, M.D. Browning,* and J. R. B a m b u r g  

Department of Biochemistry, Program in Neuronal Growth and Development, and Graduate Program of Cell and Molecular 
Biology, Colorado State University, Fort Collins, Colorado 80523; and * Department of Pharmacology, Program in Neuroscience, 
University of Colorado Health Sciences Center, Denver, Colorado 80262 

Abstract. Actin depolymerizing factor (ADF) is an 
18.5-kD protein with pH-dependent reciprocal F-actin 
binding and severing/depolymerizing activities. We 
previously showed developing muscle down-regulates 
ADF (J. R. Bamburg and D. Bray. 1987. J. Cell Biol. 
105: 2817-2825). To further study this process, we ex- 
amined ADF expression in chick myocytes cultured in 
vitro. Surprisingly, ADF immunoreactivity increases 
during the first 7-10 d in culture. This increase is due 
to the presence of a new ADF species with higher rel- 
ative molecular weight which reacts identically to 
brain ADF with antisera raised against either brain 
ADF or recombinant ADE We have purified both 
ADF isoforms from myocytes and have shown by pep- 
tide mapping and partial sequence analysis that the 
new isoform is structurally related to ADE Immuno- 
precipitation of both isoforrns from extracts of cells 
prelabeled with [32p]orthophosphate showed that the 

new isoform is radiolabeled, predominantly on a ser- 
ine residue, and hence is called pADE pADF can be 
converted into a form which comigrates with ADF on 
1-D and 2-D gels by treatment with alkaline phospha- 
tase. pADF has been quantified in a number of cells 
and tissues where it is present from ~,,18% to 150% 
of the amount of unphosphorylated ADE pADF, un- 
like ADF, does not bind to G-actin, or affect the rate 
or extent of actin assembly. Four ubiquitous protein 
kinases failed to phosphorylate ADF in vitro suggest- 
ing that ADF phosphorylation in vivo is catalyzed by 
a more specific kinase. We conclude that the ability to 
regulate ADF activity is important to muscle develop- 
ment since myocytes have both pre- and posttransla- 
tional mechanisms for regulating ADF activity. The 
latter mechanism is apparently a general one for cell 
regulation of ADF activity. 

T 
EMPORAL and spatial alterations in the actin cyto- 
skeleton are necessary for numerous cellular func- 
tions. These changes in the assembly state and organi- 

zation of the actin filaments are primarily due to the actions 
of actin-binding proteins (Stossel et al., 1985; Pollard and 
Cooper, 1986). The amounts and/or activities of these actin- 
binding proteins need to be regulated in order for the cell to 
change its actin cytoskeleton in response to environmental 
cues. A variety of regulatory mechanisms, including a direct 
response to levels of calcium and/or phospholipids (reviewed 
in Forscher, 1989), and modification by phosphorylation 
(Bahler and Greengard, 1987; Yamashiro et al., 1990) in- 
fluence the activities of some actin-binding proteins. 

Actin depolymerizing factor (ADF) ~, an 18.5-kD actin- 
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binding protein is a constituent of a variety of tissues, cells, 
and cultured cell lines (Bamburg and Bray, 1987). After its 
initial discovery in embryonic chick brain (Bamburg et al., 
1980), ADF was purified and characterized as a calcium- 
insensitive actin sequestering and severing protein with 
reciprocal pH-dependent F-actin-binding and -depolymer- 
izing activities (Giuliano et al., 1988; Hayden et al., 1993; 
Hawkins et al., 1993). ADF has over 95 % sequence identity 
with destrin, its mammalian homolog (Nishida et al., 1985; 
Adams et al., 1990; Abe et al., 1990; Moriyama et al., 
1990), with which it shares similar biochemical activities 
(Hawkins et al., 1993). ADF also has >70% sequence ho- 
mology to cofilin (Matsuzaki et al., 1988; Abe et al., 1990), 
a 19-kD actin-binding protein purified from several sources 
(Maekawa et al., 1984; Muneyuki et al., 1985; Abe and 
Obinata, 1989a) and widely distributed in a variety of ver- 
tebrate tissues and cultured cell lines (Yonezawa et al., 
1987). The actin binding/depolymerizing activities of cofilin 
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and ADF measured in vitro are nearly identical (Nishida et 
al., 1984; Yonezawa et al., 1985; Hayden et al., 1993; 
Hawkins et al., 1993). Since ADF and cofilin are often found 
in the same cell, including myocytes (Abe and Obinata, 
1989b; Ono et al., 1993) and neurons (J. R. Jensen, M. 
DeWit, and J. R. Bamburg, manuscript submitted for publi- 
cation), they may be considered isoforms generated by 
related genes. A protein with similar activity and >50% se- 
quence homology to ADF has been isolated from amoeba 
(Cooper et al., 1986), and an ADF-related gene family 
(>40% sequence identity over 91 amino acids in the pre- 
sumptive actin-binding domain) has recently been identified 
in plant pollen (Kim et al., 1993), making the ADF family 
of actin-binding proteins one of the most ubiquitous groups 
so far identified. The related protein in yeast is an essential 
component of the cortical actin cytoskeleton (Moon et al., 
1993). 

The amount and cellular distribution of ADF make it 
likely to be one of the major regulators of actin assembly in 
many cell types (Bamburg and Bray, 1987; Koffer et al., 
1988; Abe and Obinata, 1989a). Immunofluorescence local- 
ization studies show that ADF is in higher concentration 
along the leading edge of ruffled membranes in cultured 
fibroblasts and in the growth cones of neurons (Bamburg and 
Bray, 1987; Jensen, J. R., M. Dewit, and J. R. Bamburg, 
manuscript submitted for publication). These locations are 
of significance because they are sites of actin polymerization 
and depolymerization associated with cell locomotion 
(Forscher and Smith, 1988; Theriot and Mitchison, 1992). 

In developing skeletal muscle, ADF expression is down- 
regulated during and after myofibril assembly (Bamburg and 
Bray, 1987; Abe and Obinata, 1989a). To study the factors 
responsible for the down-regulation, we used myocyte cul- 
tures obtained from the dissociation of 10-11-d-old em- 
bryonic chick pectoral muscle. These cultured myocytes un- 
dergo fusion to form myotubes in which sarcomeres form 
and spontaneous contractions are observed. Unexpectedly, 
we discovered that the total amount of immunoreactive ADF 
increases during the 1 to 2 wk these cells are kept in culture. 
This increase is due to the formation of a new species of ADF 
which is not normally detected on immunoblots of muscle 
extracts unless the samples are heavily loaded. Here we re- 
port the isolation of this species, its characterization as an 
inactive form of ADF containing phosphoserine, and the 
identification of this posttranslationally modified ADF in a 
variety of tissues and cells. Parts of this manuscript have ap- 
peared in abstract form (Morgan, T. E., and J. R. Bamburg. 
1988. J. Cell Biol. 107:466a; Lockerbie, R. O., and J. R. 
Bamburg. 1991. J. Cell Biol. 115:329a). 

Materials and Methods 

Cell Culture 
Myocytes were prepared from dissected pectoral tissue of 10-11-d-old em- 
bryonic chick. The tissue was minced with a sterile scalpel, passed through 
a stainless steel mesh, and dissociated by trituration with a sterile glass 
Pasteur pipet in the culture medium. The cells were placed in a glass petri 
dish for 20 rain during which time most fibroblasts attached to the substra- 
tum. Myocytes, which remain suspended in the medium, were decanted and 
plated in Primaria tissue culture dishes (Falcon, Oxnard, CA) at a density 
of 2 x 10 s cells per 35 mm dish or 1 x 106 cells per 100 mm dish in DME 
containing 10% heat-inactivated horse serum, 2% chick embryo extract 
(prepared by the method of Bullaro, 1980), and lx  antibiotic-antimycotic 

solution. After 48 h in culture, 2 #g/ml cytosine arabinoside was added to 
inhibit fibroblast growth. Every third day half of the medium was removed 
and replaced with fresh medium. Cultured myocytes were photographed 
with a 20x phase contrast or Hoffman modulation contrast objective on a 
Nikon Diaphot microscope with Panatomic X film. 

Murine myoblasts (C2C12 cells from Dr. Zach Hall, University of 
California, San Francisco, CA) were grown in 60 or 100 mm tissue culture 
dishes in growth medium (DME H-16 [low glucose], 20% FBS, 0.5% chick 
embryo extract, 2 mM L-glutamine, lx  antibiotic-antimycotic solution). 

Chick embryo skin fibroblasts were prepared from the dorsal skin of 10- 
d-old embryonic chicks, dissociated with trypsin, and cultured on 60 mm 
tissue culture dishes in DME containing 10% FBS. 

Growth Cone Particles 

Growth Cone Particles (GCPs) were isolated from 18-d-old embryonic 
chick brain according to Pfenninger et al. (1983) with the modifications of 
Lockerbie et al. (1991). Verification of the embryonic chick brain GCP 
preparation was demonstrated by ultrastructurai criteria and the enrichment 
of the developmentally regulated neuronal proteins, GAP-43 and pp60 ~r~ 
(Lockerbie, 1990; Meiri et al., 1988). 

Protein Purification, Determination, and Sequencing 

Chick brain ADF was purified according to the method of Giuliano et al. 
(1988). Bacterially expressed ADF was prepared as described by Adams et 
ai. (1990). ADF labeled with [35S]methionine was prepared from 50 ml 
expression cultures induced with isopropylthio-/3-D-galactoside in a methio- 
nine-free medium (methionine assay medium, Difco Laboratories, Detroit, 
MI) supplemented with 1 mCi [3SS]methionine. Skeletal muscle actin was 
purified from rabbit muscle acetone powder (Pardee and Spudich, 1982). 
After two cycles of polymerization and depolymerization, some of the actin 
was reacted with N-(1-pyrenyl) iodoacetamide and purified by chromatogra- 
phy following the procedure of Cooper et ai. (1983). Solutions of G actin 
in 2 mM Tris, pH 7.5, 0.2 mM CaCI2, 0.5 mM DTT, and 0.5 mM ATP 
were frozen in liquid nitrogen and stored at -70°C. 

The purification of two forms of ADF from myocyte cultures is described 
in the Results section. Matrex gel Green A (Green A agarose) was obtained 
from Amicon Corp. (Danvers, MA). Hydroxylapatite was obtained from 
Bio-Rad Laboratories (Richmond, CA). Protease inhibitors were purchased 
from Sigma Immunochemicais (St. Louis, MO). Protease inhibition cock- 
tail contained 2 mg/mi each of tosyl-arginine methyl ester, L-l-tosylamide- 
2-phenyl-ethylchloromethyl ketone, benzoyl-arginine methyl ester, and soy- 
bean trypsin inhibitor, and 0.2 mg/ml each of leupeptin, pepstatin, antipain, 
and chymostatin. 

Concentrations of ADF and G actin were determined spectrophotometri- 
cally using E l~ at 280 nm = 6.45 (Giuliano et al., 1988) and E t~ at 290 
n m =  6.3 (Houk and Ue, 1976), respectively. All other protein concentra- 
tions were determined by the filter paper dye-binding assay (Minamide and 
Bamburg, 1990) with ovaibumin as a standard. 

Peptides from both ADF and pADF digests were sliced from poly- 
vinyldifluoride (PVDF) membranes and sequenced on an ABI 471 auto- 
mated protein sequencer in the Macromolecular Resource Facility, Colo- 
rado State University (Fort Collins, CO). 

Sample Preparation 

For polyacrylamide gel electrophoresis in the presence of SDS (SDS- 
PAGE): freshly dissected tissues and/or cultured cells scraped from their 
dish after washing were prepared for SDS-PAGE by sonication (two 10-s 
pulses) in 20 vol of 10 mM Tris, pH 7.4, 2% SDS, 20 mM NaF, 10 mM 
DTT, 2 mM EGTA, and immediately placed in boiling water for 3 min. Af- 
ter cooling the samples on ice, proteins were precipitated (Wesscl and 
Fliigge, 1984) and dissolved in sample preparation buffer (SPB) containing 
0.125 M Tris, pH 6.8, 1% SDS, 5% glycerol, 10% 2-mereaptoethanol, 
0.01% bromophenol blue. For two-dimensional (2-D) gels: Samples for 2-D 
gels were prepared similarily except that the precipitated proteins were dis- 
solved in lysis buffer (9.5 M urea, 2% NP-40, 2% ampholytes (pH 3-10) 
and 10% 2-marcaptoethanol) (OTarreU, 1975). 

For one dimensional (l-D) Peptide Mapping. Peptide mapping was per- 
formed according to the method of Plaxton and Moorhead (1989) on re- 
duced and carboxyamidomethylated ADF and pADE Proteins separated by 
SDS-PAGE were visualized by a brief staining with 0.125 % Coomassie bril- 
liant blue in 50% methanol, 10% acetic acid, and excised from the gel. To 
each gel slice in a microcentrifuge tube was added 420 #1 of a reaction mix- 
ture, consisting of 25 nag BrCN (dissolved in 20 #1 acetonitrile) in a total 
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of 420 #1 of 0.3 N HC1. After incubating for 15 rain at 370C, the reaction 
mix was removed and each gel slice was equilibrated in 0.125 M Tris-Cl, 
pH 6.8, 0.1% SDS, 1 mM EDTA for 30 rain at 30"C with six buffer changes. 

Phosphoamino Acid Mapping. Immunoprecipitated 32p-labeled ADF 
from GCPs and fibroblasts was dissolved in 6 N HC1 (100/.d) sealed under 
nitrogen gas and incubated for 2 h at ll0°C. The acid hydrolysates were 
repeatedly (three times) dried under vacuum in a Spced-Vac and resus- 
pended in water. 

Electrophoretic Methods 
SDS-PAGE was performed by the method of Laemmli (1970) on 15% T, 
2.7% C isocratic mini-slab gels (Idea Scientific, Minneapolis, MN). Pre- 
stained SDS-PAGE standards (18.5, 27.5, 32.5, 49.5, 80, and 106 kD) were 
from Bio-Rad Laboratories (Richmond, CA). 

2-D gel electrophoresis was conducted using nonequilibrium pH gradient 
electrophoresis (NEpHGE) in the first dimension (O'Fan'ell et al., 1977; pH 
3-10 ampholytes) in 75-mm long, 1.2-mm diam, tube gels. NEpHGE was 
run at 0.1 W per tube at 1,200 V maximum for 2 h. SDS-PAGE on mini-slab 
gels was used in the second dimension. Proteins were visualized by silver 
staining (Bamburg et al., 1991). 

Electroblotting of proteins from 1- and 2-D gels onto nitrocelluose (0.1 
#m; Schleicher & Schuell, Keene, NH) or PVDF membranes (Immobilon 
P; Millipore Corp., Bedford, MA) was performed as described previously 
(Bamburg and Bray, 1987) except that a Genie Blotter (Idea Scientific, Min- 
neapolis, MN) was used for 1 h at 0.3 A. Some electroblots were stained 
for protein with colloidal gold (Moeremans et al., 1985). 

Peptide Mapping. Gel slices containing BrCN-treated protein were 
transferred to the wells of a SDS-polyacrylamide gel (20% T, 0.5% C 
separating/10% T, 4.8% C stacking) containing 10% glycerol (Plaxton and 
Morehead, 1989). Electrophoresis was performed for 5.5 h at a constant 
current of 13 mA. Peptides were visualized in the gel by silver staining or 
were electroblotted onto PVDF membranes and visualized by Coomassie 
brilliant blue R staining. 

Phosphoamino Acid Mapping. The aqueous hydrolysates were applied 
to a silica gel TLC plate (250-tzm thickness; EM Reagents, Elmsford, NY) 
along with a mixture of phosphoamino acid standards. After electrophoresis 
for 60 min at 1,000 V in acetic acid/pyridine:water (50:5:945 by volume), 
standard amino acids were visualized with 0.3% ninhydrin in butanol. 
Autoradiography was used to visualize the position of the 32p-labeled 
amino acid. 

Immunological Methods 
Antibodies. Purified bacterially expressed ADF (Adams et al., 1990) was 
used as the antigen to raise an immunoprecipitating rabbit antibody to ADE 
The antiserum reacts specifically with ADF isoforms on 1- and 2-D immu- 
noblots of chick brain extracts as reported for another ADF antiserum 
(Bamburg and Bray, 1987). An IgG fraction was prepared on protein 
G-agarose (Pierce Chemical Co., Rockford, IL) according to the standard 
protocol in the manufacturer's directions, and characterized for its ability 
to specifically immunoprecipitate ADF species (see Results). mAb (hybrid- 
oma supernatant) to chicken cofilin (mAb22) was a gift from Dr. Takashi 
Obinata (Chiba University, Chiba, Japan) (Abe ct al., 1989). 

lmmunodetection on lmmunoblots. The blocking and immunostaining 
of electroblots was performed as previously described (Bamburg et al., 
1991). Blots were scanned on an HP scanner interfaced to a Microscan 2000 
computer image analysis system (Technology Resources, Inc., Knoxville, 
TN). Internal standards of purified embryonic chick brain ADF (3-18 ng 
for nitrocellulose; 0.3-3 ng for PVDF) were included on gels used for quan- 
titative measurements. 

lramunoprecipitation. Cells from a single 60 mm tissue culture dish 
were lysed in 200/~1 of 2% SDS, 10 mM Tris, pH 7.5, 10 mM NaF, 5 mM 
DTT, 2 mM EGTA, 2 % BSA, and the lysate scraped from the culture dish 
and placed in a boiling water bath for 3 min. Then 24/~1 of Triton X-100 
was added, followed by 60/zl of buffer containing 100 mM Hepes, pH 7.4, 
1.5 M NaCI, 10% Triton X-100. After adding 196 ~1 of water, 120/zl of 
a 2 mg/rnl anti-ADF IgG fraction was added to give a final volume of 600 
t~l. This solution was mixed by rotation at 4"C for 1 h. Then 60/zl of a set- 
tled suspension of protein A-Sepharose beads, equilibrated in 10 mM 
Hepes, pH 7.4, 150 mM NaC1, 1% Triton X-100, was added. After mixing 
again on the rotating wheel for 1 h at 4°C, the Sepharose beads were 
sedimented in a microfuge and washed five times by resuspension in the 
equilibration buffer. Bound proteins were eluted from the beads in either 
SPB for 1-D gels or lysis buffer (O'Farrell et al., 1977) for 2-D gels. 

Radiolabeling Methods 
Myocyte Cultures. [32p]Orthophosphate (0.1 mCi/ml) was added to the 
culture medium of 7-d myocyte cultures. After 48 h, the medium was re- 
moved and the cells washed with PBS (1.5 mM KH2PO4, 8.1 mM 
Na2HPO4, 2.7 mm KCI, 140 mM NaC1) at 37°C. Cells were scraped from 
the dish in 10 mM Tris-C1, pH 7.4, 2 mM NaF, 1 mM NAN3, 0.5 mM 
DTT, sonicated (2 x 10 s), and the cell homogenate centrifuged at 4°C for 
30 min at 80000 g~e. The supernatant was applied to a column (0.5 x 1.0 
cm) of DEAE-cellulose (DE-52; Whatman Corp., Clifton, N J) equilibrated 
in the same buffer containing 50 mM NaC1. The flow-through was collected 
and concentrated on a CentriCell-20 (10 kD cut-off) (Polysciences Inc., 
Warrington, PA). The proteins were precipitated (Wessel and Fliigge, 1984) 
and prepared for either SDS-PAGE by solubilization in Ix  SPB or 2-D gel 
analysis by solubilization in lysis buffer. 

C2 Cells. Cell monolayers (107 cells/60 mm dish) were rinsed with 150 
mM NaC1, 10 mM Hepes, pH 7.4, 5.5 mM/3-D-glucose, 5.0 mM KC1, 1.0 
mM MgSO4, 1.0 mM CaCI2. The cells were covered with 2 ml of this same 
buffer and 1.0 mCi of [32P]orthophosphate was added to each culture at a 
final phosphate concentration of 0.3 mM. After 90 rain at 37°C, the radioac- 
tive medium was removed by aspiration and the cells washed twice with 
fresh buffer (5 ml). The cells from each dish were scraped into 300/~l of 
10 mM Tris, pH 7.4, 2% SDS, 20 mM NaE l0 mM DTT, 2 mM EGTA, 
sonicated 1 s and boiled for 5 min. Each cell extract was split into three 
aliquots and the proteins were precipitated (Wessel and Fliigge, 1984). The 
pellets were solubilized in either 10 mM Tris, pH 7.4, 2% SDS, 10 mM 
DTT (for protein determination), SPB (for SDS-PAGE), or lysis buffer (for 
2-D gel electrophoresis). 

Chick Skin Fibroblasts. Fibroblasts in 60 mm culture dishes were la- 
beled at 37°C for 3-4. h with 0.5-1.0 mCi [32p]orthophosphate added in 
phosphate-free HBSS. Cells were washed with HBSS and lysed into 200 
#l of 10 mM Tris, pH 7.4, 20 mM NaF, 2 mM EGTA, 0.5 mM DTT, 0.2% 
Triton X-100, and 10 td/ml protease inhibition cocktail. These lysates were 
scraped from the plate, centrifuged for 1 min at 13,000 g in a microfuge, 
and the supernate used for the DNase I-Sepharose actin monomer binding 
assay described below. 

GCPs. GCPs from embryonic chick brain were labeled with [32p]or- 
thophosphate at 1 l~Ci/~g protein for 90 min at 37°C in phosphate-free 
Krebs' buffer (Lockerbie et al., 1991). GCPs were lysed into 2% SDS in 
10 mM Tris-C1, pH 7.4, 20 mM NaF, 2 mM EGTA, 0.5 mM DTT, and 10 
/~l/ml protease inhibition cocktail for immunoprecipitation of ADF and 
pADE 

Autoradiography of dried gels and blots was performed on preflashed Ko- 
dak AR X-ray Film sandwiched between the gel or blot and a Dupont inten- 
sifying screen in a cassette stored at -70°C. Correct alignment of sample 
and film was achieved using phosphorescent GLOGO stickers (Stratagene). 

In Vitro Phosphorylation/Dephosphorylation Assays 
Myosin (1.2 mg/ml; 2t~M), myosin light chains (1.2 mg/ml; 60/~M), and 
various concentrations of brain ADF (0.05, 0.10, 0.19, 0.29 mg/ml; 2.7 to 
15.7/~M) were incubated for 30 min at 25°C with myosin light chain kinase 
(MLCK) (0.5/zg/rnl) and 1 mM 3,[32p]-labeled ATP (104 dpm/pmole) in 25 
mM Tris-C1, pH 7.4, 4 mM MgCI: containing either 0.5 mM EGTA or 0.5 
mM CaC12 with or without 0.5 mg/ml calmodulin. MLCK from chicken 
gizzard was a generous gift from Dr. John Kendrick-Jones (Medical Re- 
search Council Laboratory of Molecular Biology, Cambridge, UK). After 
stopping the reaction by the addition of 4 x SPB (25 % of volume) and in- 
cubating in a boiling water bath for 5 min, each sample was subjected to 
SDS-PAGE. Antoradiography was used to locate the labeled bands after sil- 
ver staining and drying the gel. 

Calcium-calmodulin-dependent protein kinase II (CaM kinase ID 
(McGuinness et al., 1985), and the catalytic fragment of protein kinase C 
(PKC) (Roth et al., 1989; Huang and Huang, 1986) both from rat brain, 
and protein kinase A (PKA) (catalytic subunit) from bovine heart (Beavo 
et al., 1974) were prepared according to published procedures. They were 
stored as 0.3 mg/ml stock solutions. Phosphorylation assays on chick ADF 
were performed using synapsin I as a positive control. ADF (200 pmoles) 
isolated from embryonic chick brain or myocyte cultures was incubated for 
30 min at 30°C with 5.0/zg/ml of either rat brain CaM kinase II (in the pres- 
ence of 30/~g/ml calmodulin and 0.3 mM calcium), or rat brain PKC cata- 
lyric subunit, or bovine heart PKA catalytic subunit in 50 mM Hepes, pH 
7.4, 10 mM MgC12 including 50 mM 3,[32p]-Iabeled ATP (5 x 106 
cpm/umole). These conditions have been shown to be optimal for the label- 
ing of synapsin I by CaM kinase II and PKA (Schiebler et al., 1986). The 
reaction was stopped by quick freezing the samples in liquid nitrogen. Sam- 
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pies were prepared for NEpHGE by addition of an equal volume of 2 x lysis 
buffer (without urea) and solid urea to 9.5 M final concentration. 

Dephosphorylation Assays. 1% SDS was added to the partially purified 
brain pADF and it was heated in a boiling water bath for 2 rain, cooled, 
and the protein precipitated (Wessel and Flligge, 1984). The protein was 
redissolved in 100 ill 1% SDS in 50 mM Tris, pH 9.3, 1 mM MgC12, 0.1 
mM ZnCI2 and 1 mM spermidine. The sample was made 5 % in Triton 
X-100, split into two portions, and 10 U of alkaline phosphatase (calf intes- 
tine) was added to one portion. Both the control and alkaline phospha- 
tase-treated samples were incubated at 37"C for 1 h. The reaction was ter- 
minated in aliquots removed at zero time and at 60 min by precipitation of 
the protein (Wessel and Fliigge, 1984). Precipitates were solubilized in SDS 
sample preparation buffer for 1-D gels or urea lysis buffer (O'Farrell et al., 
1977) for 2-D gels. 

Immunoprecipitated [32p]-labeled pADF from either GCPs or fibro- 
blasts was incubated with 4 U of alkaline phosphatase (calf intestine) in 100 
mM Tris, pH 8.0, 200 mM glycine, 10 mM Zn acetate, 10 mM MgCI2, 10 
mM CaC12 at 37"C. At various times aliquots were removed and boiled in 
SDS sample preparation buffer. Samples were analyzed by SDS-PAGE, au- 
toradiography, and densitometry of the autoradiograph. 

ADF Activity Assays 
DNase I Inhibition Assay. Actin depolymerizing activity was measured by 
the DNase I inhibition assay (Harris et al., 1982). Various concentrations 
of purified chick brain ADE both forms of ADF isolated from myocyte ex- 
tracts, and a buffer control were incubated with 5/ tg F-actin for 15 min at 
room temperature. DNase I (2.5/~g) in 5/~1 of 0.125 M Tris, pH 7.4, 5 mM 
MgCI2, 2 mM CaC12, 1 mM NaNa at 4"C followed by DNA (90 tzg in 900 
#1 of the same buffer) at 30"C, were added to each mixture and the increase 
in absorbance at 260 am was followed at 30"C in a sipper cell of a Beckman 
DU-8B spectrophotometer. The maximal change in absorbance ( ~ z t o )  of 
each sample was compared to the control and plotted as percentage of 
DNase I activity remaining versus the amount of ADF (or pADF) used. 

Pyrenyl-Actin Assembly. Pyrenyl-G-actin, incubated with 10 mM Tris, 
pH 7.4, 10 mM NaF, 0.5 mM DTT (control), or various concentrations of 
ADF or pADF from brain or myocyte extracts in this same buffer, was in- 
duced to assemble by the addition of KC1 and MgC12 to 0.1 M and 2 mM, 
respectively. Fluorescence measurements were made in a spectrofluorome- 
ter (4800S Fluorometer; SLM-Aminco, Urbana, IL) using an excitation 
wavelength of 366 run and an emission wavelength of 388 nm. Total sam- 
ple volume was 100 #1. The relative fluorescence intensity was plotted 
against time. 

Actin Monomer Binding Assay. Chick skin flbroblasts prelabeled with 
[32P]orthopbosphate were washed twice with PBS and extracted with 200 
/zl 10 mM Tris, pH 7.5, 2 mM EGTA, 20 mM NaF, 0.5 mM DTT, 10 #l/ml 
protease inhibition cocktail, and 0.2% Triton X-100. After centrifuging the 
extract for 3 min in a microfuge, the supernate was mixed for 1 win with 
either 60 ttl of DNase I-Sepharose 4B slurry (50%) or Sepharose 4B alone. 
The resins were then pelleted, the supernate removed and saved (see below), 
and the pellet washed three times with 10 mM Tris, pH 7.5, 1 mM MgCI2, 
0.2% Triton X-100. The actin complexes bound to the resin were eluted by 
boiling in 2x  SPB. pADF, and excess ADF that did not bind to the resin 
were immunopreeipitated from the supernate. Proteins in the actin com- 
plexes and immunoprecipitates were separated by SDS-PAGE, electroblot- 
ted onto nitrocellulose, and immunostained for ADE The immunoblot was 
then subjected to autoradiographic analysis. 

Results 

One-Dimensional SOS-PAGE and 
Immunoblotting of Extracts from Myocyte Cultures 
Reveal Two Distinct ADF Species 
Chick myocyte cultures at different stages of  fusion and 
myotube development (Fig. 1) were extracted and the ex- 
tracts subjected to 1-D SDS-PAGE and immunoblotting for 
ADF (Fig. 2). A new immunoreactive ADF species with a 
higher relative molecular weight than the ADF standard is 
visible by 2 d in culture and increases to approximately the 
same level as ADF by 10 d in culture. It remains at this level 
for at least a week. An immunoreactive form of ADF with 

Figure 1. Phase contrast  (b, d,  and f )  and Hoffman modulat ion con- 
trast (a, c, and e) photomicrographs  of  chick embryo myocytes 
(El0) cultured for: (a) 1 d; (b) 2 d; (c) 3 d; (d)  4 d; (e) 5 d; (f)  6 d. 

similar mobility was also found in extracts of undifferen- 
tiated murine C2 cells. Quantitative densitometry of many 
of these immunoblots indicated that this second form of ADF 
was present as 45 % of the total in 10 d myocyte cultures and 
60% of the total in C2 cells. Total immunoreactive ADF 
(both forms) equals 0.1 + 0.02% (SD) of the total protein 
in the myocyte extracts and 0.15 + .03% of the total protein 
in C2 cell extracts. 

Two Forms of ADF from Myocyte Cultures Are 
Separated and Purified 
Myocytes, cultured for 10 d, were washed with PBS, scraped 
from 40 100 mm culture dishes, and collected by low-speed 
centrifugation. Approximately 5 ml of packed cells were ob- 
tained. The cells were sonicated in 15 ml of 10 mM Tris, pH 
7.4, 10 mM NaF, 0.5 mM DTT containing 150/~1 ofprotease 
inhibition cocktail. This homogenate was centrifuged at 
80,000 g~ for 1 h. The supernate between the lipid layer 
and the pellet was applied to a DEAE-cellulose column (1.75 
x 5.0 cm) equilibrated in the same buffer containing 50 mM 
NaC1 but without the protease inhibitors. The flow-through 
(40 ml), containing all the immunoreactive ADF (both spe- 
cies), was collected and concentrated to 1-2 ml on Centriflo 
ultrafiltration membrane cones. No additional immunoreac- 
tive ADF could be detected in a high salt wash (600 mM 
NaC1) of the DEAE-cellulose column. The concentrate of 
the ADF-containing fraction (5 mg total protein) was ap- 
plied to a Sephadex G-75 (2.5 x 90 cm) column equilibrated 
in 10 mM Tris, pH 7.4, 10 mM NaE 0.5 mM DTT. Both im- 
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Figure 2. 1-D silver stained gel (A) and corresponding immunoblot 
(B) of extracts from myocytes cultured for various times. (Lane 1 ) 
Prestained molecular weight markers; (lane 2) ADF standard (5 
ng); (lane 3) 2 d culture; (lane 4) 4 d culture; (lane 5) 6 d culture; 
(lane 6) l0 d culture; (lane 7) 12 d culture; (lane 8) 15 d culture. 

Figure 3. SDS-PAGE of fractions (0.6 ml) from hydroxylapatite 
chromatography of the green A-Sepaharose flow-through. (A) Sil- 
ver stained gel; (B) immunoblots of similar gel stained for ADF; 
(C) immunoblot of similar gel stained for cofilin. Arrowhead 
marks position of identical mobility on each gel or blot. Lane s con- 
tains ADF standard in A and B, and C2 cell extract in C. Fractions 
containing pADF (21-32) were pooled and concentrated on a Cen- 
tricon 10 microconcentrator to yield myocyte pADE 

munoreactive ADF species eluted at the trailing edge of the 
first major protein peak and were identified by SDS-PAGE 
and immunoblotting. The fractions (54-64 of 3-ml each) 
containing these forms of ADF were pooled and applied to 
a Green A agarose column (0.8 x 2.5 cm) equilibrated in 
the same buffer. One species of ADF (that with the higher 
relative molecular weight on SDS-PAGE) did not bind to the 
resin. As shown below, this form of ADF contains phosphate 
so it will be referred to as pADE The pADF was collected 
in the flow-through (40 ml) and concentrated to 2-3 ml on 
a YM-5 ultrafiltration membrane under nitrogen pressure. 
The buffer was changed to 10 mM sodium phosphate, pH 
7.4, 0.5 mM DTT by diluting (6x),  and concentrating three 
times. This fraction was applied to a hydroxylapatite column 
(1.5 x 3 cm) equilibrated in the same buffer. After extensive 
washing with buffer (10 column volumes), the pADF was 
eluted with a 10 to 100 mM gradient (30 ml) of pH 7.4 so- 
dium phosphate containing 0.5 mM DTT. The fractions con- 
taining pADF (Fig. 3 B) were largely resolved from frac- 
tions containing cofilin (Fig. 3 C), and were pooled and 
concentrated on a Centricon 10 microconcentrator. 

The other species of ADF immunoreactive material, myo- 
cyte ADE which bound to the Green A resin, was eluted 
with a 0-150 mM NaCl gradient (50 ml total) in the Green 
A column buffer. Fractions containing myocyte ADF were 
pooled and concentrated on a Centricon 10 microconcentra- 
tot. Both ADF and pADF were either directly assayed for 
activity or immediately frozen in liquid nitrogen. The 
confluent myotubes from forty 100 mm dishes yielded ,~10 
#g of pADF and 100 #g of ADE The yield of pADF is 10x 
lower than the yield of ADF even though each form is present 
in approximately equal amounts in extracts from 7-10 d cul- 
tured myocytes. We have subsequently determined that loss 
of pADF occurs during concentration on the Centriflo ul- 
trafiltration cones and on the Centricon 10. Fig. 4 shows a 
silver stained gel and immunoblot of each fraction obtained 
during this purification procedure. 

Characterization of A D F  and pADF Isolated from 
Myocyte Cultures 

pADF and ADF Share Similar Antigenic Epitopes. Equal 
amounts of ADF and pADF were subjected to electrophore- 
sis in SDS-polyacrylamide gels. Densitometric scans of 
Coomassie brilliant blue R-stained gels, colloidal gold 
stained electroblots, and ADF immunoblots were compared. 
ADF and pADF transfer and stain identically in each proce- 
dure, demonstrating that ADF and pADF have equal im- 
munoreactivity to the antiserum. Amounts of sample loaded 
for each measurement were in the linear range for each de- 
tection method used. Identical immunoreactivty between the 
species was found using antisera made against electrophoret- 
ically pure ADF from either chick brain or bacterial culture 

Figure 4. SDS-PAGE and immunoblot of aliquots taken during the 
purification of ADF and pADF from myocyte cultures. (A) Silver- 
stained gel and (B) corresponding immunoblot. (Lane 1) ADF and 
molecular weight markers (17, 29, 36, 67, 94, 110 kD); (lane 2) su- 
pernate of myocyte extract (3.3 #g); (lane 3) DEAE-Cellulose flow- 
through (3.3 #g); (lane 4) Sephadex G-75 pool (0.5 #g); (lane 5) 
green A flow-through (0.2 #g); (lane 6) ADF eluted from green A 
(40 rig); (lane 7) pADF eluted from hydroxylapatite (40 ng); (lane 
8) brain ADF (40 ng). 
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Figure 5. pADF is more acidic 
than ADE Immunoblots of: 
(a) myocyte pADF; (b) myo- 
cyte ADF; and (c) mixture of 
both, separated on 2-D gels. 
About 250 ng of each protein 
were applied to the gels. ADF 
and pADF from myocytes 
each migrate identically to 
their counterparts from brain 
(not shown). 

(recombinant ADF), substantially reducing the possibility 
that immuno cross-reactivity arises from a contaminating 
antigen in the ADF preparation. 

pADF Is More Acidic Than ADE The relative isoelectric 
points of ADF and pADF were compared on 2-D gels using 
NEpHGE in the first dimension and SDS-PAGE in the sec- 
ond (Fig. 5). Although proteins do not reach their actual 
isoelectric points during NEpHGE, protein standards of 
about the size of ADF (myoglobins) come very close to 
reaching their theoretical pI. Myocyte ADF comigrates with 
chick brain ADF at an approximate pI of 7.8. Myocyte pADF 
has an approximate pI of 6.6. This acidic shift of approxi- 
mately 1.2 pH U is close to the theoretical shift in pI for the 
addition of a single phosphate group to ADF (calculated pls 
= 7.42 and 6.35 for ADF and pADF, respectively, based 
upon the ADF amino acid sequence with its blocked NH2- 
terminus (Adams et al., 1990) and the pKs of ionizable 
amino acids under denaturing conditions (Tanford, 1962). 

pADF Is Not Cofilin or pCofilin. Extracts from the pri- 
mary avian myocyte cultures were screened with both a mAb 
raised against chick cofilin (mAb22; Abe et al., 1989) and 
ADF antiserum. On 1-D immunoblots, mAb22 recognizes a 
single species in these extracts with a mobility very close to 
pADF (Fig. 3). However, on immunoblots of 2-D gels (Fig. 
6 A), mAb22 reacts with two proteins, one migrating be- 

tween pADF and ADF (,~pI = 7.1), and the other more 
acidic than pADF (presumably phosphorylated cofilin), and 
not with either ADF or pADE Extracts from murine C2 cells 
also contain two protein spots recognized by mAb22 (Fig. 
6 B). The major immunoreactive spot migretes at pI of ~7.8 
(almost directly above ADF), and corresponds to the "20-kD 
ADF" species previously identified in BHK cells (Koffer et 
al., 1988). Partial sequence analysis of this protein isolated 
from BHK cells has subsequently confirmed it to be cofilin 
(J. R. Jensen, L. S. Minamide, M. E. Adams and J. R. Bam- 
burg, unpublished results). The other cofilin reactive spot in 
C2 cell extract has a pI of 6.2-6.3, corresponding to a phos- 
phorylated form of cofilin previously identified in 3Y1 cells 
(Ohta et al., 1989). A second immunostaining of this blot 
with ADF antiserum localized separate species as ADF and 
pADF (Fig. 6 B). Reversal of the order of the antibodies gave 
similar results. 

pADF and ADF Have nearly Identical Absorbance 
Spectra. The UV absorbance spectra of ADF and pADF iso- 
lated from cultured myocytes are nearly identical, eliminat- 
ing consideration of several possible posttranslational 
modifications for the formation of pADE such as ADP- 
ribosylation, which significantly alters the UV absorbance 
due to the addition of the purine nucleotide. 

Peptide Maps of pADF and ADF Are Similar and Se- 
quence of One Comparable Peptide Is Identical. Cyanogen 
bromide cleavage of ADF and pADF in gel slices was incom- 
plete as both pADF and ADF gave bands of undigested pro- 
tein (Fig. 7). However, a qualitatively similar pattern of pep- 
tides was obtained from the partial digests of both samples. 

Corresponding peptides from the cyanogen bromide 
digests of the carboxamidomethylated ADF and pADF were 
excised from PVDF membrane and subjected to 12 cycles 
of automated protein sequencing. For both peptides the first 
cycle gave ambiguous results, but the sequence of the next 
11 amino acids was confirmed to be identical. This peptide 
(VRKCSTPEEVK) runs from amino acid 20 to 30 in the 
ADF molecule. The similar peptide from chick cofilin has 
the sequence (VRKSSTPEEIK) (Abe et al., 1990). Thus, 
pADF is a modified form of ADE and neither cofilin nor 
phospho-cofilin contaminates the purified pADE 

Figure 6. Cofilin and pADF are dis- 
tinct proteins. Immunoblots of 2-D 
gels of extracts from (a) chick myo- 
cytes or (b) cultured mouse C2 cells 
(15/~g total protein) visualized first 
with mouse monoclonal antibody 
(mAb22) to cofilin (top) followed by 
rabbit antiserum to chick ADF (bot- 
tom). Reversing the order of staining 
blot (not shown) gave identical 
results except the proteins visualized 
during the first round of staining are 
more intense. Large arrowhead 
points to ADF and small arrowhead 
to pADE The darkest staining cofilin 
species in the mouse C2 cell extract 
is identical to the "20-kD ADF spe- 
cies" previously isolated from BHK 
cells (Koffer et al., 1988; Bamburg et 
al., 199D. 
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Figure 7. ADF and pADF 
have similar BrCN peptide 
maps on 1-D gels. Reduced 
and carboxamidomethylated 
brain ADF (a, 3/~g), myocyte 
pADF (b, 2/~g) and myocyte 
ADF (c and d, 6 and 4 /~g) 
were digested in gel slices 
with BrCN and the resulting 
peptides separated on SDS- 
PAGE (20% T, 0.5% C). The 
upper band in each gel 
represents undigested protein 
(18.5 kD). Position of molecu- 
lar weight markers: 18, 14.3, 
6.2 and 3.4 kD. Sequence 
comparison was made for the 
peptide marked with an arrow 
and the corresponding peptide 
from brain digests. 

Idenafication of pADF in Other Cells and 1Issues 

We have used 2-D gel immunoblotting to identify pADF and 
to quantify it relative to ADF in extracts of several cell lines, 
tissues, and subcellular fractions. Extracts were prepared in 
SDS buffer containing NaF, a phosphatase inhibitor, and 
were heated to boiling immediately after extraction to inacti- 
vate phosphatases and proteases. Table I shows that pADF 
is present in every sample in which we find ADE Its level 
with respect to unphosphorylated ADF ranges from a low of 
18% to >150%, or 15 to 61% of the total ADF (Table I). 

Immunoprecipitation of 32P-labeled pADF from 
Cell Extracts 

The specificity of the ADF immunoprecipitation was evalu- 
ated using 2 #g [35S]methionine-labeled recombinant ADF 

Table L pADF as a Percentage of Total ADF in Tissues 
and Cells* 

pADF as percent 
oftotal ADF + SD 

Tissue or tissue fraction 
Chick brain, 10-d-old embryo 21% 
Chick brain GCPs 28 + 5% 
Chicken sciatic nerve, 6-wk old 27 -1- 6% 
Chick dorsal root ganglion, 8-d-old embryo 31% 
Chick skin, 10-d-old embryo 16.5% 
Chick muscle, 10-d-old embryo 21% 

Primary Cell Cultures 
Chick skin fibroblasts, primary culture 51 + 4% 
Chick myocytes, 15-d-old culture 45% 
Mouse macrophages, primary culture 15% 

Cell Lines 
Rat PC12 cells, undifferentiated 47% 
Mouse C2C12 cells, undifferentiated 61% 
Mouse NIH 3T3 cells 38 + 2% 
Mouse WEHI-3 ceils, suspension culture 18% 

* Measured from densitometry of 2-D gel immunoblots. Standard deviation is 
given for samples on which multiple independent analyses were performed. All 
other results are averages of duplicates except for the WEHI-3 cells (single 
analysis). 

in the presence of 6 mg/ml BSA. An IgG fraction from 
preimmune serum did not immunoprecipitate ADE The im- 
munoprecipitation of asS-labeled ADF was completely in- 
hibited by addition of a 100-fold excess of unlabeled ADE 
Maximal precipitation of the ADF (1.2 #g) under the condi- 
tions used here is achieved with 240 #g IgG. Immunoprecipi- 
tates of extracts from chick skin fibroblasts prelabeled with 
[32p]orthophosphate contain radiolabeled pADF as well as 
unlabeled ADF as shown by autoradiography of 2-D immu- 
noblots (Fig. 8). Identical results were obtained with extracts 
from radiolabeled GCPs. 

Identification of Phosphoserine As the Major 
Phospho Amino Acid 

Phosphoamino acid analyses of the immunoprecipitated 
pADF from a2p-labeled GCPs (Fig. 9 a) and chick skin 
fibroblasts (data not shown) show that phosphoserine ac- 
counts for ~80% of the phosphorylated amino acid present 
with phosphothreonine accounting for the remaining 20 %. 
No phosphotyrosine could be detected. 

Conversion of pADF to ADF with 
Alkaline Phosphatase 

Embryonic chick brain is a good source of pADF (Table I). 
We have used a modified purification procedure (eliminating 
the gel filtration step) to prepare partially purified pADF to 
see if it could be converted to ADF by alkaline phosphatase 
treatment. 2-D gel analysis of the partially purified material 
showed that the pADF is the only species with mobility in 
the 18-19-kD region. The zero time sample, 60-rain in- 
cubated control and 60-min alkaline phosphatase-treated 
sample were run in duplicate on SDS-PAGE, one set being 
silver stained and the other electroblotted to PVDF mem- 
brane for immunodetection. The results (Fig. 9 b) clearly 
show that by 60 min >90 % of the pADF has been converted 
to ADF. This alkaline phosphatase product of pADF diges- 
tion also comigrated with unphosphorylated ADF on 2-D 
gels (data not shown). In addition, the [32p]phosphate on 
the pADF immunoprecipitated from both GCPs and chick 
fibroblasts is removed in a time-dependent manner by alka- 

Figure 8. Only the pADF spot on 2-D gels of immunoprecipitates 
made from extracts of [32p]orthophosphate-labeled cells contains 
radioactivity. Chick skin fibroblasts prelabeled for 4 h with 
[32P]orthophosphate were washed, lysed in SDS buffer, and ex- 
tracts were prepared for immunoprecipitation as described in 
Materials and Methods. The proteins were eluted from the protein 
A-Sepharose in lysis buffer and separated on 2-D gels. The immu- 
noblot of the ADF region of the gel and its corresponding autora- 
diograph show that radioactivity is only associated with the pADF 
species. 
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Figure 9. pADF contains phosphoserine and serves as a substrate 
for alkaline phosphatase. (a) Hydrolysates of immunoprecipitates 
from [32p]orthophosphate-labeled GCPs (shown here) and chick 
skin fibroblasts, subjected to phosphoamino acid mapping, con- 
tained phosphoserine as the major phosphoamino acid. Densito- 
metric scans of several autoradiographs showed that phosphoserine 
accounted for ,v80% of the phosphoamino acid radioactivity, with 
the remainder being phosphothreonine. No phosphotyrosine was 
found in pADF. (b) Partially purified pADF (,05 #g of the pADF 
species) from 10-d-old embryonic chick brain, was digested with 
alkaline phosphatase as described in Materials and Methods. Ali- 
quots were taken before addition of enzyme, 60 rain after enzyme 
addition, and from a control sample incubated under identical con- 
ditions for 60 rain without enzyme. Mobility shift of the alkaline 
phosphatase-trcated material was also confirmed by 2-D gels. 
Greater than 90% of the pADF was converted to ADF in 60 min. 
(c) Immunoprecipitated pADF from chick skin fibroblasts (B) and 
GCPs (e) was resuspended and treated with alkaline phosphatase. 
The time course for the loss of [32p]phosphate from the pADF 
shows a half-life of ,040 rain under the conditions used. 

line phosphatase (Fig. 9 c), consistent with the results seen 
in the mobility shift. 

pADF Is An Inactive Isoform of ADF 

DNase Inhibition Assay. Purified chick brain ADF and 
ADF isolated from myocyte cultures generate similar 
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Figure 10. pADF is inactive in depolymerizing F-actin or altering 
the assembly of G-actin. (a) DNase I inhibition assay shows that 
brain (*) and myocyte ([]) ADF can depolymerize F-actin, gener- 
ating monomer which binds to and inhibits DNase I. Over the same 
concentration range, pADF ( , )  is inactive. (b) The assembly ki- 
netics of 5 #M pyrenyl-G-actin (o) are altered by the un- 
phosphorylated forms of 0.4 #M myocyte ADF (n) and 0.5 #M 
brain ADF (e), but not by 5 #M pADF (,) .  The delay in assembly 
is presumably due to the monomer sequestering ability of ADF 
while the slightly increased rate of assembly arises from severing 
of F-actin. 

amounts of monomeric actin from F-actin in this assay (Fig. 
10 a). Myocyte pADF is completely inactive in generating 
actin monomer from F-actin under identical conditions. 

Assembly of Pyrenyl-Actin. Chick brain ADF and myo- 
cyte ADF have nearly identical effects on the rate of assem- 
bly and the final extent of assembly of pyrenyl actin (Fig. 10 
b). Myocyte pADF does not alter either the rate or final ex- 
tent of assembly. 

ADF and pADF Binding to Actin in Cell Extracts. Acfm 
and actin-bound ADF in extracts of chick embryo fibroblasts 
prelabeled with [32p]orthophosphate are co-sedimented by 
DNase I-Sepharose resin but not by Sepharose resin alone 
(Fig. 11 a). The 32p-labeled pADF in these cell extracts re- 
mains in the supernate and is immunoprecipitated with IgG 
against ADF (Fig. 11 b). Therefore, pADF in cell extracts 
is not bound to actin that binds to the DNase I-Sepharose 
resin. 

ADF Is Not a Substrate for Many Common Kinases 

To determine if ADF can serve as a substrate for one of the 
known protein kinases, in vitro phosphorylation assays were 

The Journal of Cell Biology, Volume 122, 1993 630 



Figure 11. pADF in cell 
extracts is not bound to 
monomeric actin. DNase 
I-Sepharose resin was used 
to bind actin and actin mono- 
mer-binding proteins in two 
separate extracts prepared 
from [s2p]orthophosphate- 
labeled fibroblasts. The su- 
pernate remaining after 
DNase I-Sepharose treatment 
was used for immunoprecipi- 
tation of ADE (a) Immuno- 
blot, developed sequentially 
with ADF and actin antisera, 
and (b) corresponding au- 
toradiograph. (Lane 1) ADF 
standard; (lanes 2 and 3) 

SDS-solubilized proteins binding to the DNase resin; (lane 4) SDS- 
solubilized material binding to Sepharose resin without the cova- 
lently attached DNase; (lanes 5 and 6) ADF immunoprecipitates 
from supernates of samples used for lanes 2 and 3, respectively; 
(lane 7) ADF immunoprecipitate from supernate of sample used 
for lane 4; (lane 8) actin standard. Although significant amounts 
of ADF were found in the DNase-Sepharose pellets (especially 
sample in lane 3), no significant amount of radioactivity was as- 
sociated with the ADF in this fraction. The pADF remained in the 
supemate and was immunoprecipitated (along with remaining un- 
phosphorylated ADF). 

used using ADF purified from embryonic chick brain. Ki- 
nases tested included: CaM kinase II, PKC, PKA, and 
MLCK. 1-D SDS-PAGE, immunoblotting, and autoradiog- 
raphy were used to detect the incorporation of radioactive 
phosphate into ADE Under the experimental conditions 
used, MLCK phosphorylated myosin light chain alone or as 
part of the myosin complex, but did not phosphorylate ADE 
Incubation of ADF with the catalytic subunit of PKA, PKC, 
or the holo enzyme of CaM kinase II also resulted in <0.25 % 
of the ADF becoming labeled over 30 min, a time period 
over which the synapsin I control was stoichiometrically 
phosphorylated. The maximum amount of phosphate incor- 
porated into ADF was catalyzed by CaM kinase II but only 
amounted to 0.0025 moles phosphate/mole of ADE How- 
ever, the ADF which is phosphorylated in vitro by CaM ki- 
nase II migrated identically on 2-D gels to the isolated myo- 
cyte pADF and was dephosphorylated when incubated with 
alkaline phosphatase. 

Discussion 

pADF Is a Regulated Form of ADF Produced by a 
Cellular Kinase 

We have demonstrated here that a fraction of ADF in cells 
is phosphorylated, most likely on a serine residue. The 
pADF so produced is unable to depolymerize actin or bind 
actin monomers. It is unlikely that this inactivation occurs 
as a result of the additional hydroxylapatite chromatography 
step in the purifcation procedure since active ADF has been 
recovered from hydroxylapatite chromatography (Koffer et 
al., 1988). In addition, the pADF in freshly prepared cell ex- 
tracts was shown not to bind to G actin. Thus, pADF 
represents a regulated form of ADE 

Production of pADF from ADF requires a protein kinase, 
the nature of which has yet to be identified. Our in vitro 
studies show ADF is not phosphorylated by smooth muscle 
type MLCK and ADF is not a substrate for either PKA or 
PKC and only a very weak substrate for CaM kinase !1. 
However, pharmacological agents which perturb the activi- 
ties of PKA, PKC, and CaM kinase II in both cultured cells 
and GCPs alter the phosphorylation of ADF (R. O. Locker- 
bie, unpublished results). Thus, ADF phosphorylation may 
be regulated by a kinase cascade under the control of trans- 
membrane signals. 

Cofilin and ADF Are Unique but Related Proteins 
Probably Regulated by a Common Mechanism 

Cofilin, a protein which shares 70% sequence identity with 
ADE exists in a phosphorylated state in cultured cells (Ohta 
et al., 1989). Since our ADF antiserum has a weak (3%) 
cross-reactivity with cofilin from BHK cells (Bamburg et al., 
1991), we needed to conclusively demonstrate that pADF 
was not simply a phosphorylated form of cofilin. This was 
done using 2-D immunoblots developed with a mAb to 
cofilin that resolved the different cofilin isoforms, preceded 
or followed by development with a rabbit antiserum to ADF 
to resolve the position of ADF and pADE Only the most 
acidic isoform of ADF or cofilin from either chick fibroblasts 
or mouse C2 cells, became radiolabeled when the cells 
were preincubated in [32p]orthophosphate. The activity of 
p-cofilin has not been reported elsewhere, however it seems 
likely that phosphorylation of cofilin also inhibits its interac- 
tion with actin since no labeled cofilin in fibroblast extracts 
was found bound to the actin that bound to DNase 
I-Sepharose (Fig. 11). Thus, ADF and cofilin are isoforms 
which probably are regulated by similar posttranslational 
modifications. 

Differentiating Myocytes have Alternative Mechanisms 
for Regulating ADF Activity 

Muscle development in vivo is accompanied by a dramatic 
increase in actin levels and in actin assembly (Shimizu and 
Obinata, 1986). At embryonic day 10 in the chick '~40% of 
the actin is unassembled and this level declines to <2 % by 
2-wk posthatching. Over this same period the amount of total 
actin increases almost sevenfold, providing much of the new 
actin for assembling thin filaments. This increase in actin is 
accompanied by a 10-fold decrease in ADF from 0.2% of to- 
tal protein to <0.02% (Bamburg and Bray, 1987) and a corre- 
sponding drop in ADF mRNA (Abe and Obinata, 1989b). 
During the same developmental period ADF and ADF 
mRNA levels remain high in brain (Bamburg and Bray, 
1987; M. E. Adams, T. E. Morgan, and J. R. Bamburg, un- 
published results). Thus, ADF expression is subject to tissue 
specific regulation. 

Cultured myocytes mature into myotubes in vitro and un- 
dergo many of the same morphological changes as their in 
vivo counterparts, including cell fusion, the assembly of 
contractile sarcomeres, and an increase in total actin expres- 
sion. However, these cultured myotubes do not fully mature, 
not progressing beyond the initial pattern of contractile pro- 
tein isoform expression (Sutherland et al., 1993). The in 
vitro environment also does not provide sufficient informa- 
tion for developing myotubes to down-regulate the expres- 
sion of the ADF gene. Immunofluorescence staining shows 
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that ADF is present and diffuse throughout the cultured myo- 
tubes, even after a week in culture (Abe and Obinata, 
1989a). Muscle cells in culture cope with the additional 
ADF by converting it to the inactive pADE Therefore, 
differentiating myocytes have alternative mechanisms for 
controlling ADF activity, suggesting that limiting ADF ac- 
tivity may b e important for normal muscle development. 

Potential Significance of ADF Phosphorylation in the 
Regulation of Actin Assembly in Other Cell 1)~s 
A recent study which used our ADF antisera showed that in- 
hibitors of MLCK reduced the phosphorylation state of ADF 
and the regulatory myosin light chain in rat cortical astro- 
cytes (Baorto et al., 1992). Of significance was the finding 
that the same inhibitors induced both process outgrowth and 
the breakdown of cortical F actin. A similar change in cell 
shape could be induced with dibutyryl cyclic AMP which 
also caused decreases in phosphorylation of myosin light 
chain and ADF, or by treatment with dihydrocytochalasin B 
which disrupts the cortical actin cytoskeleton. The authors 
suggest that regulation of ADF phosphorylation may be a 
major mechanism for controlling process formation in astro- 
cytes. It also may be a general mechanism for controlling the 
disruption of actin filaments that has been shown to be neces- 
sary in several cases of cell morphogenesis including arbor- 
ization of fibroblasts (Menko et al., 1983), elongation of reti- 
nal photoreceptor cells (Madreperla and Adler, 1989), and 
motility of neuronal growth cones (Forscher and Smith, 
1988). 

The generality of ADF phosphorylation as a regulatory 
mechanism is suggested by our finding of a significant 
amount of pADF in every cell and tissue type in which we 
find ADE Why is limiting the amount of active ADF impor- 
tant to the cell when ADF levels in many cells are sufficient 
to sequester only a small amount of the monomeric actin 
pool? Other actin monomer-binding proteins, such as 
profilin (Carlsson et al., 1976) or thymosin/34 (Weber et al., 
1992), sequester significant amounts of actin in many cell 
types. In resting polymorphonuclear leukocytes, thymosin 
/34 sequesters the majority of G actin. Chemoattractant stim- 
ulation results in actin assembly and release of the thymosin 
~/4, but there is no change in the affinity for G actin of the 
thymosin/34 released (Cassimeris et al., 1992). Thus, the 
regulatory step must reside with another protein. The size 
of the unpolymerized pool of actin that these monomer se- 
questering proteins can maintain is determined by the 
affinity of the sequestering protein for the actin monomer 
and by the pool of unassembled actin with which they inter- 
act. This latter pool is commonly considered to consist of 
only the free actin monomer. However, in vitro studies to be 
presented elsewhere (J. R. Bamburg, S. M. Hayden, L. S. 
Minamide and P. Gunning, manuscript in preparation) show 
that the ADF-actin complex is also part of the profilin- and 
thymosin ~4-reactive monomer pool. Therefore ADF can 
effectively increase the amount of actin depolymerized by a 
fixed amount of these proteins. Thus, in cells that contain 
only a few micromolar ADF and high concentrations (100 
/~M) of either thymosin/34 or profilin, the level of active 
ADF may actually regulate actin assembly by modulating 
the Ixx~l of monomer that can react with the sequestering 
protein. 

At least two mechanisms for regulating the amount of ac- 

tive ADF in cells have now been demonstrated. Long-term 
regulation is achieved by the relatively slow process of down 
regulating ADF expression, probably by transcriptional con- 
trol. This process occurs in tissues in which very low levels 
of actin remain unassembled (skeletal muscle and heart). Al- 
ternatively, the more rapid (and probably locally controlled) 
process of ADF inactivation by phosphorylation is more 
generally used by a wide variety of cell types. These findings 
are consistant with a fundamental role for ADF in regulating 
actin monomer pools in a number of cell systems. 
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