Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


Injection of anti-CD3 antibodies causes prompt expression of interleukin (IL)-4, IL-2, and interferon gamma (IFN-gamma) mRNA among spleen cells. The optimal dose of anti-CD3 for such induction was 1.33 microgram/animal; lymphokine mRNA was first observed at 30 min, peaked at 90 min, and was undetectable (for IL-4) or had declined markedly by 4 h. Cells harvested from spleens of mice injected with anti-CD3 90 min earlier secreted IL-4, IL-2, and IFN-gamma without further stimulation. By contrast, in vitro stimulation with anti-CD3 of spleen cell suspensions or splenic fragments from noninjected donors failed to cause prompt production of IL-4 and, even after 24 h of stimulation, the amount of IL-4 produced in such cells was substantially less than that secreted within 1 h by spleen cell suspensions or splenic fragments from mice injected with anti-CD3 90 min earlier. Production of IL-4 by spleen cells from anti-CD3-injected mice was not inhibited by pretreatment with anti-IL-4 antibody or with IFN-gamma or tumor growth factor beta nor enhanced by treatment with IL-4. By contrast, CTLA-4 immunoglobulin (Ig) treatment clearly diminished IL-4 production in response to in vivo anti-CD3, indicating that cellular interactions involving CD28 (or related molecules) were important in stimulation. Cell sorting analysis indicated that the cells that produced IL-4 in response to in vivo injection of anti-CD3 were highly enriched in CD4pos cells with the phenotype leukocyte cell adhesion molecule-1 (LECAM-1)dull, CD44bright, CD45RBdull, NK1.1pos. Indeed, the small population of CD4pos, NK1.1pos cells had the great majority of the IL-4-producing activity of this population. Injection with Staphylococcal enterotoxin B also caused prompt induction of IL-4 mRNA; the cells that were principally responsible for production also had the phenotype of CD4pos, NK1.1pos. These results suggest that possibility that this rare population of T cells may be capable of secreting IL-4 at the outset of immune responses and thus may act to regulate the pattern of priming of naive T cells, by providing a source of IL-4 to favor the development of T cell helper 2-like IL-4-producing cells.

Free full text 


Logo of jexpmedLink to Publisher's site
J Exp Med. 1994 Apr 1; 179(4): 1285–1295.
PMCID: PMC2191455
PMID: 7908323

CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3

Abstract

Injection of anti-CD3 antibodies causes prompt expression of interleukin (IL)-4, IL-2, and interferon gamma (IFN-gamma) mRNA among spleen cells. The optimal dose of anti-CD3 for such induction was 1.33 microgram/animal; lymphokine mRNA was first observed at 30 min, peaked at 90 min, and was undetectable (for IL-4) or had declined markedly by 4 h. Cells harvested from spleens of mice injected with anti-CD3 90 min earlier secreted IL-4, IL-2, and IFN-gamma without further stimulation. By contrast, in vitro stimulation with anti-CD3 of spleen cell suspensions or splenic fragments from noninjected donors failed to cause prompt production of IL-4 and, even after 24 h of stimulation, the amount of IL-4 produced in such cells was substantially less than that secreted within 1 h by spleen cell suspensions or splenic fragments from mice injected with anti-CD3 90 min earlier. Production of IL-4 by spleen cells from anti-CD3-injected mice was not inhibited by pretreatment with anti-IL-4 antibody or with IFN-gamma or tumor growth factor beta nor enhanced by treatment with IL-4. By contrast, CTLA-4 immunoglobulin (Ig) treatment clearly diminished IL-4 production in response to in vivo anti-CD3, indicating that cellular interactions involving CD28 (or related molecules) were important in stimulation. Cell sorting analysis indicated that the cells that produced IL-4 in response to in vivo injection of anti-CD3 were highly enriched in CD4pos cells with the phenotype leukocyte cell adhesion molecule-1 (LECAM-1)dull, CD44bright, CD45RBdull, NK1.1pos. Indeed, the small population of CD4pos, NK1.1pos cells had the great majority of the IL-4- producing activity of this population. Injection with Staphylococcal enterotoxin B also caused prompt induction of IL-4 mRNA; the cells that were principally responsible for production also had the phenotype of CD4pos, NK1.1pos. These results suggest that possibility that this rare population of T cells may be capable of secreting IL-4 at the outset of immune responses and thus may act to regulate the pattern of priming of naive T cells, by providing a source of IL-4 to favor the development of T cell helper 2-like IL-4-producing cells.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Heinzel FP, Sadick MD, Mutha SS, Locksley RM. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. [Europe PMC free article] [Abstract] [Google Scholar]
  • Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 1991 Nov 1;147(9):3149–3155. [Abstract] [Google Scholar]
  • Le Gros G, Ben-Sasson SZ, Seder R, Finkelman FD, Paul WE. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990 Sep 1;172(3):921–929. [Europe PMC free article] [Abstract] [Google Scholar]
  • Swain SL, Weinberg AD, English M, Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990 Dec 1;145(11):3796–3806. [Abstract] [Google Scholar]
  • Seder RA, Paul WE, Davis MM, Fazekas de St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992 Oct 1;176(4):1091–1098. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hsieh CS, Heimberger AB, Gold JS, O'Garra A, Murphy KM. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6065–6069. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tanaka T, Hu-Li J, Seder RA, Fazekas de St Groth B, Paul WE. Interleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagement. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5914–5918. [Europe PMC free article] [Abstract] [Google Scholar]
  • Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, Locksley RM. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med. 1990 Jan 1;171(1):115–127. [Europe PMC free article] [Abstract] [Google Scholar]
  • Romani L, Mencacci A, Grohmann U, Mocci S, Mosci P, Puccetti P, Bistoni F. Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med. 1992 Jul 1;176(1):19–25. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gross A, Ben-Sasson SZ, Paul WE. Anti-IL-4 diminishes in vivo priming for antigen-specific IL-4 production by T cells. J Immunol. 1993 Mar 15;150(6):2112–2120. [Abstract] [Google Scholar]
  • Chatelain R, Varkila K, Coffman RL. IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol. 1992 Feb 15;148(4):1182–1187. [Abstract] [Google Scholar]
  • Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993 Mar 18;362(6417):245–248. [Abstract] [Google Scholar]
  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [Abstract] [Google Scholar]
  • Brown MA, Pierce JH, Watson CJ, Falco J, Ihle JN, Paul WE. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell. 1987 Aug 28;50(5):809–818. [Abstract] [Google Scholar]
  • Ben-Sasson SZ, Le Gros G, Conrad DH, Finkelman FD, Paul WE. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1421–1425. [Europe PMC free article] [Abstract] [Google Scholar]
  • Seder RA, Paul WE, Ben-Sasson SZ, LeGros GS, Kagey-Sobotka A, Finkelman FD, Pierce JH, Plaut M. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int Arch Allergy Appl Immunol. 1991;94(1-4):137–140. [Abstract] [Google Scholar]
  • Scott DE, Gause WC, Finkelman FD, Steinberg AD. Anti-CD3 antibody induces rapid expression of cytokine genes in vivo. J Immunol. 1990 Oct 1;145(7):2183–2188. [Abstract] [Google Scholar]
  • Flamand V, Abramowicz D, Goldman M, Biernaux C, Huez G, Urbain J, Moser M, Leo O. Anti-CD3 antibodies induce T cells from unprimed animals to secrete IL-4 both in vitro and in vivo. J Immunol. 1990 Apr 15;144(8):2875–2882. [Abstract] [Google Scholar]
  • Arase H, Arase N, Nakagawa K, Good RA, Onoé K. NK1.1+ CD4+ CD8- thymocytes with specific lymphokine secretion. Eur J Immunol. 1993 Jan;23(1):307–310. [Abstract] [Google Scholar]
  • Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ohara J, Paul WE. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. [Abstract] [Google Scholar]
  • Unkeless JC. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987 Nov 1;166(5):1229–1244. [Europe PMC free article] [Abstract] [Google Scholar]
  • Budd RC, Cerottini JC, Horvath C, Bron C, Pedrazzini T, Howe RC, MacDonald HR. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol. 1987 May 15;138(10):3120–3129. [Abstract] [Google Scholar]
  • Bottomly K, Luqman M, Greenbaum L, Carding S, West J, Pasqualini T, Murphy DB. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol. 1989 Apr;19(4):617–623. [Abstract] [Google Scholar]
  • Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980 Aug 1;152(2):280–295. [Europe PMC free article] [Abstract] [Google Scholar]
  • Koo GC, Peppard JR. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984 Fall;3(3):301–303. [Abstract] [Google Scholar]
  • Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991 Sep 1;174(3):561–569. [Europe PMC free article] [Abstract] [Google Scholar]
  • Linsley PS, Wallace PM, Johnson J, Gibson MG, Greene JL, Ledbetter JA, Singh C, Tepper MA. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992 Aug 7;257(5071):792–795. [Abstract] [Google Scholar]
  • Hu-Li J, Ohara J, Watson C, Tsang W, Paul WE. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol. 1989 Feb 1;142(3):800–807. [Abstract] [Google Scholar]
  • Curry RC, Kiener PA, Spitalny GL. A sensitive immunochemical assay for biologically active MuIFN-gamma. J Immunol Methods. 1987 Nov 23;104(1-2):137–142. [Abstract] [Google Scholar]
  • Mosmann TR, Fong TA. Specific assays for cytokine production by T cells. J Immunol Methods. 1989 Jan 17;116(2):151–158. [Abstract] [Google Scholar]
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. [Abstract] [Google Scholar]
  • Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science. 1992 Jul 24;257(5069):548–551. [Abstract] [Google Scholar]
  • Brenner CA, Tam AW, Nelson PA, Engleman EG, Suzuki N, Fry KE, Larrick JW. Message amplification phenotyping (MAPPing): a technique to simultaneously measure multiple mRNAs from small numbers of cells. Biotechniques. 1989 Nov-Dec;7(10):1096–1103. [Abstract] [Google Scholar]
  • Bradley LM, Croft M, Swain SL. T-cell memory: new perspectives. Immunol Today. 1993 May;14(5):197–199. [Abstract] [Google Scholar]
  • Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. [Abstract] [Google Scholar]
  • Bottomly K. A functional dichotomy in CD4+ T lymphocytes. Immunol Today. 1988 Sep;9(9):268–274. [Abstract] [Google Scholar]
  • Scott P, Pearce E, Cheever AW, Coffman RL, Sher A. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev. 1989 Dec;112:161–182. [Abstract] [Google Scholar]
  • Coffman RL, Varkila K, Scott P, Chatelain R. Role of cytokines in the differentiation of CD4+ T-cell subsets in vivo. Immunol Rev. 1991 Oct;123:189–207. [Abstract] [Google Scholar]
  • Sher A, Coffman RL. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol. 1992;10:385–409. [Abstract] [Google Scholar]
  • Urban JF, Jr, Madden KB, Svetić A, Cheever A, Trotta PP, Gause WC, Katona IM, Finkelman FD. The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev. 1992 Jun;127:205–220. [Abstract] [Google Scholar]
  • Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. [Abstract] [Google Scholar]
  • Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10188–10192. [Europe PMC free article] [Abstract] [Google Scholar]
  • Powers GD, Abbas AK, Miller RA. Frequencies of IL-2- and IL-4-secreting T cells in naive and antigen-stimulated lymphocyte populations. J Immunol. 1988 May 15;140(10):3352–3357. [Abstract] [Google Scholar]
  • Ben-Sasson SZ, Le Gros G, Conrad DH, Finkelman FD, Paul WE. IL-4 production by T cells from naive donors. IL-2 is required for IL-4 production. J Immunol. 1990 Aug 15;145(4):1127–1136. [Abstract] [Google Scholar]
  • Swain SL, Huston G, Tonkonogy S, Weinberg A. Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol. 1991 Nov 1;147(9):2991–3000. [Abstract] [Google Scholar]
  • Gajewski TF, Schell SR, Nau G, Fitch FW. Regulation of T-cell activation: differences among T-cell subsets. Immunol Rev. 1989 Oct;111:79–110. [Abstract] [Google Scholar]
  • Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, Schaub RG. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med. 1993 Jun 1;177(6):1797–1802. [Europe PMC free article] [Abstract] [Google Scholar]
  • Coffman RL, Ohara J, Bond MW, Carty J, Zlotnik A, Paul WE. B cell stimulatory factor-1 enhances the IgE response of lipopolysaccharide-activated B cells. J Immunol. 1986 Jun 15;136(12):4538–4541. [Abstract] [Google Scholar]
  • Vitetta ES, Ohara J, Myers CD, Layton JE, Krammer PH, Paul WE. Serological, biochemical, and functional identity of B cell-stimulatory factor 1 and B cell differentiation factor for IgG1. J Exp Med. 1985 Nov 1;162(5):1726–1731. [Europe PMC free article] [Abstract] [Google Scholar]
  • Lundgren M, Persson U, Larsson P, Magnusson C, Smith CI, Hammarström L, Severinson E. Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. Eur J Immunol. 1989 Jul;19(7):1311–1315. [Abstract] [Google Scholar]
  • Bendelac A, Matzinger P, Seder RA, Paul WE, Schwartz RH. Activation events during thymic selection. J Exp Med. 1992 Mar 1;175(3):731–742. [Europe PMC free article] [Abstract] [Google Scholar]
  • Arase H, Arase N, Ogasawara K, Good RA, Onoé K. An NK1.1+ CD4+8- single-positive thymocyte subpopulation that expresses a highly skewed T-cell antigen receptor V beta family. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6506–6510. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/41272778
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/41272778

Article citations


Go to all (519) article citations