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Abstract. Various classes of RNA are exported from 
the nucleus to the cytoplasm, including transcripts of 
RNA polymerase I (large ribosomal RNAs), II (U-rich 
small nuclear RNAs [U snRNAs], mRNAs), and III 
(tRNAs, 5S RNA). Here, evidence is presented that 
some steps in the export of various classes of nuclear 
RNA are mediated by specific rather than common 
factors. Using microinjection into Xenopus oocytes, it 
is shown that a tRNA, a U snRNA, and an mRNA 
competitively inhibit their own export at concentra- 

tions at which they have no effect on the export of het- 
erologous RNAs. While the export of both U snRNAs 
and mRNAs is enhanced by their 7-methyl guanosine 
cap structures, factors recognizing this structure are 
found to be limiting in concentration only in the case 
of U snRNAs. In addition to the specific factors, evi- 
dence for steps in the export process that may be com- 
mon to at least some classes of RNA are provided by 
experiments in which synthetic homopolymeric RNAs 
are used as inhibitors. 

ALYSIS of the mechanisms of transport of macro- 
molecules from the cytoplasm to the nucleus is a 
field of very active study (reviewed by Garcia-Bustos 

et al., 1991; Silver, 1991; Dingwall and Laskey, 1992; Ger- 
ace, 1992; Newmeyer, 1993). In contrast, macromolecular 
export from the nucleus is much less well understood (Ma- 
quat, 1991; Nigg et al., 1991; Izaurralde and Mattaj, 1992). 
Since all cytosolic RNAs must he transported out of the nu- 
cleus this process is, not least in quantitative terms, an im- 
portant cellular activity. 

Much of the information available on RNA export has 
come from studies involving microinjection into Xenopus 
/aev/s oocytes. In this way it has been shown that tRNA, 
mRNA, and ribosome export from the nucleus are both 
energy requiring and saturable, and therefore carrier (or re- 
ceptor)-mediated (Zasloff, 1983; Khanna-Gupta and Ware, 
1989; Bataill6 et al., 1990; Dargemont and Kiihn, 1992). 
This has led to general acceptance of the idea that the export 
of RNAs from the nucleus involves their association with 
proteins. Indeed, RNA-protein complexes thought to be en- 
gaged in transport out of the nucleus can be visualized in the 
electron microscope in favorable cases (Stevens and Swift, 
1966; Mehlin et al., 1992), but little is known about the iden- 
tity of the proteins involved in RNA export. 

Genetic studies have identified mutants of either tRNA 
(Zasloff et al., 1982; Tobian et al., 1985) or 5S RNA (Gud- 
dat et al., 1990) whose rate of export from the nucleus is 
considerably reduced. The 5S mutant whose export is most 
affected is incapable of interaction with either TFIHA or 
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ribosomal protein 1.5, implicating these proteins as media- 
tors of 5S export (Guddat et al., 1990). In the case of the 
tRNA mutants, a correlation between export and ability to 
hind to the metabolic enzyme glyceraldehyde-3-phosphate 
dehydrogenase has been established (Singh and Green, 
1993), but no direct evidence for a role of this protein in 
tRNA export has as yet been published. In the case of ribo- 
somes, nucleolar proteins that are associated with preribo- 
somes but not mature ribosomes have been identified and 
proposed to function as mediators of preribosome exit from 
the nucleus (reviewed by Ware and Khalma-Gupta, 1991). 
Finally, the identification of temperature-sensitive yeast mu- 
tants that accumulate poly A in their nuclei at the restrictive 
temperature has led to the identification of genes whose 
products influence mRNA transport by mechanisms which 
are currently unclear (Amberg et al., 1992, 1993; Forrester 
et al., 1992; Kadowaki et al., 1992, 1993). 

By far the bulk of the sequence complexity of exported RNA 
is represented by RNA polymerase II transcripts (U-rich small 
nuclear RNAs [U snRNAs] and mRNAs).~ When in the 
nucleus, rnRNAs and their precursors are found in associa- 
tion with a family of very abundant nuclear proteins as het- 
erogeneous nuclear ribonucleoproteins (hnRNPs) (Dreyfuss et 
al., 1993). These proteins were long thought to be confined 
to the nucleus, but recent work has shown that a subset of 
the proteins moves between the nucleus and the cytoplasm 
(Pifiol-Roma and Dreyfuss, 1991, 1992). In the cytoplasm, 

1. Abbreviations used in this paper: hnRNP, heterogeneous nuclear ribonu- 
cleoprotein; raTG, 7-methyl guanosine; U snRNA, U-rich small nuclear 
RNA. 
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as in the nucleus, the proteins are found in association with 
poly (A) + RNA, leading to the suggestion that they may be 
transported along with mRNA and, in fact, may be involved 
in mediating mRNA nuclear export (Pifiol-Roma and Drey- 
fuss, 1992). 

Other work has implicated the termini of polymerase II 
transcripts in mediating their export. Eckner et al. (1991) 
provided good evidence that the RNA processing steps in- 
volved in generating 3' ends were, at least in the case of his- 
tone mRNAs, in some way coupled to the transport of these 
RNAs out of the nucleus. The mono-methyl guanosine 
(mTG) cap structure of pol II RNAs has also been shown to 
affect the rate of their export (Harem and Mattaj, 1990). A 
nuclear cap-binding protein that may mediate this effect has 
been identified and purified (Izaurralde et al., 1992; see also 
Ohno et al., 1990). 

Thus, many different proteins have been implicated in the 
export of RNAs from the nucleus, but none has, as yet, been 
directly shown to be active in the transport process. It is a 
tacit assumption in many of the studies referred to above that 
export mediators will be specific, if not for an individual 
RNA, at least for a particular class of RNAs (e.g., polymer- 
ase II vs. polymerase II/transcripts, U snRNAs vs. mRNAs, 
tRNAs vs. 5S RNA etc.). However, to our knowledge, the 
only experiment that directly addressed this question showed 
that export of a small amount of a microinjected, radioac- 
tively labeled, mRNA could be inhibited either by coinjec- 
tion of an excess of unlabeled mRNA or of tRNA (Dar- 
gemont and K~ihn, 1992), suggesting that common factors 
might mediate expert of diverse RNAs. We therefore set out 
to systematically examine the substrate specificity of RNA 
export pathways. The results obtained show that in Xenopus 
oocytes, distinct essential factors mediate the export of 
tRNA, 5S RNA, U snRNA, and mRNA. 

Materials and Methods 

Plasmids 
Xenopus T7 U1ASm (previously called AD), U2ASm, and U5ASm con- 
structs have been described previously (Hammet al., 1987; Scherly et al., 
1990; Jarmolowski and Mattaj, 1993). The 77-nt long transcript was ob- 
tained by T3 transcription of EcoRI linearized plasmid U1SII- as described 
(Izaurraide et al., 1992). 

The human LRNA~ t and tRNA[ net G57-U constructs used in this study 
were based on genes as described (Zasloffet al., 1982). Xenopus 5S wt and 
5S M2 (All--41) genes have been described previously (Guddat et al., 
1990). The T7 promoter and restriction sites (DraI for 5S wt and 5S M2; 
BfaI for tRNAi met and tRNAi met G57-U) were introduced by PCR. The fol- 
lowing sets of primers were used: 

I"7 5S wt: 

5S/5'-CGGAATTCTAATACGACTCACTATAGGC~CTACGGCC 
5S/3'-CGCGGATCCTTTAAAGCCTACGAC 

T7 5S M2: 

5S/mut 1-CGGAATTCTAATACGACTCCACTATAGGGCCTACG- 
GCCTTCTCGGAAGC 

5S/3'-as above 

T7 tRNA~t: 

tRNA/5'-CGGAATTCTAATACGACTCACTATAGGGAGCAG- 
AGTGGCGC 

tRNA/3'-GGCGGATCCTAGCAGAGGATGG 

T7 tRNA~ ~ G57-U: 

tRNA/5'-as above 
tRNA rout -GGC GGATC C TAGCAGAGGATGGTTTTAGATC CATC G 

Amplification was carried out in a volume of 100 #1 in 20 mM Tris-HCl, 
pH 8.5, 1.5 mM MgClz, 50 mM KC1, 0.01% gelatin, 1 ng of DNA tem- 
plate, 100 ng of each primer, 2 U AmpliTaq polymerase (Perkin-Elmer 
Corp., Norwalk, CT), and 0.2 mM dNTPs (Pharmacia Diagnostics Inc., 
Fairfield, NJ). 25 cycles were performed (94°C, 1 min; 52"C, 1.5 re.in; 
72°C, 1.5 rain) followed by 5-rain final incubation at 72°C. Amplified frag- 
ments were digested with EcoRI and BamHI and cloned into pUC19. Plas- 
raids were checked by sequencing. 

The UIA cDNA (SiUekcns ct ai., 1987) was cloned into the EcoRl site 
of the pGem 3zf(+) vector containing, between the BamHI and Xbal re- 
striction sites, a DNA fragment coding for a 50-nucleotide long polyA 
stretch. For transcription, the plasmid was linearized with HindlII and tran- 
scribed with T7 RNA polymerase. Thus the 3' end of the RNA had the se- 
quence: 

As0 UCUAGUGCAGGC AUGCAAC_rCA. 

Preparation of RNA for Injection 
32P-labeled RNA was prepared as described previously (Jarrnolowski and 
Mattaj, 1993) except 10 #Ci [~32P]UTP (800 Ci/mmol) and 10 t~Ci 
[a3ZPIGTP (400 Ci/mmol) were used to obtain higher specific radioactiv- 
ity of transcripts. To prepare nonradioactive RNA competitors, in vitro tran- 
scription was performed. 5-10/~g of linearized plasmid was transcribed in 
a volume of 100 #1 in 40 mM Tris-HCl, pH 8.0, 8 mM MgC12, 10 mM 
DTT, 0.4 mg/ml BSA, 1.25 mM NTPs (Pharmacia), 10 U RNasin (Promcga 
Corp., Madison, WI), 1.5 mM mTGpppG or ApppG dinucleotides (New 
England BioLabs, Beverly, MA) and 150-200 U T7 or T3 RNA polymerase 
(Stratagene Inc., La JoUa, CA). Trace amounts of [~2P]GTP (about 
20,000-30,000 cpm) were added to enable determination of the concentra- 
tion of synthesized RNA. After 3 h of incubation at 37"C the mixture was 
extracted with phenol/chloroform and unincorporated NTPs were elimi- 
nated by a Sepbadex G-50 spin column. Ethanul-precipitated RNA was re- 
suspended in 10 #1 of water. Transcripts were checked on an 8% polyacryl- 
an'tide gel containing 7 M urea, and concentration was determined using 
incorporation of [a32P]GTP into RNA. Homopolymeric potyribonucleo- 
tides (Sigma, St. Louis, MO) were sonicated to obtain a heterogeneous size 
distribution from ,'o2,000 to 100 nt. They were then extensively extracted 
with phenol/chloroform, precipitated with ethanol, and resuspended in 
H20. 

Microinjection 
Pieces of Xenopus/aev/s ovary were dissected, treated with collagenase, and 
individual ooeytes prepared for microinjection (Harem et al., 1989). In 
vitro transcribed RNAs were injected into the nucleus of oocytes and later 
extracted from dissected oocytes as described previously (Mattaj and De 
Robertis, 1985). To control nuclear injection, samples were mixed (1:1) with 
a 20-mg/ml solution of dextran blue (2,000,000 tool wt) (Serva Biochemica, 
Paramus, NJ) in water. This procedure slightly enhanced the rate of mRNA 
export, but did not affect the other RNAs. After dissection only oocytes with 
blue nuclei were used. For each sample five oocytes were pooled. In all ex- 
periments, 0.5 oocyte equivalents of RNA were loaded per lane on 8% poly- 
acrylamide gels containing 7 M urea (for 5S, tRNA, and snRNA.s) or 6%/ 
7 M urea polyacrylamide gels (for mRNA). 

Quantitation of Export Data 
Gels were quantified using the Molecular Dynamics (Sunnyvale, CA) Phos- 
phoimager system with ImageQuant software, version 3.0. 

Results  

Export of ln Vitro Transcripts 
In order to validate the experimental system chosen to study 
nuclear export, microinjection of in vitro T7 RNA polymer- 
ase transcripts into Xenopus oocyte nuclei, a number of pre- 
liminary experiments were carried out. Four RNAs were 
chosen; human initiator methionyl tRNA (tRNAI~), Xeno- 
pus laevis 5S RNA, Xenopus laevis U1ASm RNA, a U1 
snRNA mutant that is exported from the nucleus but, unlike 
wt U1, cannot re-enter the nucleus (Hamm and Mattaj, 
1990), and the human mRNA encoding the U1 snRNP- 
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Figure 1. Export of T7 RNA 
polymerase-transcribed RNAs 
(A) RNA export is tempera- 
ture dependent. A mixture of 
T7-transcribed U1A mRNA 
(0.001 pmol per oocyte), U1- 
ASm RNA (0.01 pmol per oo- 
cyte), 5S RNA (0.01 pmol per 
oocyte), or T7-transcribed 
tRNA~ t (0.025 pmol per oo- 
cyte) was microinjected into 
the nuclei ofXenopus oocytes. 
The oocytes were dissected ei- 
ther immediately (lanes 1-3) 
or after 360 rain (top) or 60 
rain (bottom) of incubation at 
either 19°C (lanes 4-6) or 
on ice (lanes 7-9). RNAs ex- 
tracted from either total oo- 
cytes (T) or from cytoplasmic 
(C) or nuclear (N) fractions 
were visualized by autoradi- 
ography after separation on 

denaturing polyacrylamide gels. The transcript with a mobility intermediate between those of U1ASm and 5S was not identified. It is rapidly 
degraded at 19°C. (B) Mutant T7 RNA polymerase transcripts behave like in vivo transcripts. The rates of export of 0.025 pmol of 
T7-transcribed tRNAI ~t and a mutant derivative with a G57 to U change (top) or of 0.01 pmol of wt 5S RNA and a mutant derivative M2 
(bottom) were compared. 

specific U1A protein (U1A mRNA). In pilot experiments, 
amounts of these RNAs that gave maximal export rates were 
determined (data not shown). 

Export of purified, in vivo transcribed, tRNAI ~' has been 
shown to be temperature (i.e., energy) dependent (Zasloff, 
1983). This was also the case for microinjected, T7-tran- 
scribed tRNA~ "e~ (Fig. 1 A, bottom). Similarly, cooling pre- 
vented the export of T7 transcripts of U1A mRNA, U1ASm 
RNA and 5S RNA (Fig. 1 A, top, compare lanes 4-6 with 
7-9). The mRNA result is in agreement with previous 
studies which demonstrated that export of microinjected 
mRNA transcripts requires ATP (Dargemont and Kiihn, 
1992). 

Further evidence for the physiological relevance of these 
experiments came from the study of mutant RNAs whose ex- 
port rates are known to be reduced. These were mutants of 
tRNA~ t (a (357 to U mutation, Zasloff et al., 1982) and 5S 
RNA (mutant M2, a deletion of nts 11--41, Guddat et al., 
1990). When T7 transcripts of these RNAS were tested by 
microinjection, their transport was considerably reduced 
compared to the wt RNAs (Fig, 1 B), although both did 
eventually reach the cytoplasm in agreement with the results 
of the earlier studies (lanes 16-18 of both panels). Experi- 
ments presented below demonstrate that export of T7- 
transcribed Ulz~Sm RNA has the same cap dependence as 
does export of identical in vivo transcripts. In summary, 
these experiments all suggest that microinjected T7 tran- 
scripts of the RNAs studied are transported out of the nu- 
cleus in a manner similar to in vivo transcripts of the same 
RNAs. 

tRNA Export 

Previous work has shown that the export of microinjected 
tRNA (Zasloff, 1983) and mRNA (Dargemont and Ktthn, 
1992) from Xenopus oocyte nuclei are saturable processes. 
Different tRNAs (Zasloff et al., 1983) and different mRNAs 

(Dargemont and Kiihn, 1992) were shown to compete with 
one another for export, and, in addition, tRNA was shown 
to inhibit mRNA export when coinjected at high concentra- 
tion (Dargemont and Kfihn, 1992). These results raised the 
possibility that all RNAs would cross-compete for a limiting 
component of the export machinery. Initial experiments were 
designed to examine this question in more detail. 

Radioactively labeled tRNA~, (0.025 pmol) was injected 
into oocyte nuclei either with or without increasing quanti- 
ties of unlabeled tRNA~ (Fig. 2 A, top). As expected 
(Zasloff, 1982) the distribution of the tRNA after 45 rain 
showed that, in the absence of competitor, essentially all had 
been exported (Fig. 2 A, top, first six lanes). Injection of 
competitor tRNA at between 0.1 and 5.0 pmol per oocyte 
resulted in a progressive inhibition of export, confirming that 
the process was saturable. When, instead of tRNA, similar 
amounts of either 5S RNA or Ulz~Sm RNA were coinjected 
with the labeled tRNA, little or no effect was seen until the 
maximal amount of either competitor was injected (5 pmol, 
Fig. 2 A, middle and bottom). At this concentration both 
competitors inhibited export to some extent and, in addition, 
induced some degradation of the nuclear tRNAI ~t. 

As mentioned above, it has previously been shown that 
coinjection of tRNA inhibits mRNA export (Dargemont and 
Kiihn, 1992). To investigate the converse situation, we co- 
injected unlabeled U1A mRNA competitor with labeled 
tRNAf ~ (Fig. 2 B). The length of the mRNA transcripts 
makes it technically impossible to achieve the same molar 
ratio as with the other competitor RNAs although, in terms 
of weight, more mRNA competitor is injected at the highest 
concentration than tRNA. The result obtained was similar to 
that observed with the 5S and U1ASm competitors. Only at 
the highest concentration of mRNA was an effect on trans- 
port seen, and this was accompanied by partial degradation 
of the nuclear tRNA. 

These results indicate that a limiting factor in tRNA export 
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Figure 2. Saturability of 
tRNA? et transport. (,4) The 
distribution between the nu- 
cleus and cytoplasm of 0.025 
pmol of [32p]labeled tRNA met 
transcripts 45 rain after their 
injection into the nucleus was 
determined either in the ab- 
sence of coinjected RNA (top 
left) or in the presence of in- 
creasing amounts of unlabeled 
tRNA~ t (top), 5S RNA (mid- 
dle), or U1ASm RNA (bot- 
tom). (B) As in figure 2 A, ex- 
cept that increasing amounts 
of unlabeled U1A mRNA, as 
indicated, were coinjected 
with 0.025 pmol of tRNA m~. 

recognizes tRNA specifically in preference to other RNA 
polymerase III (5S) or II (U1ASm, mRNA) transcripts. The 
specificity of this recognition is underlined by the observa- 
tion that the export-defective G~7 to U mutant did not com- 
pete tRNA~ ~ export when 5 pmol of this RNA was coin- 
jected with the labeled wt RNA (data not shown). In view 
of the demonstration that glyceraldehyde-3-phosphate de- 
hydrogenase binds to wt tRNA? o~, but not to transport 
defective mutants, and the suggestion that it might mediate 
tRNA export (Singh and Green, 1993) we attempted to over- 
come the saturation of tRNA export by coinjection of large 
quantities of glyceraldehyde-3-phosphate dehydrogenase, but 
without success (data not shown). 

5S RNA Export 

The concentration dependence of 5S RNA export was, un- 
like that of the other RNAs tested here, not a simple function. 
At the lowest concentrations tested the RNA was exported 
rather slowly compared to tRNA, but achieved a final cyto- 
plasmic:nuclear distribution of ~ 3:1 (Fig. 3, lanes 1-9). At 
intermediate concentrations (0.04-0.15 pmol of injected 
RNA) the efficiency of export was reduced, as would be ex- 
pected if a specific event in export were being saturated. 
However, when even more 5S RNA was injected (0.3 pmol 
or more, Fig. 3, lanes 19-21 and data not shown), a higher 
cytoplasmic:nuclear ratio was again achieved (2-3:1). Simi- 
lar results were obtained in three independent experiments. 
These results suggest three possible interpretations. There 
may be more than one factor that can mediate the same step 
in 5S RNA export (see Guddat et al., 1990). If one export 
factor has a high affinity but a low capacity and a second has 
low affinity but high capacity one could expect the observed 
behavior. Alternatively, there may be a nuclear inhibitor of 
5S RNA export with an affinity that is low relative to export 
factors and a limited capacity, such that its effect is only de- 
tected at intermediate 5S concentrations. Finally, it is known 
that 5S RNA can migrate to the nucleus after microinjection 
into the cytoplasm of Xenopus oocytes (De Robertis et al., 
1982). The kinetics observed may be the result of differential 
affinities and saturability of the export and import processes. 

Cross-competition experiments were carried out with 
tRNA~ t, UIASm RNA and U1A mRNA. Independent of 
the concentration of labeled 5S RNA coinjected, no inhibi- 

tion of export was seen (data not shown). However, since up 
to 5 pmol of unlabeled 5S RNA did not reduce the export 
of labeled 5S RNA to a level below that seen in Fig. 3, lanes 
19-21 (data not shown), saturation of the 5S export pathway 
could not be achieved. The cross-competition experiment is 
therefore only informative in light of the ability of the com- 
petitor RNAs to competitively inhibit their own export (see 
above and below). 

U snRNA Export 

Like tRNA, U1ASm export proved to be saturable (Fig. 4 A, 
top) with export after 360 min being reduced to 50% in the 
presence of 0.6 pmol of unlabeled RNA and completely in- 
hibited when 2.5 pmol or more competitor was coinjected. 
It has previously been shown that the mTGpppG cap struc- 
ture of U1 snRNA is important for efficient nuclear export 
(Hamm and Mattaj, 1990; Izaurralde et al., 1992). To deter- 
mine whether the cap structure was required for recognition 
by the factor limiting for U1ASm export, two additional 
competitors were tested. U1ASm capped with ApppG rather 
than mTGpppG was a very inefficient competitor of U1ASm 
export (Fig. 4 A, middle). In contrast, a 77-nt long transcript 
unrelated to U1 snRNA in sequence, but capped with 
mTGpppG, inhibited U1ASm export '~50% as efficiently on 
a molar basis as U1ASm itself (Fig. 4 A, bottom). In view 
of the recent suggestion that the effect of the cap structure 
on U1 snRNA export might be in large part due to its effect 
on stability of the RNA in the nucleus (Terns et al., 1993) 

Figure 3. Saturability of 5S RNA export. Increasing amounts of 
32P-labeled 5S RNA, as indicated, were microinjected into the 
nuclei of Xenopus/aev/s oocytes. The oocytes were dissected 18 h 
later and RNA from the fractions analyzed. As a control for the ac- 
curacy of injection, oocytes were also dissected immediately after 
injection of 0.04 pmol RNA (lanes 1-3). 
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Figure 4. Saturability of 
UI&Sm RNA export. (.4) The 
distribution between the nu- 
cleus and cytoplasm of 0.01 
pmol of 32p-labeled U1ASm 
RNA transcripts 360 min af- 
ter their injection into the nu- 
cleus was determined either in 
the absence of coinjected 
RNA (top left) or in the pres- 
ence of increasing amounts of 
unlabeled m7GpppG-capped 
U1ASm RNA (top), ApppG- 
capped UIASm RNA (middle 
panel), or an unrelated, 77 nt 

mTGpppG-capped transcript (bottom) as indicated. (B) As in Fig. 4 A except that unlabeled 5S RNA (top) or tRNA~ t (bottom) were used 
as competitors. (C) As in Fig. 4 A except that unlabeled U1A mRNA was used as a competitor. 

it is important to note that in these experiments injection of 
capped competitor RNAs has no detectable effect on U1 ASm 
stability, but efficiently blocks its export from the nucleus. 

These results provide strong evidence that interaction with 
a factor that recognizes the cap structure is limiting for 
U1ASm export. It was therefore perhaps not surprising that 
neither of the two RNA polymerase III transcripts (Fig. 4 B) 
nor U1A mRNA (Fig. 4 C), up to the maximal concentra- 
tions tested, inhibited U1ASm export under the conditions 
of this experiment. Note that although the U1A mRNA has 
a mTGpppG cap, the maximal amount injected (0.4 pmol) is 
below the level at which inhibition is seen with either 
U1ASm or RNA-77 at 360 rain (Fig. 4 A). Comparable levels 
of inhibition of U1ASm export by 0.4 pmol of either U1A 
mRNA or U1ASm could be observed after shorter (120 min) 
incubation times (data not shown). 

To determine whether the cap structure is generally in- 
volved in U snRNA export, the effect of U1ASm on U2ASm 
and U5ASm RNAs was compared to its autoinhibition. 
U1ASm was an efficient competitor of export of all three 
RNAs (Fig. 5). Interestingly, the three RNAs showed differ- 
ences both in the rate of their export (U2ASm being the 

Figure 5. A common factor in U snRNA export. A mixture of 0.01 
pmol each of U2ASm, U1ASm, and U5ASm RNAs were microin- 
jected into the nuclei of Xenopus oocytes. The oocytes were either 
dissected immediately (lanes 1-3) or after 360 min 0anes 4-18). 
Export was monitored either without (lanes 4-6) or with increasing 
amounts of coinjected unlabeled U1ASm RNA as indicated (lanes 
7-18). 

slowest, Fig. 5, lanes 1-6) and in their susceptibility to inhi- 
bition. U5ASm export was inhibited most efficiently fol- 
lowed by U2ASm then U1ASm itself (Fig. 5, lanes 7-18), 
suggesting that the three RNAs have different affinities for 
a common nuclear export factor. ApppG-capped U1ASm 
RNA did not inhibit export of U2ASm or U5ASm, while 
mTGpppG-capped RNA-77 inhibited export of both RNAs 
roughly half as efficiently as did U1ASm (data not shown). 
Thus, the limiting factor in the export of all three U snRNAs 
is likely to be the same, and to require an mTG cap struc- 
ture for U snRNA recognition. 

m R N A  Export  

A U1A mRNA-coding sequence was constructed by joining 
the human U1A cDNA sequence (Sillekens et al., 1987) to 
a poly A stretch with, at its 3' end, 21 nt of polylinker se- 
quence (see Materials and Methods). When radioactively la- 
beled U1A mRNA was injected into the nucleus together 
with increasing amounts of unlabeled U1A mRNA, progres- 
sive inhibition of export was seen with 0.1 pmol or more of 
competitor (Fig. 6 A, upper panel). This molar amount of 
any RNA was not sufficient to inhibit export of U1, U2, or 
U5 snRNAs (see above). It therefore seemed possible that the 
limiting factor for U1A mRNA export might not be the same 
as for U snRNA export, and therefore might not depend upon 
the presence of a cap structure on the RNA. To test this, the 
ability of ApppG-capped U1A mRNA to inhibit export of 
mYG-capped labeled RNA was examined (Fig. 6 A, lower 
panel). In several experiments, there was no significant 
difference in the effectiveness of A or mTG-cappe d mRNAs 
as competitors, showing that association between U1A 
mRNA and the factor that becomes limiting for its export 
when mRNA concentration is increased does not require the 
m7G cap structure. 

It has previously been shown that the export from the nu- 
cleus of an adenovirus-derived mRNA was significantly 
slower when the RNA had a tri-methyl guanosine cap struc- 
ture than when it was capped with a mono-methyl guanosine 
(Hamm and Mattaj, 1990). To determine whether this effect 
was specific for the tri-methyl cap structure we compared the 
kinetics of export of mTGpppG and ApppG capped U1A 
mRNAs. The nonphysiological ApppG cap caused a repro- 
ducible decrease in the rate of export (Fig. 7), the tla for 
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Figure 6. Saturability of U1A mRNA export. (A) The distribution 
between the nucleus and cytoplasm of 0.001 pmol of 32p-labeled 
U1A mRNA transcripts 240 rain after their injection into the nu- 
cleus was determined either in the absence of coinjected RNA (top 
left, compare To and T4) or in the presence of increasing amounts 
of unlabeled mTGpppG-capped U1A mRNA (top right) or ApppG- 
capped U1A mRNA (bottom) as indicated. (B) As in Figure 6 A, 
but with increasing amounts of unlabeled 5S RNA coinjected with 
the 32p-labeled U1A mRNA. 

export being increased by approximately a factor of 2. Simi- 
larly, coinjection of unlabeled m7GpppG-capped U1ASm 
RNA reduced the rate of export of U1A mRNA, but did not 
prevent it (data not shown). Thus, the presence of a mono- 
methyl cap structure on an mRNA enhances the rate of its 
export. This is in agreement with the observation that the 
mTGpppG dinucleotide inhibited mRNA export in an ex- 
periment in which both were coinjected into Xenopus oocyte 
nuclei (Dargemont and Ktihn, 1992). 

In order to test the specificity of inhibition of U1A mRNA 
export we coinjected the two RNA polymerase 111 transcripts 
used previously. 5S RNA had no detectable effect on ex- 
port when up to 5 pmol per oocyte was injected (Fig. 6 B). 
tRNAf ~', consistent with an earlier report (Dargemont and 
Kiihn, 1992), inhibited UIA mRNA export, but only par- 
tially and at the highest level of competitor tested (5 pmol, 
data not shown). 

It has previously been suggested that the poly A tail may 
play a role in mRNA export (Wickens and Gurdon, 1983; 
Eckner et al., 1991). To test this we compared the export rate 
of U1A mRNA with that of a truncated version of the RNA 
from which the poly A stretch had been removed. The rate 
of export of the poly A- mRNA was slightly (30-50% in 
different experiments) slower than that of the poly A ÷ 
(data not shown). A similar effect was seen when a genuine 
poly A tail of ,,o 200 nt in length was added to U1A mRNA 
in vitro using poly A polymerase (data not shown). This 
effect was relatively small, but was reproducibly observed in 
several independent experiments, suggesting that the pres- 
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Figure 7. The effect of the cap structure on mRNA export. 0.001 
pmol of either mTGpppG-capped or ApppG-capped UIA mRNA 
was microinjected into the nuclei of Xenopus oocytes. At various 
times thereafter, oocytes were dissected and the amount of intact 
mRNA present in the nuclear and cytoplasmic fractions was deter- 
mined by phosphoimager analysis. In the graph, export is expressed 
as the remaining fraction of RNA in the nuclear compartment. 

ence of poly A does have a direct effect on transport rate. 
However, neither the presence of the cap structure nor of 
poly A is essential for U1A mRNA export. 

Homoribopolymers as Export Competitors 

Thus far, the competition experiments presented all led to 
the conclusion that different specific factors were limiting in 
concentration for the export of different classes of RNA. In- 
deed, the lack of cross-competition except at very high levels 
of competitor RNAs suggested that common steps on the 
pathway of export of different classes of RNA, if they exist, 
were not easily saturable. To try to find evidence for such 
common steps the effects of synthetic homopolymeric RNAs 
on export of the different RNA substrates was tested. 

The result of one such experiment, involving coinjection 
of U1ASm, 5S, and tRNA, is shown in the lower panel of Fig. 
8. After 6 h, as expected, U1ASm and tRNA~, are almost 
entirely cytoplasmic, while 5S RNA is distributed approxi- 
mately equally between the cytoplasmic and nuclear frac- 
tions (Fig. 8, lanes 1-6). Coinjection of 50 rig (due to the 
extensive size distribution of the homopolymers, no accurate 
value for their molarity could be obtained) of either poly A, 
poly C, or poly U had little or no effect on export of the three 
RNAs (lanes 7-9 and 13-18). On the other hand, both poly 
I and poly G at the same concentration had strong inhibitory 
effects on U1ASm and 5S RNA export (lanes 10-12, 19-21). 
Note that poly G and poly I were the only RNAs found thus 
far that inhibited 5S RNA export strongly. In other experi- 
ments it was established that UIA mRNA and U1ASm re- 
sponded identically to the homoribopolymers at this time 
point, i.e., UIA mRNA export after 360 min was inhibited 
efficiently by poly G and, to a lesser extent, by poly I (data 
not shown). In the upper panel of Fig. 8, the results of inhibi- 
tion of U1A mRNA export by the ribohomopolymers at an 
earlier time point, 120 min, is shown. Unlike U1ASm or 5S, 
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Figure 8. Inhibition of export by homopolymeric RNAs. (Top) 0.001 
pmol of U1A mRNA was microinjected into the nuclei of Xenopus 
oocytes, and re-extracted from total or fractionated oocytes either 
immediately (lanes 1-3) or 120 rain later 0anes 4-21 ). The RNA 
was injected either alone (lanes 4-6) or with 50 ng of one of 5 syn- 
thetic RNA homopolymers as indicated (lanes 7-21). (bottom) A 
mixture of 0.01 pmol U1ASm RNA, 0.01 pmol 5S RNA, and 0.05 
pmol tRNA~ t was microinjected into the nuclei of Xenopus oo- 
cytes, and re-extracted from total or fractionated oocytes either im- 
mediately (lanes 1-3) or 360 rain later (lanes 4-21). The RNAs 
were injected either alone (lanes 4-6) or together with 50 ng of one 
of 5 synthetic RNA homopolymers as indicated (lanes 7-21). 

at this time point U1A mRNA export is also inhibited to some 
extent by poly U (lanes 16-18). While the inhibition by poly 
G and poly I persisted until 360 min, that of poly U was no 
longer detected at the later time point (data not shown). 

In contrast to these three RNAs (U1ASm, 5S, and U1A 
mRNA) no effect was seen on tRNA~ export (Fig. 8, lanes 
1-21). The lack of inhibition of export of this RNA was 
confirmed in kinetic experiments at early time points (data 
not shown). These data provide evidence that there may be 
common components involved in the export of at least some 
different classes of nuclear RNA. 

Discussion 

Specific Steps in RNA Export 

Transport between the nucleus and cytoplasm of diverse in 
vitro-transcribed RNAs microinjected into Xenopus laevis 
oocytes was studied. Control experiments suggest that this 
experimental protocol faithfully reflects several aspects of 
the in vivo export pathway including temperature (energy) 
dependence, response to mutation, in the case of two RNA 
polymerase HI transcripts, and cap dependence, in the case 
of RNA polymerase II transcripts. 

The purpose of the study was to determine whether factors 
involved in mediating the export of different RNAs, or 
classes of RNA, were specific or common. By injecting in- 
creasing concentrations of different RNAs, it was possible to 
specifically saturate the export of tRNA, U snRNA, and 
mRNA, providing evidence that in each of these cases at 
least one specific, titratable factor is essential for export. 
The export of5S RNA as a function of concentration showed 
complex behavior, and even high amounts of5S RNA did not 
saturate transport. Evidence has been presented that two 
proteins, TFIIIA and ribosomal protein L5, may both medi- 
ate the export of 5S RNA from oocyte nuclei (Guddat et al., 

1990), arguing that specific export factors exist also in this 
case. 

Previous studies have demonstrated a role for the mTG 
cap structure of RNA polymerase II transcripts in facilitating 
their export from the nucleus (Hamm and Mattaj, 1990; 
Dargemont and KfJhn, 1992; Izaurralde and Mattaj, 1992). 
The results presented here confirm and extend these conclu- 
sions. In the case of U snRNAs, the export factor that is most 
readily titratable by injecting increasing amounts of competi- 
tor RNA is only affected by RNAs with a cap structure. In 
a recent study (Terns et al., 1993) it was suggested that the 
effect of the cap structure on U1 snRNA export might be 
related to its effect on the nuclear stability of U1 RNA. Previ- 
ous data (see Fig. 3 in Hamm and Mattaj, 1990 and Fig. 2 
in Izaurralde et al., 1992) had, however, indicated that these 
two effects could be separated. In this study, we show that 
mTGpppG-capped competitor RNAs, including one un- 
related to U1 snRNA, can completely block export of the 
RNA without detectably altering its nuclear stability (Figs. 
4 and 5), confirming that U1 stability in the nucleus and U1 
export can be affected independently by competitors that 
presumably act by preventing cap-binding proteins from 
associating with the RNA. The fact that the same two 
mTGpppG-cappe d RNAs could efficiently block export of 
not only U1ASm, but also of U2ASm and U5ASm RNAs 
(Fig. 5) speaks against the general existence of specific struc- 
tural elements or sequences in U snRNAs that have been pro- 
posed, in the case of U1, to direct export independently of 
the cap structure (Terns et al., 1993). 

A nuclear cap-binding protein that is a candidate mediator 
of U snRNA export has been identified and partially charac- 
terized (Izaurralde and Mattaj, 1992). On the other hand, the 
same factor is not likely to be what is titrated first by increas- 
ing concentrations of mRNA substrate, since mRNAs with 
either m7GpppG or ApppG at their 5' ends are equally good 
competitors of mRNA export, and the molar amount of 
mRNA required to inhibit export is below the level at which 
titration of the cap-binding factor is observed in the case of 
the U snRNAs. Kinetic experiments showed, however, that 
in the presence of an mTG cap structure, mRNA is exported 
at a higher rate (see also Hamm and Mattaj, 1990). It is im- 
portant to note that there is no contradiction between these 
two results, since the export factor that is most easily titrat- 
able (i.e., limiting in concentration) for any RNA is not neces- 
sarily the same as the factor(s) that determines the rate of 
export of that RNA. Indeed, the fact that the presence of both 
an mTG cap structure and of poly A affect the rate of 
mRNA export, while neither is necessary to titrate the factor 
that is most limiting in concentration in a titration experi- 
ment, introduces the important concept that several factors 
may recognize, and affect the export of, any RNA substrate. 
It may either be that more than one factor is essential for the 
export of a given class of RNA, or that factors recognizing 
different determinants on the same RNA substrate have 
redundant functions in export. One earlier study of mRNA 
export has been published in which similar methods to those 
employed here were applied (Dargemont and Kiihn, 1992). 
For the most part, our results are in good agreement with the 
conclusions of that study since we also find that mRNA ex- 
port is temperature (energy) dependent, saturable, positively 
influenced by the mTG cap structure, and partially inhibited 
by coinjection of a large quantity of tRNA. The one differ- 
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ence between the two studies concerns the kinetics of export. 
While Dargemont and K0hn (1992) reported that the two 
mRNAs they tested were exported very rapidly, with a half- 
time in the nucleus of '~2.5 min, we consistently observed 
much slower kinetics with a lag time of ~ 20-25 min during 
which export was not detected, possibly reflecting the assem- 
bly of an export-competent RNP, followed by export with a 
half-time of ,,o 30 min. Since similar quantities of mRNA 
were used in each study, and since the levels of mRNA re- 
quired to saturate export were also similar, it is not obvious 
what caused this difference. It is possible that the different 
quantitation methods employed (we measured the export of 
only full-length mRNA while Dargemont and Kiihn mea- 
sured the total radioactivity in cytoplasmic or nuclear frac- 
tions) could affect the result obtained. A second possibility, 
that the identity of the mRNA utilized affects the export ki- 
netics, was investigated by using in vitro transcribed dihydro- 
folate reductase mRNA. This mRNA exhibited kinetics in- 
distinguishable from those of U1A mRNA (unpublished data). 

Common Steps in Export 
RNA, probably in the form of RNP, is exported to the 
cytoplasm through nuclear pore complexes (Stevens and 
Swift, 1966; Dworetzky and Feldherr, 1988; Mehlin et al., 
1992). A monoclonal antibody that recognizes a subset of 
nuclear pore glycoproteins has been shown to reduce 5S and 
tRNA export to some extent (Featherstone et al., 1988) 
while the lectin wheat germ agglutinin, probably through in- 
teractions with a number of pore glycoproteins, strongly 
reduces export of U1 snRNA, tRNA, and ribosomal subunits 
(Batalll6 et al., 1990; Neuman de Vegvar and Dahlberg, 
1990). These results suggest the existence of common steps 
on the pathway of export of different RNPs, probably situated 
at a late stage in the process, and possibly involving either 
recognition of the transport substrates by pore complex com- 
ponents or actual movement through the pores. 

It is at present unclear whether recognition events that oc- 
cur at the pore complex will involve contacts with the RNA 
or the protein components of the exported RNPs. Since only 
minor cross competition was seen between the different 
physiological RNAs studied, an attempt was made to identify 
common steps in the export of the diverse RNAs using syn- 
thetic homopolymeric RNAs. Strikingly, 5S RNA, mRNA, 
and U snRNAs showed similar patterns of inhibition with 
these competitors. Poly G and poly I inhibited export of the 
three classes of RNA, but poly A, C, or U had no effect on 
5S RNA or U snRNA at the concentrations tested. Poly U 
did have a minor inhibitory effect on mRNA export. The 
results obtained with poly G and poly I suggest that there 
may be a common factor involved in the export of these three 
RNAs, although it is not possible to exclude the possibil- 
ity that three different factors with similar recognition spec- 
ificity are involved. It is unlikely that the inhibition of export 
by the RNA homopolymers reflects blockage of pore com- 
plexes since the same competitors had no effect on tRNA ex- 
port. The hnRNP proteins are attractive candidate proteins 
that may be involved in either specific or, particularly, com- 
mon steps in export since they are both very abundant and 
known to move between the nucleus and cytoplasm in so- 
matic cells (reviewed by Pifiol-Roma and Dreyfuss, 1993). 
Unfortunately, little is known about either the abundance or 

state (RNA bound vs. free, nuclear vs. cytoplasmic) of these 
proteins in Xenopus oocytes. 

Thus, our data provide evidence that there are specific 
RNA-recognizing factors involved in the export of different 
classes of RNA as well as common factors that influence the 
transport of diverse RNAs. The different RNA-binding 
specificities of these factors will hopefully provide a bio- 
chemical tool with which to identify and purify them. 

Comparison with Nuclear Import 
The observation that different RNAs require specific satura- 
ble components for their export is reminiscent of earlier 
studies on the import of macromolecules to the nucleus. The 
initial demonstration that the import pathway was saturable 
utilized a peptide encoding the nuclear localization signal of 
SV-40 T antigen coupled to a carrier protein. This conjugate 
was actively imported to the nucleus, and served as an 
efficient competitive inhibitor of the transport of other 
karyophilic proteins (Goldfarb et al., 1986). Extension of 
this experimental approach to other karyophiles has more re- 
cently provided evidence for saturable components that are 
specifically involved in the nuclear transport of either 
karyophilic proteins or a subset of U snRNPs, respectively 
(Fischer and Liihrmann, 1990; Fischer et al., 1991, 1993; 
Michaud and Goldfarb, 1991). Preliminary evidence for a 
third saturable transport factor specifically required for U3 
snRNP import has also been obtained (Michaud and Gold- 
farb, 1992). It is to be hoped that these import studies and 
the export studies presented here will lead to the identifica- 
tion of some of the mediators of macromolecular transport 
between the nucleus and cytoplasm. 
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