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Abstract 

To improve  secondary  structure  predictions in protein  sequences,  the  information residing  in multiple  sequence 
alignments  of  substituted  but  structurally  related  proteins is exploited. A database  comprised  of 70 protein  fami- 
lies and a total  of  2,500  sequences,  some  of which were  aligned by tertiary  structural  superpositions, was  used 
to  calculate  residue  exchange weight matrices within a-helical,  P-strand,  and coil substructures, respectively. Sec- 
ondary  structure  predictions were made based on  the  observed  residue  substitutions in  local regions  of  the  multi- 
ple alignments  and  the largest  possible  associated exchange weights  in each of the  three  matrix types. Comparison 
of the  observed  and  predicted  secondary  structure  on a per-residue basis  yielded  a mean  accuracy of 72.2%.  In- 
dividual  a-helix,  P-strand,  and coil states were  respectively predicted  at  66.4,66.7,  and 75.8% correctness,  repre- 
senting a well-balanced three-state  prediction.  The  accuracy level, verified by cross-validation  through  jack-knife 
tests on all protein  families,  dropped,  on  average,  to  only 70.9%, indicating  the rigor of  the  prediction  procedure. 
On  the basis of  robustness,  conceptual  clarity,  accuracy,  and  executable  efficiency,  the  method  has  considerable 
advantage, especially with  its  sole reliance on  amino  acid  substitutions within structurally  related  proteins. 

Keywords: amino  acid sequences;  multiple sequence  alignment;  protein  secondary  structure;  secondary  structure 
prediction 

Successful prediction  of  protein  tertiary  structure is presently 
and principally  based upon a knowledge-based  modeling of side 
chains in proteins with sequence homologous  to  one with known 
structure.  With  the  gap widening between the  number of known 
tertiary  and  primary  structures,  and  the inability of experimen- 
tal  techniques  such  as  X-ray  crystallography or solution NMR 
to  determine  the  structure  of all known  proteins, it is necessary 
to  develop theoretical approaches  that  deduce  structure  from se- 
quence. To make feasible  such efforts, a prediction of secondary 
structural  elements  (a-helices,  &strands, coil segments)  along 
the  sequence is likely to  be of utility. Though  early  attempts  at 
such predictions  appeared  some 20 years ago (e.g., Chou & Fas- 
man, 1974; Lim, 1974; Garnier  et  al., 1978),  precise and  accu- 
rate prediction of  secondary  structural elements from  the  amino 
acid  sequence  alone  has  not been  achieved (Garnier & Levin, 
1991). With accuracies for single sequences generally ranging be- 
tween 55 and 65%, theoretical  determination  of  the  fold  of a 
protein  appears  unreachable. 
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Within the last few years, several new methods based on com- 
plex analytical  procedures  have  surfaced, generally for single 
sequence prediction.  Muggleton  et  al. (1992) have  applied  induc- 
tive logic programming. Their machine-learning algorithm allowed 
a high 81 070 prediction accuracy, albeit on only  four a0 domain 
proteins. The use of single three-layered neural  networks  (cf. Qian 
& Sejnowski, 1988; Holley & Karplus, 1989; Zhang et al., 1992) 
have resulted in 63-67% correctness for single sequence prediction, 
and enhanced neural network procedures (Kneller et al., 1990) have 
achieved 79% if the  query  protein is known  to  contain largely 
a-helices. The multilayered  neural  network method of  Rost and 
Sander (1993), applied  to  multiply aligned protein  sequences, 
yielded a per-residue prediction  accuracy  near 7  1 Vo. Leng et  al. 
(1994) developed a complicated two-level case-based  reason- 
ing architecture  to  predict  protein  secondary  structure in  single 
sequences  and achieved  a mean  68.2%  accuracy over  several 
proteins.  Salamov  and Solovyev (1995) have reported  an im- 
provement  of  the  already  published  technique  of Bowie et al. 
(1991) based on  a  complex combination of nearest-neighbor al- 
gorithms,  including  secondary  structural  terminal  features  and 
multiple  sequence  alignments,  to yield an accuracy of about 
72%.  The method  presented  here, which also relies on knowledge 
of homologous sequences, is significantly simpler and straightfor- 
ward. It probes with facility  residue  exchange  statistics to deter- 

2517 



25 18 P . K .  Mehfa et ai. 

mine residue variations characteristic of each of the  three secondary 
structural types by examination of substitutions  at structurally 
equivalent positions in evolutionarily related proteins. Given a mul- 
tiple sequence alignment,  mutations  in given subsequence regions 
that correlate best with those preferred by a particular  secondary 
structural  state  can  be utilized as prediction signals. The  approach 
appears significant on  the basis  of accuracy,  robustness, concep- 
tual clarity, and executable  efficiency.  Donnelly  et al. (1994) used 
protein environment-specific amino acid substitution tables (Liithy 
et  al., 1991; Overington et al., 1992) to predict and orient a-helices 
from sequence alignments for protein structural modeling but did 
not attempt  an overall three-state prediction from sequence alone. 

Methodology 

A computer  algorithm  has been developed to predict secondary 
structural elements (a-helix,  0-strand, coil) in a query amino acid 
sequence  that  can be multiply aligned  with those of other  struc- 
turally  related  proteins. The technique involved three  major cal- 
culational  steps and procedures. The  computer  routine PreferCal 
was first written to  determine  the preference or avoidance weights 
for each possible pair of residue exchanges and for each of the three 
secondary structural  states considered  here. The  PreferPred was 
used to predict secondary  structural elements  within a query se- 
quence multiply  aligned to related primary  structures. Finally, 
PreferEva1  allowed evaluation of the accuracy  of the  secondary 
structure predictions relative to  those  known  from three-dimen- 
sional structural  determinations. All routines were written using 
the  standard  ANSI C  language under a VMS operating system on 
a VAX station 3 100. 

Construction of secondary structure-specific 
residue exchange matrices 

Input  to  PreferCal was taken from !he 3D-Ali  database of 
Pascarella  and  Argos (1992), which contains  more  than 70 pro- 
tein families,  each  defined by proteins with similar  main-chain 
fold.  Membrane-spanning  proteins were not included in the cal- 
culation of the  residue  exchange  statistics.  Each  3D-Ali file 
corresponds to a protein  family with a uniquely folded  domain 
(or monomer).  Familial sequences with experimentally  deter- 
mined  tertiary  structures were aligned by structural  superposi- 
tion,  albeit in about  half of the  families,  only  one  homologous 
three-dimensional  structure was known. In cach  case,  the sec- 
ondary  structural  state of individual residue1 was annotated  as 
determined  from  the  tertiary  folds.  Protein  sequences,  taken 
from large molecular biological databases  and  for which a  struc- 
ture  had  not yet  been determined  but were found to be  at least 
50% identical in residue  matches  after  alignment  to a sequence 
with determined  structure, were then  multiply  aligned to  the 
structural sequence(s). A duplicate set of files was also used, but 
now the 3D-Ali  entries contained  known primary structures  at 
the 35% identity level or greater  (referred  to  as 3D-Ali-35 
data).  The  work of Pascarella  and  Argos (1992) should  be  con- 
sulted for  details. 

3D-Ali families  containing  only  one (or more)  sequence(s) 
with known  tertiary  structure  are  referred  to  here  as single (or 
multiple)  structure  families.  There  are 38 3D-Ali  sequence 
sets,  each  containing two  or  more sequences with experimentally 
solved fold.  However,  three  of these  families  were not utilized 

in this work because  either  their structure  depended  on  binding 
another  protein  (inhibitors) or they contained  metal clusters re- 
lying on  disulfide  bridges  (two  ferrodoxin families). There  are 
an  additional 25 families that  contain  only  one  sequence of 
known fold  and  more  than  one primary structure (with unknown 
fold)  taken  from  large  protein  sequence  databases (excluding 
crambin, which is a peculiarly hydrophobic  protein  not  amena- 
ble to prediction). 

For the  calculation  of  the residue exchange statistics for  each 
secondary  structural  type,  entries with at  least two sequences 
with experimentally  determined  three-dimensional  structures 
were used. The secondary structure of  each residue as  determined 
from  the  known fold was used to assign a structural  state  to each 
alignment position in the multiple sequence blocks. Unique residue 
exchange frequencies were counted for each possible pair of amino 
acid types occurring at a given match site. Possible exchanges were 
only counted  once; for example, if AAACCF occurred at  an align- 
ment position,  the exchanges A-C, C+F,  and  A-+F constituted 
the only counts  and  then each with a count of one.  The  frequen- 
cies were then summed over all alignment sites and  output  into  an 
appropriate cell in each of the corresponding  secondary  structure- 
specific substitution matrices (H,  E,  and C for helical, strand,  and 
coil/loop regions, respectively). For  the  sake  of simplicity, the dif- 
ferent  types  of helices, strands,  turns, or bends were lumped  to- 
gether: H  (a-helix),  G (3,,-helix), and 1 (r-helix) states were called 
H (see Kabsch & Sander [ 19831 for detailed structural  definitions); 
E (extended strand)  and B (residue in an isolated  0-bulge)  as E; 
and T (H-bonded  turn), S (bend),  and  blank (coil) as  C. 

To extract a consensus secondary  structure from  the superposed 
structures in  a  given 3D-Ali file over  each of the  multiple 
alignment  positions, three  different procedures were attempted; 
namely, highly stringent, semi-stringent, and flexible (or major- 
ity) rules. The  stringent process considers  only  those families 
with at least three  or  more  experimentally  determined  tertiary 
structures. A secondary  structure  type was not assigned  unless 
80% or more of the proteins with known structure had displayed 
a secondary  structural  state of the  same  type (H, E, or C).  The 
semi-stringent rules, which assigned a consensus secondary  struc- 
ture,  changed  according  to  the  number of known  structures in 
a  particular  family. For instance, if four or more structures were 
superposed,  more  than 50% of them  must be similar in second- 
ary  structure for assignment. I f  fewer than 50% of the structures 
contributed  an  amino  acid  to a given alignment site due  to  an 
insertion or deletion,  then  more  than 80% of  those  appearing 
must agree  for a consensus  declaration. If two or three  tertiary 
structures  appeared in the file, all must show  the  same  structural 
type.  The flexible or majority rule simply assigned the  second- 
ary structural type that  appeared most often  at a given alignment 
position  regardless  of the  number of structures  contributing. If 
two  substructural  types were observed  most  often  and  equally 
in frequency,  then a  hierarchy of E > H > C was used to decide 
the  consensus  type.  For  all  the rules, when an assignment  crite- 
rion was not  met,  the  position was declared  of  unknown  type 
and  not used  in gathering statistics and  not  considered  as a  pre- 
dictable  site. 

Certain thresholds  were  applied to the length of consensus sec- 
ondary  structural elements for their validation;  namely, five or 
more  contiguous  positions  for helix, three or more  for  strands, 
and five or more  for coil. For  purposes  of calculating  exchange 
matrices,  alignment  positions in the  too-short  regions were ig- 
nored, while, for  prediction  evaluation,  the  segments were as- 



Secondary structure prediction 25  19 

signed as  coil. No limit  was placed on  the  maximum  allowable 
lengths  for  these  elements. 

The following motivations  prompted  the  secondary  structural 
Iength limits  and  consensus  assignment rules. Colloc’h et  al. 
(1993) analyzed  three  different  methodologies  for assigning 
three-state  secondary  structure  types  from  known  tertiary  pro- 
tein structures,  one of which was DSSP  (Kabsch & Sander, 1983) 
used  in the  Pascarella  and Argos (1992) database.  They  found, 
for 154 proteins, that only 63% of sequence sites were designated 
the  same by all techniques.  The DSSP approach was unique in 
delineating a plethora  of  four-residue helices and  two-residue 
strands.  Thus,  to be more  assured  of  proper  secondary  struc- 
tural  designation, limits of five and  three were used for helices 
and  strands, respectively. For consensus  assignment of  structure, 
considerable noise can be introduced in the residue exchange sta- 
tistics  unless the  structural  type is adopted by several proteins 
at a given alignment  position. Here several rules were attempted 
with  varying strictness (see above)  and  those selected  resulted 
in optimal  predictions. Russell and  Barton (1993) and Levin 
et  al. (1993) have  also  examined  these issues. 

Once  unique  exchanges  and  frequencies of amino  acids in 
multiple  alignment  positions assigned to  secondary  structural 
types were counted over  all  protein  families, the  amino acid  sub- 
stitution weight matrices were constructed  for  each  secondary 
structuraI  type.  The  matrix values  were symmetric  about  the  di- 
agonal because no direction  could be assigned to  the residue sub- 
stitutions. For example, helix-specific matrix cells M (  i, j)hclix 
were calculated  as  follows: 

i # j  

and 

I I = !  

where A,  refers to  the  ith  amino  acid  type  (amino  acid fre- 
quency  for given secondary  structural  state), Si,, to  substitu- 
tions  of the  ith  andjth types,  “helix” to  only  those residues that 
occur in  helical secondary  structural  regions,  and  “all”  to resi- 
dues  over  the  entire  tertiary  structure regardless of  secondary 
structural state.  Similar determinations were made  for  the  strand 
and coil conformations. A matrix cell value  greater (less) than 
1 .OO would  indicate  a  preference  (avoidance) for  the residue sub- 
stitution or residue  type within the given secondary  structural 
state,  whereas values at 1 .OO suggest neutrality. 

Prediction of secondary structure 

The  secondary  structure  prediction  method discussed here re- 
quires as  input residue  exchange weight matrices for  each of the 
three  substructural  states  and a single query sequence to  be pre- 

dicted or a multiple sequence  alignment  that  contains  the  query 
sequence  and  from which predictions  are  made.  The  program 
can  accept a single sequence or a multiple  sequence  alignment 
in the  database  format  of 3D-Ali (Pascarella & Argos, 1992) 
and  HSSP  (Sander & Schneider, 1991) or it can recognize MSF 
files generated by the  multiple  alignment  routine  Pileup  of  the 
GCG  package  (Genetics  Computer  Group, 1991). A  single  se- 
quence  input will prompt a search  of  large  protein  sequence 
databases  for related members,  and  then a subsequent  multiple 
alignment (if possible),  followed by a secondary  structure  pre- 
diction  for  the  query  sequence.  The  substitution  matrices,  act- 
ing as input  to  PreferPred,  are precalculated with PreferCal. The 
PreferPred  prediction is for  three  states  (a-helix,  P-strand, or 
coil)  shown  along  the  length of the  query  amino  acid  sequence 
as a single sequence or within a multiple  alignment. 

The  prediction  technique is composed  of  the  following  pro- 
cedures.  The  occurrence of each  amino  acid  type is noted  only 
once at each alignment  position (or query sequence site for a sin- 
gle sequence  prediction). All possible exchanges are collated for 
each  position,  independent  of  substitution  direction.  Nondiag- 
onal  and  diagonal  values,  taken  from  the  exchange weight ma- 
trices for each substitution and residue  type respectively, are then 
summed for each of the  three  structural types and  for each align- 
ment (single sequence)  position.  The resulting sums  are  then 
added  and  averaged  for  each  structural  type  over a sliding win- 
dow  that encompasses  a given number of contiguous  alignment 
positions  and is centered  on  the  position  to be predicted.  This 
process is repeated for all possible windows along  the alignment 
or single sequence,  i.e., it slides along  the multiple  alignment  in 
steps of one.  At  each  alignment  position or window  center,  the 
highest window  average over the  three  states  predicts  the site to 
be in a-helix (H), &strand (E), or coil (C). Tests were made with 
various  window  lengths in the range 3-13 in steps of 2 to achieve 
optimal  predictions. 

Before the final prediction is made,  certain cleaning or filter- 
ing rules are introduced to remove the predicted  secondary  struc- 
ture elements of  unacceptable length or unacceptably  interrupted 
by other  substructural-type predictions.  These  cleaning rules are 
completed in three successive cycles such  that  the  results  from 
application  of  a previous filter are taken  before  effecting the next 
filter. 

Round I cleans single position  interruptions such that, i f  two 
flanking  alignment (single) sequence sites are  predicted in one 
structural  state with the  middle in another  state,  the  middle  po- 
sition is assigned according to  the consistent  flanks. For example, 
three successive predictions of  (H, C/E, H)  becomes (H, H, H )  
where C/E indicates  C or E.  Round I1 cleans double position in- 
terruptions such that in five positions, three flanks are of one struc- 
tural  state and two middle sites are of another. For instance, (H, H, 
W E ,   W E ,   H )  or (H, C/E,  C/E,  H, H) becomes (H,  H, H ,  H, 
H). Finally, in Round 111, all helices  less than or equal to 4 in length 
and all strands less than or equal  to 2 in  length are altered to coil 
predictions; for instance, (H, H,  H) becomes (C, C,  C). Various 
length  thresholds in each of the cleaning  steps were attempted; 
those reported were found  optimal. 

Evaluation o f predicted secondary structure 
and cross-va(idation 

The  PreferEva1  routine was  used to  evaluate  the  predicted sec- 
ondary  structure of  a protein.  The assessment  criterion used was 



2520 P.K. Mehta  et al. 

the  fraction of  residues  predicted correctly  in a given protein or 
alignment relative to  the observed or consensus secondary struc- 
ture  for  the protein or alignment sites. Alignment sites that could 
not  be assigned a consensus  secondary  structure,  as previously 
described, were ignored in the  evaluation.  The  total  number  of 
amino  acids  appearing  at  all  sequence  alignment  sites,  regard- 
less of type or frequency of appearance  and assigned structural 
state, was used  to  normalize  the  number  of residues predicted 
correctly, which  were counted in similar  fashion  at  each  of  the 
alignment sites. The  final,  overall  evaluation  for a set  of pro- 
tein  families  was taken  as  their  mean  accuracy. 

For cross-validation, a comprehensive  jack-knife test was used 
where  secondary  structure-specific  substitution  matrices were 
calculated using all but  one  protein family  in  a data set and  then 
prediction  and  evaluation  performed  on  the  deleted  family. 
Hence,  no  information  on  the predicted  family was included  in 
the  generation of substitution matrices.  As the  calculation  time 
for  the  substitution  matrices  and  predictions were minimal, a 
jack-knife  test  could be repeated  for  each  family.  An  average 
over  all  such  tests  was  calculated to yield a stringent  estimate of 
the  overall  prediction  performance. 

Results and discussion 

The  first  task involved the  generation  of  secondary  structure- 
specific residue  exchange weights, which are  represented  as 
20 X 20 symmetric  matrices with each cell containing a prefer- 
ence (or avoidance) value according to the acceptability of a par- 
ticular  residue substitution (e.g., Gly-Ala) or residue type  (for 
diagonal  elements) in a given secondary  structural  state  includ- 
ing a-helix,  @-strand,  and  coil.  The  matrices were calculated 
from aligned  sequences  of protein families  as they appear in the 
3D-Ali database of Pascarella  and  Argos (1992). The 70 fam- 
ilies of  aligned  sequences  consist  of at least one  protein sequence 
with known  three-dimensional  structure  and  then  one or more 
related  sequences (taken  from  protein  sequence  databases) with 
at least 50% residue  identity after alignment to  any  one sequence 
with  known  fold. A second set of files over  the  same 70 fami- 
lies with the  sequence  identity  at  the  35% identity level was also 
used.  For  both  sets,  the  sequences  associated  with  experimen- 
tally determined structures were aligned by structural superposi- 
tion of  main-chain C, atoms;  secondary  structural assignments 
were ascertained  for  these  primary  structures  from  the  main- 
chain  dihedral angles and  hydrogen  bonding  states  (Kabsch & 
Sander, 1983). 

Several conditions  involving  the use  of  these files were at- 
tempted to achieve the  optimal  secondary  structure predictions. 
The  structure-specific residue  exchange  weights  were calculated 
utilizing all  the 3D-Ali  files or only  those with two or more 
known  structures  to allow better  delineation of conserved sec- 
ondary  structures  through  consensus. Files based  on 50% resi- 
due  identity or 35%  provided  further  distinction.  The rules for 
consensus  secondary  structure  assignment were  varied accord- 
ing to three levels of stringency  for  agreement  amongst  the 
known  tertiary  architectures  as  described in the  Methodology 
section. Further, various  minimal  lengths were attempted respec- 
tively for assignment and prediction of  a-helices,  0-strands,  and 
coil segments.  Finally, secondary  structure predictions were op- 
timized according to  several odd-numbered window  lengths en- 
compassing contiguous alignment  positions  over which summed 
residue  exchange weights a t  each site  were added  and  averaged 

for  each  structural  state  and  then assigned to the  central win- 
dow  position.  The largest of  the  three  state values provided  the 
secondary  structural  type  predicted. For all  the  various tested 
conditions  mentioned,  the prediction evaluation was performed 
over all families  used and all alignment sites  with  assigned sec- 
ondary  structure. 

It was found  that  substitution  matrices used here  for  predic- 
tion  are best calculated  with families consisting  of  two or more 
known  structures  and  database sequences added  at  the 50% res- 
idue  identity level or greater.  Figure 1 shows  the  matrices  for 
each of the three  substructural states. The use of both single- and 
multiple-structure families  in combination reduced the predic- 
tion  accuracy by as much  as 5 % .  The presence  of  several  exper- 
imentally  determined folds in a given family  (multiple structure) 
as well as highly related sequences (50% identity)  allowed  better 
recognition of secondary  structurally conserved  regions, which 
in turn yielded exchange  statistics  more  characteristic of the 
structural type. The 35 multiple-structure families employed are 
listed  in Table 2. 

In assigning a consensus  secondary  structural  state  to  the 
aligned  tertiary  structures,  the  most flexible (majority)  rule 
proved to be the  best.  Though this  result could seem contrary 
to  expectation, greater  residue  exchange  statistics were provided 
by the  expanded  number  of assigned positions.  Also in calcu- 
lating the residue  exchange  matrices,  only helical, extended,  and 
coil segments with minimal  lengths  of 5 ,  3 ,  and 5 ,  respectively, 
were utilized, once  again providing assurance of structural type 
with appropriate  residue  substitutions. I t  must be emphasized 
that in evaluating the predictions, all helices and  strands less than 
five and  three residues  in length, respectively, were not ignored 
and were assigned as coil regions; all coil segments were accepted 
for  evaluation regardless of length.  The  percentage of  residues 
predictable was found  to  be 75.1070 when alignment  positions 
where  no  secondary  structural  assignment  could be elicited are 
excluded. Our method relies on  multiple  structures  and, if spe- 
cific structurally  equivalenced  positions are  not in agreement re- 
garding  secondary  structural  type, it is impossible to check for 
prediction  accuracy  as  there is no  standard-of-truth. I t  should 
be noted, however, that  the mean  prediction accuracy for single- 
structure families, where all sequence sites are predicted, is 68%, 
which represents the lower limit should all  residues be included. 
It should  also be noted  that  the single-structure  families contain 
fewer multiply aligned sequences  and  therefore yield less accu- 
rate  predictions. 

It was observed  that sliding  windows  over the  alignment  po- 
sitions to  predict  the  central  window  residue  should be of dif- 
ferent length for  each  structural class; namely,  9,  7,  and 5 for 
helical, strand,  and coil exchange  statistics, respectively. The pre- 
diction  accuracy was generally improved by about 5% when 
using different  lengths in contrast  to  the  same  window  for all 
types. To  validate  properly  the  optimization of the basic pa- 
rameters,  jack-knife  tests were performed while varying the 
specific structure  length  thresholds. For helices (H),  3-12 was 
used in  steps of two  with  the  strand  and coil lengths fixed at 7 
and 5 ,  respectively. In each case, the  mean percent  accuracy was 
calculated with the  appropriate  substitution  matrices  and  then 
jack-knife tests performed  for  each  protein  family.  The  mean 
percent accuracy over all families ranged between 69.9%  (H = 3) 
and 72.1 % (H = 9), and  the corresponding  jack-knife results en- 
compassed 68.7%  and  70.9%.  The prediction  accuracy  changed 
only  about  1.2% in eliminating  each  family  from  the  exchange 
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A 
Ala Cyr Asp Glu Phe Gly H e  Ile 

Ala 123 
Cys 141 1.04 
4rp 131 1.44 111 
Glu 134 1.43 131 1.19 

Gly 1.11 136 1.02 lo6 0.68 086 
Phe 094 116 079 091 0.82 

Hu 1.17 150 1.05 123 094 110 0.99 
Ilr 1.08 124 0.93 0.96 0.74 0 79 086 090 
Lys 1.29 131 1.18 122 078 105 1.10 094 
Leu 1 I9 141 1.03 101 090 0.88 1.08 099 
Me1 120 1 3 6  094 102 091 081 1.08 101 
AS" 128 136 108 121 083 096 1.13 089 
Pro 094 130 0.84 096 069 092 0.80 067 
Gin 1.31 149 125 1.26 0.88 111 122 102 
Arg 1.17 121 118 1.15 0.74 0.99 1.06  0.91 
Ser 117 133 0.97 102 0.78 094 103 089 
Thr 1.06 118 101 094 072 086 0.95 
Val 109 133 101 104 076 095 1.01 083 
Trp 090 078 0.87 086 066 058 0.92 053 
Tyr 0.86 1 W 0.73 076 0.71 058 0.81 068 

B 
Ala 0.75 
Cys 0.75  1.07 

Ala Cyr Asp Glu Phs Gly Ha lie 

LYS 

113 
1 07 
0.99 
1.14 
0 67 
1 21 

0.98 
1.11 

088 
0 99 
0 74 
079 

LYS 

1 M  
108 104 
0 98 
0 75 
101 
102 
101 
090 
088 
072 
079 

1 01 
0 59 
110 
057 
0 59 
0 96 
1.02 
0 75 
0.86 

1 02 
0 74 
1 20 
1 03 
101 
0 93 
0 96 
088 
083 

0 75 
0 91 
0.69 
0 79 
0 80 
077 
0 40 
0 54 

116 
1 IO 
1 09 
1 02 

0 95 
1 06 

0 85 

1 06 
0 90 
088 
0 98 
Ob3 
0 75 

0 93 
0 87 
0 93 
0 69 
0 63 

Leu Met As" Pro Gln Arg S e r  

A m  071 0.72 0.69 0.74 
Pro 077 067 0.75 0.75 107  075 083 130 0.92 
Gln 0.68 065 0.64 0.73 107 078 079 110 075 

Ser 080 081 077 092 128 091 085 124 0.89 109 115 084 087 085 099 096 
Arg 080 084 063 0.82 126 084 092 123 084 105 114 088 103 083 0 %  

Tht 097 093 088 1 1 1  132 103 091 127 109 118 1 1 1  099 093 102 108 110 
Val 105 091 0.99 108 151 109 113 142 106 135 122 105 113 103 108 121 
Trp 1.18 147 104 133 131 128 118 171 1.11 137 135 095 1 0 9  117 133 134 
Tyr 123 122 112 1.31 134 127 123 151 1.18 141 123 108 129 111 125 141 

Thr Val Trp Tyr 

0 85 
084 083 
074 060 091 
065 067 066 083 

Thr Val Trp Tyr 

1 12 

097  092 080 
106 105 

121 1 3 4  091 082 
107 097 071 083 080 

116 
127 141 
142 160 I22 
146 160 129 131 

0.86 
Ala Cys  Asp Glu Phe Gly His Ile Lys Lpu Met Asn Pro Gln Arg S e r  

049 071 
123 060 
096 057 
079 046 
1 1 1  051 

051 043 
1.04 039 

0.57 0 28 
1.06 068 

053 010 
095 070 
169 096 
092 051 
102 082 
I04 055 

1 43 
117 101 
117 0.85 
188 1.15 
1.63 091 
104 0.74 
138 093 
109 0.69 
134 1.02 
152 104 
204 171 

141 102 
117 096 

163 113 

0.83 
116 
1 05 
0 42 
133 
063 
0 74 
119 
1 66 
116 
1 0 9  
0 94 

1 50 
1 40 
0 98 
1.43 
1 IO 
1 07 
180 
180 
1 22 
141 
137 

1 05 
081 058 
115 091 
0 62 
088 059 
118 100 
196 118 
092  070 
102 069 
129 074 

I10 
084 
097 

2 08 
1 30 

1 02 
1 08 
I 32 

0 61 
0.63 
113 

0 80 
119 

0 82 
0 74 

077 
117 

0 79 
1 28 

0 74 
0 79 

1 36 
191 
113 
119 
135 

2 13 
163 
1 76 
1 87 

0 96 
113 
I I2 

1 06 
1 29 1 29 

Fig. 1. Secondary  structure-specific  residue ex- 
change weight matrices  determined  from 35 struc- 
tural families in the 3D-Ali-50 database  (Pascarella 
& Argos, 1992). A: a-Helix. B: &Strand. C: Coil. 

Thr Val Trp  Tyr 

Thr 092 068 127 089 097 130 133 079 112 084 083 123 171 089 113 111 I08 
Val 065 032 099 071 044 090 066 045 089 049 044 099 132 077 086 070 078 063 
Trp 086 047 124 061 119 146 078 056 144 088 083 146 239 073 122 101 069  057 078 
Tyr 084 048 146 091 0 9 9  151 097 065 113 057 084 127 154 114 I 1 0  103 085  048 122 O X 3  

matrix  calculations. Given the smallness of  the  change  and sim- 
ilar  results  in the final jack-knife  control (see above),  no  further 
controls were performed  regarding  length  threshold  combina- 
tions.  Various  filtering or cleaning  procedures were also tested 
and revolved about  the  number  of  residues  to use in  flanks  and 
sandwiched  positions;  the  optimal  filters  are  detailed in the 
Methodology  section. 

For  the 35 3D-Ali-50  families,  where at  least two sequences 
have  known  fold  and  the  other  sequences (if any)  are  at least at 
the 50% residue  identity level in  alignment with at least one of 
the sequences of  known  topology, a prediction accuracy of 70.6% 
was achieved under  optimal prediction parameters given in the pre- 
vious paragraph (Table 1). However, if the same structure-specific 
residue exchange matrices based on the 35 families at  the 50% iden- 
tity level were applied  to  the  same 35 families  but now with se- 
quences  from  databases  added  that  had  at least 35% residue 
identity with at least one  of  the sequences with known tertiary ar- 
chitecture, the prediction  correctness  increased to  72.2%.  Obvi- 
ously the greater  substitution  information improved the result. The 

standard deviation  of the prediction  accuracy among  the families 
was 9-10% for  both cases (Fig. 2). The percentages  of  correctly 
predicted  residues  in helical, extended,  and coil structural  states 
were 66.4%, 66.7'70, and 74.8%, respectively, a  balanced  predic- 
tion  (Table 2). 

The  computer  time  required  to  predict a given family on a 
VAX 9600 mainframe  ranged between a few seconds to  a few 
minutes.  The largest family, with 437 immunoglobulin  domain 
sequences,  each with length  about 120 residues, required  only 
4  min. The calculation  of the exchange  matrices also needed little 
computer  effort, which  was  never more  than  30 s for a given 
parametric  and  database  setting. 

The  robustness of the  exchange  matrix  prediction  technique 
was  tested in several  ways. An  exhaustive  cross-validation was 
performed  where  structure-specific  residue  exchange weights 
were  derived under  optimal  parametric  settings  from  the 50% 
identity  35-family  database (3D-Ali-50) and  where  predic- 
tions utilized the  same  35-entry  data  but with sequences  at  the 
35%  identity level (3D-Ali-35). For each  jack-knife  test,  one 
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Table 1. Secondary structure prediction accuracy for 35 multiple-structure  protein families 

Percent  correctly  predicted  residues 

Protein  familya 

1. Acid  proteases  (AC-PROT) 
2.  Plastocyanins  (PLASTO) 
3.  Tim barrel1 proteins  (BARREL) 
4.  Sugar  binders  (BINDING) 
5.  Carbonic  anhydrases  (CARBONIC) 
6.  Calcium  binders  (CA-BIND) 
7.  Crystallins  (GCR) 
8.  Cytochrome  b5s  (CYTB) 
9.  Cytochrome cs (CYTC) 

10. Cytochrome c3’s (CYTC3) 
11. Cytochrome  b562+c’ (256B) 
12.  Dihydrofolate  reductases  (DFR) 
13. Trypsin  inhibitors  (EGLIN) 
14. Hydrolasesheductases  (FAD-NADH) 
15. Globins  (GLOBIN) 
16. Immunoglobulin  domains  (IGB) 
17. Interleukins  (IL) 
18. Lectins (LTN) 
19. Lysozymes (LZM) 
20. Dehydrogenases  (NBD) 
21. Papains  (PAP) 
22. Phospholipases  (PLIPASE) 
23.  Phosphofructokinases  (KINASE) 
24. Rhubredoxins  (RDX) 
25. DNA  repressors  (REPRESSOR) 
26.  Rhodaneses  (RHD) 
27. Subtilisins  (SBT) 
28. Serine  proteases  (S-PROT) 
29. Toxins (TOX) 
30. Viral capsid  proteins  (VIRUS) 
31.  Wheat  germ  agglutinin  (WGA) 
32.  Hemerythrins  (HMR) 
33.  Viral  proteases (VIRUS-PROT) 
34.  Histocompatibility  antigens  (HLA-A2) 
35.  o-Xylose  isomerases  (XIA) 

3D-AliL 

65.6 
78.7 
78.7 
62.3 
74.0 
81.1 
55.8 
72.5 
70.2 
70.8 
83.6 
69.0 
68.5 
52.0 
63.5 
80.4 
56.9 
72.8 
61 .O 
80.2 
60.6 
77.9 
63.7 
73.9 
73.2 
58.7 
68.7 
73.3 
75.2 
84.4 
99.9 
67.3 
59.3 
67.9 
71.8 

5 O b  
~ 

3D-Ali-35 

73.5 
78.8 
83. I 
62.3 
76.8 
78.1 
59.8 
69.3 
71.4 
73.9 
86.9 
68.7 
76.6 
53.2 
63.3 
80.1 
56.9 
73.7 
57.8 
90.8 
70.5 
76.5 
59.8 
74.8 
75.4 
58.7 
72.9 
71 .O 
83.8 
84.3 
99.9 
67.3 
52.8 
70.3 
71.8 

Jackknife-35 

67.3 
78.8 
83.1 
61.5 
75.8 
74.9 
53.7 
69.3 
71.4 
68.3 
83.3 
68 .O 
76.6 
53.2 
70.6 
78.0 
56.9 
69.9 
58.9 
87.7 
70.5 
76.5 
59.8 
74.8 
75.4 
58.7 
71.5 
68.7 
82.3 
84.3 
99.9 
66.3 
48.0 
64.4 
72.4 

Mean  correctly  predicted  per  residue  70.6%  72.2%  70.9% 

The  name  of  the  protein  family  as well as  the  identifier  (in  parentheses) within the  3D-Ali  database of Pascarella  and  Argos (1992) are given. 
3D-Ali-50  refers to  the  prediction  accuracy  for  families  where  related  sequences  from  large  protein  sequence  databases  are  added to the  mul- 

tiple  alignments  such  that  each is at  least  50%  identical  in  matched  residues  to  one of the  sequences  with  known  tertiary  structure.  3D-Ali-35 is 
similar  except  that  the  35%  identity level is acceptable,  resulting  in  a  greater  number  of  sequences in the  multiple  alignment.  The  jackknife  predic- 
tion  accuracy  for  a given family is shown  based on  the 3D-Ali-35  entries. 

of the 35 families was removed from  the  substitution matrix cal- 
culations  and  then  subsequently  predicted.  Each  family was  it- 
eratively deleted and  the resulting  prediction  accuracies  over the 
35 cross-validations  averaged.  The  mean was 70.9%, which 
compares  favorably with the 72.2% where  all  families were used 
for  the exchange  statistics and  prediction  evaluation.  The  aver- 
age  prediction  accuracy  over  the 25 single-structure families, 
including all sequences to  the 35% identity level, was determined 
to  be 68.0% where  the  exchange weight matrices were calcu- 
lated from  the 35 multiple-structure  families (3D-Ali-50). The 
somewhat lower prediction  accuracy  would be expected because 
the  multiple  structural families each  contained,  on  average, six- 
fold  more  sequences with known  topology  than  the  lone se- 
quence in single-structure families, thus  providing  considerably 

more  substitution  information  for  prediction.  The increase  in 
correctness  from 68.0% to 70.9% would  also  indicate  that  the 
greater  the  number  and diversity of sequences in the  multiple 
alignments,  the  better  the  general  prediction  accuracy.  Finally, 
predictions were run  on  the single sequences  with  known  struc- 
ture in the 25 single-structure  families;  here  only  the  diagonal 
elements in the structure-specific substitution matrices were uti- 
lized for  prediction.  The  mean  accuracy was a lower 64%, once 
again  pointing  to  the  importance of the  multiple  sequence in- 
formation. Nonetheless,  this  accuracy compares  favorably with 
the best of the single-sequence prediction methods (Levin  et al., 
1993). 

Figure 3 shows  the  observed  and  predicted  (before  and  after 
cleaning) secondary  structure  for various protein examples. The 
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Fig. 2. Distribution of secondary  structure  prediction  correctness  for 
35 multiple-structure  proteins in the  3D-Ali-35  database. 

results  are  shown relative to  the first-listed sequence in the  ap- 
propriate  entry of the 3D-Ali-35 database.  The percentage  ac- 
curacy  of  the  predictions  shown ranges from 63 to 80% and  the 
proteins selected for  illustration  display  various  topologies, in- 
cluding all-helix, all-strand,  and mixed strand/helix. 

Four  methods,  according  to  the  knowledge of the  authors, 
have  been published to make use of the  extra  information in 
multiple  protein  sequence  alignments in an  automated  fashion 
for  secondary  structural  prediction.  The  approaches of Craw- 
ford et al. (1987), Bazan (1990), Barton et  al. (1991), Benner and 
Gerloff (1991), and Russell et aI. (1992) have not been automated 
nor  have  they been applied  to a sufficient  number  of  protein 
families for  comprehensive assessment. These  latter techniques 
will thus  not  be discussed further  here. 

Zvelebil  et al. (1987) examined 11 protein families that were 
composed of  clearly related  sequences  aligned by automated 
techniques.  They  averaged  the  secondary  structure  predictions 
based on  the  COR  method  (Gamier  et al., 1978; Gibrat  et al., 
1987) over  the  familial  members  and  found a mean 4% predic- 
tion  improvement  over  the 1 I protein  groups.  Addition  of  fur- 
ther rules  such  as  examining conservation  patterns characteristic 
of  specific secondary  structural  types yielded an  extra 5% in- 
crease in mean  prediction  accuracy. Levin et al. (1993), who used 
the  most  frequent  predictions  from  two  methods  over  the  fam- 

Table 2. Prediction accuracy for each structural type 
over 35 multiple-structure families with sequences 
at the 35% identity level 
~- . 
~" - 

Residues  predicted as Observed Correctly 
~~ ~ " (To) in predicted 

Residues  observed in Helix Strand  Coil  structure (Yo) 

Helix 885 171 276 30.1 66.4 
Strand 71 732 294 24.8 66.7 
Coil 216 269 1,516 45.2 75.8 

. . . . . . . . .  I . .  . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
Sequence GEVASVPLTNYLDSQYFGKIYLGTPPQEFTVLFDTGSSDFWPSIYCKSN 
Obs SS EEEEEEE  EEEEEEEE  EEEEEEE  EEE 
Pled S S  EEEE  EE  EEEEEEEEEEE  HHEEEEE  EEEEE  E  HH 
cii&ss 1 EEEEEEEE EEEEEEEEEEE EEEEE EEEEE HH 

. . . . . . .  
Sequence 

Clean S S  
EEEEEE EEEEEEH Pred S S  

EEEEEEEEE  EEEEE Obs SS 
QTVGLSTQEPGDVFTYAEFDGILGMAYPSLASEYSIPVFDNMMNRHLVAQ 

EEEEEE 
E  EEEEEEE  HHEHHHEE 

EEEEEE  EEEEEEE  HHHHHHEE 

_ _ _ _ _ _ _ _ _ l . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

HHHHHHHH 

. . . . . . . . .  I . . . . . . . . .  I . . . . .  
Sequence DLFSVYMDRNGQESMLTLGAIDPSY 
Obs SS 
Pred SS EEEEEEE 

EEEEE  EEEEEE 
EEEEE 

Clean S S  EEEEEEE  EEEEE 

. . . . . . . . .  I . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
Sequence 
Obs SS 

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSH 

HHHH HHHHEEEEEEHHH  HH  HHHHHHHEEEEE  EE Pred S S  
HHHHHHHHHHHHHH  HHHHHHHHHHHHHHH 

Clean S S  HHHHHHHHHHEEEEEEHHHHHHHHHHHHHHHEEEEE 

. . . . . . . . .  I . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
Sequence 

Pred SS 
HHHHHHHHHHHHHHHHHHH  HHHHHHHHHHHHHH Obs SS 

GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKL 
HHHHH 

HH HHHHHHHHHHHHHH  H  HHHHHHHHHHHHH  EEH 
Clean S S  HHHHHHHHHHHHHHHHHH  HHHHHHHHHHHHHHH 

Immunoelobulin domams. IGB. a l l 4  orotein. 80.1% 

Sequence 
Obs S S  

Clean SS 
Pred SS 

Sequence 
Obs SS 
Pred SS 
Clean S S  

O b s  SS 
Sequence 

Pred SS 
Clean SS 

. . . . . . . . .  
OSVLMPPSASGTPGORVTISCSGTSSNIGSSTVNWYOOLPGMAPKLLIY 

. I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
_. - ~ ~~~ ~- 

EEEE  EEEEEEEE EEEEEE EEEE 
EEEE 

EEEEEE EEEE 
EEEEE 
EEEEE 

EEEEEEEH EE EEEEEE 
EEEEEEE 

. . . . . . . . .  I . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
RDAMRPSGVPDRFSGSKSGASASLAIGGLQSEDETDYYCAAWDVSLNAYV 

E  EEEEEE  HHH  EEEEEE 
E EEEEEE EEEEEE 

EEEEEE  EEEEE  EEEEEEE 

. . . . . . . . .  
FGTGTKVTVLG 

I .  

EEEE 
EEEEEE 
EEEEEE 

. . . . . . . . .  
Sequence SLVQFETLIMKIAGRSGLLWYSAYGCYCGWGGHGLPQDATDRCCFVHDCC 

Clean SS 
EEE  EEEEE 

HHHHHHHHHHHH 
HHHHEEHHHHHHH Pred S S  
HHHHHHHHHHH Obs SS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

HHHHHHHHHH 
HHHHHHHHHH 

HHHHHHHHHHHHH  EEEEEEEEE 

. . . . . . . . .  I . . .  . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
Sequence YGKATDCNPKTVSYTYSEENGEIICGGDDPCGTQICECDKAAAICFRDNI 
Obs SS 
Pred S S  HHH  HH  EEEEEE 
Clean S S  HHHHHH  EEEEEE I HHHH 

EEE EEE HHHHHHHHHHHHHHHHHH 
HHHHHHHHHHHHHHHHH 
HHHHHHHHHHHHHHHHH 

. . . . . . . . .  I . . . . . . . . .  I . .  
Sequence PSYDNKYWLFPPKDCREEPEPC 
Obs SS 
Pred SS 
Clean SS 

HHHH H 

Fig. 3. Comparison of the  three-state  observed  and  predicted  second- 
ary  structures  in  four  different  protein  folds.  The  protein  name, 
3D-Ali  database  identifier,  structural  class,  and  prediction  accuracy 
are  first  given.  Helical  and  strand  residues  are  indicated  for  both  ob- 
served and  predicted  structures by H and E, and coil is left  blank.  The 
sequence  shown is the  first  noted  in  the  3D-Ali  database  (Pascarella 
& Argos, 1992). Obs SS, Pred SS, and  Clean SS are,  respectively,  the 
X-ray  determined,  predicted,  and cleaned predicted secondary  structures. 
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ily members, achieved  a mean 8%  improvement  for 7 different 
protein  families, with an  overall  mean  prediction  accuracy  of 
69%. They  also  noted  that  there  must  be a minimum 25% se- 
quence identity among all familial  sequence pairs, otherwise the 
prediction  improvement  could  be  diminished or even turn neg- 
ative, a result emphasizing the  importance of proper  alignment. 
The sequences added  here  at  the 35% level are clearly above  the 
Levin et  al.  minimum.  Rost  and  Sander (1993) used a trained 
and  complex multilayer neural  network  as well as several filter- 
ing and  sequence weighting  rules to achieve an overall accuracy 
near  71% with standard  deviation  about  9%  over 130 families. 
Due to  the large computational costs  in  training  nets,  a full jack- 
knife test could  not be performed  and  the 71 '70 figure is based 
on only  sevenfold  cross-validation.  A 6-870 prediction  improve- 
ment was observed  when  the  multiple  sequence  data was em- 
ployed  over  single-sequence prediction.  In a review of neural 
network  procedures to  predict several protein  structural  and 
functional  features,  Hirst  and  Sternberg (1992) conclude  that 
purely statistical approaches work equally well, as  observed  here. 
The  Salamov  and Solovyev (1995) procedure is also  complex, 
incorporating  many  different  secondary  structural  properties 
and  again relying on  neural  nets. 

The results presented here  are consistent with those previously 
reported. A near  71%  accuracy is achieved for 35 families af- 
ter full cross-validation;  the  prediction  standard  deviation is 
about  9%. If  all 60 families  are utilized (single- and  multiple- 
structural), close to  70%  correctness  ensues  after  cross-valida- 
tion.  The  improvement  over single  sequences is 7%. It also 
appears  that, if more  and  varied  sequences  can be added  to 
the  multiple  alignments,  the  prediction  accuracy will improve. 
The prediction is balanced  amongst the three substructural types 
(Table 2). 

The novelty of the residue substitution approach  to secondary 
structure  prediction  encompasses  various  aspects.  The  method 
is fast  and  simple  and its operational process easily compre- 
hended and directly relatable to protein structural  and evolution- 
ary characteristics. The filtering procedures are  straightforward. 
These  properties are in contrast  to those  of other techniques that 
use more  arcane  and  complex  processes,  often  requiring  long 
computations  such  as  neural  networks or inductive logic algo- 
rithms. The present method is applicable to  both single sequences 
and multiple  alignments and assures usage of  all  available infor- 
mation.  As  the  number  of known  tertiary  structures increases, the 
substitution matrices can be easily updated  and  optimal  param- 
eterization and verification  tests  quickly determined. 

The  exchange  matrices  should  be  useful  for  protein  design, 
engineering, and modeling, where knowledge of preferred amino 
acid  substitutions in given structural  environments is typically 
required. Addition  of  more rules to  the present  technique  should 
result  in its  improvement.  Exemplary  strategies  are  annotation 
of regions with several insertions and deletions, signals for likely 
coil segments,  as well as searches  in  multiple alignments  for hy- 
drophobic  conservation  patterns  characteristic  of given second- 
ary  structural  types. 

Electronic submission 

A single sequence  in GCG  or  PIR  format (Devereux  et al., 1984) 
or a multiple  alignment in  3D-Ali (Pascarella & Argos, 1992) 
or  MSF  format (see the  Pileup  routine in the  GCG package) can 
be submitted via electronic mail to  SSPREDQEMBL-HEIDEL- 

BERC3.DE or using the World Wide Web facilities (http://www. 
embl-heidelberg.de/sspred/ssppred-info.htm1). The  prediction 
response will always be provided through  an electronic mail mes- 
sage. HELP  information is also  provided by constituting  the 
first  and  only line  of an electronic  message with the single word 
HELP  at  the line start. 
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