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Abstract. Nuclear transport of the U1 snRNP-specific 
protein U1A has been examined. U1A moves to the 
nucleus by an active process which is independent of 
interaction with U1 snRNA. Nuclear localization re- 
quires an unusually large sequence element situated 
between amino acids 94 and 204 of the protein. U1A 
transport is not unidirectional. The protein shuttles be- 
tween nucleus and cytoplasm. At equilibrium, the con- 
centration of the protein in the nucleus and cytoplasm 

is not, however, determined solely by transport rates, 
but can be perturbed by introducing RNA sequences 
that can specifically bind U1A in either the nuclear 
or cytoplasmic compartment. Thus, U1A represents a 
novel class of protein which shuttles between cyto- 
plasm and nucleus and whose intracellular distribution 
can be altered by the number of free binding sites for 
the protein present in the cytoplasm or the nucleus. 

T 
hE U1A protein is a component of the U1 small nu- 
clear ribonucleoprotein particle (U1 snRNP). This 
particle belongs to a family of snRNPs involved in the 

removal of introns from pre-mRNA (splicing) and the verte- 
brate snRNP consists of a U1 snRNA molecule, a set of 
at least seven proteins common to the major spliceosomal 
snRNPs, and three specific proteins named U1A, U1-70K, 
and U1C (for a recent review see Ltihrmann et al., 1990). 

The major U snRNAs (with the exception of U6) are tran- 
scribed by RNA polymerase II, and obtain a 7-methylguano- 
sine cap cotranscriptionally. After transcription, they move 
to the cytoplasm, where they assemble with at least a subset 
of the common U snRNP proteins and undergo further pro- 
cessing, including cap trimethylation and 3'-end trimming. 
Subsequently, they return to the interphase nucleus (Eliceiri, 
1974; Zieve et al., 1988; Mattaj, 1988). Both the trimethyl- 
guanosine cap and the binding of the core snRNP proteins 
have been shown to be essential for the nuclear migration of 
some snRNAs in Xenopus oocytes, though there are marked 
differences in the requirement of different snRNAs for the 
presence of the cap (Fischer et al., 1991; Lamond, 1990; and 
references therein). 

Vertebrate Ul-specific proteins appear to be essential for 
the function of U1 snRNP in splicing, at least in part because 
of their role in interaction of the snRNP with 5'-splice sites 
(Heinrichs et al., 1990; Mount et ai., 1983; Hamm et ai., 
1990a). However, the binding of U snRNP-specific proteins 
does not seem to be required for nuclear migration of their 
snRNAs, as was demonstrated for the U2 snRNP-specific 
proteins U2A' and U2B" (Mattaj and de Robertis, 1985) as 
well as for the U1 proteins U1A, 70K, and C (Harem et al., 
1990b). It is therefore possible that independent pathways ex- 
ist for the nuclear migration of U1 snRNA and the U1- 

specific proteins, and evidence has been presented that the 
U1A and U1C proteins may enter the nucleus independently 
of U1 snRNA synthesis (Feeney et al., 1989). 

Nuclear transport of most karyophilic proteins is mediated 
by nuclear localization signals (NLSs) t. Although there is 
no strict consensus between the signals identified so far, most 
are rich in basic amino acids. The prototype NLS is present 
in the SV-40 T antigen (Kalderon et al., 1984a,b; Lanford 
and Butel, 1984), and has the sequence Pro-Lys-Lys-Lys- 
Arg-Lys-Val. However, several NLSs are not of the SV-40 T 
antigen type (Hall et al., 1984; Silver et al., 1988). Though 
the sequence of the SV-40 T antigen NLS, in the form of a 
peptide, is sufficient to direct a non-nuclear protein to the 
nucleus (Kalderon et al., 1984b), additional sequences 
NH2-terminal of the minimal peptide are required for full 
functional activity of the NLS (Rihs and Peters, 1989). To- 
gether with the finding that some NLSs are multipartite (Ding- 
wall et al., 1982; Richardson et al., 1988), this indicates 
that NLSs may in general be more complex than originally 
thought. The U1A sequence element conferring nuclear lo- 
calization examined here is uncommonly large, encompass- 
ing many, or all, of the central 110 amino acids of the pro- 
tein. NLS activity appears to depend on the presence of 
amino acids dispersed throughout this segment. Several pro- 
teins have been found to shuttle back and forth across the nu- 
clear envelope (Borer et al., 1989; for a recent review see 
Goldfarb, 1991), and U1A is shown to belong to this class. 
At equilibrium, the distribution of the protein between nu- 
cleus and cytoplasm does not only depend on the transport 
rates, however, but on the interaction of U1A with its specific 
binding sites. 

1. Abbreviations used in this paper: NLS, nuclear localization signal; Wt, 
wild-type; WGA, wheat germ agglutinin. 
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Materials and Methods 

Microinjection and Subfractionation of Oocytes 
Growing oocytes (Stages V-VI; Dumont, 1972) of Xenopus/aev/s were pre- 
pared as described (Harem et al., 1989). For inhibition of UI snRNA trans- 
port, a deoxyoligunucleotide complementary to the 5'-end of U1 snRNA 
(U1-5'; Pan and Prives, 1989) was injected at 300/~M final concentration 
together with r at 2 tLg/ml final concentration. In vitro translated 
proteins (30-50 nl/oocyte) were injected into the cytoplasm. Oocytes were 
incubated in Barth's medium (Gurdon, 1976) containing 200 t~g/ml cyclo- 
heximide, to inhibit incorporation of [35S] into endogenous proteins, for 14 
to 16 h at 19 or 0~ as indicated. Cycloheximide did not influence the nu- 
clear transport of either U1A protein or lamin L1 (see also Krohne et ai., 
1989). Dissection of oocytes was performed manually in J-Buffer under a 
dissecting microscope. Dissected cytoplasms and nuclei were transferred 
immediately to TNE (50 mM NaCi, 10 mM Tris, pH 8.0, 1 mM EDTA). 
For experiments not involving RNA analysis, the fractions of eight oocytes 
per sample were pooled and homogenized in 200 ~1 TNE through repeated 
pipetting. For experiments with RNA analysis, nine oocytes per sample 
were fractionated and homogenized in 250 #1 TNE. Total oocytes were ana- 
lyzed in parallel as recovery controls. The homogenized oocytes were spun 
twice for 15 min at 13,000 rpm to remove yolk, and 150 ~1 of the clear su- 
pernatant precipitated with 5 vols acetone for 1 h at -800C. After spinning 
for 15 rain, the samples were dried, dissolved in 20 t~l 1x SDS-PAGE sam- 
ple buffer by 5 rain vigorous shaking, incubated for 10 rain at 95~ and 
loaded on a 12.5% SDS-PAGE gel (Lehmeier et al., 1990). The gels were 
fixed, subjected to signal enhancement by Entensify (New England Nu- 
clear, Boston, MA), dried, and exposed on XOMAT film (Eastman Kodak 
Co., Rochester, NY) for 14 h to 3 d. 

For RNA analyses, 50-/~1 aliquots were taken after the second centrifuga- 
tion (see above), 150/~1 of water was added and the samples were extracted 
twice with phenol/chloroform. 1/10 vol of 3 M Na-acetate and 6/~1 of linear 
polyacrylamide as carrier (GaiUard and Strauss, 1990) was added and the 
samples were precipitated with ethanol. After dissolving in 20 #1 RNA 
loading dye, 4 #1 (,M oocyte equivalent) was run on an 8 % denaturing acryl- 
amide gel and analyzed by hybridization with antisense probes against U1, 
U2, US, and U6 snRNAs (Vankan et al., 1990). 

The U1ADsnRNA mutant, the RNA polymerase Ill-transcribed UI 
snRNA (Pol III U1), and the U2 snRNA gene used for transcription in oo- 
cytes have been described (Harnm and Mattaj, 1990; Mattaj and Zeller, 
1983). 

T7 U snRNA Synthesis 
The U1, U5, and U6 gene constructs for transcription by T7 RNA polymer- 
ase and the T7 transcription are described in Fischer et al., 1991. 

WGA Injections 
Wheat germ agglutinin (WGA) (Sigma Chemical Co., St. Louis, MO) was 
dissolved in PBS to a concentration of 20 mg/ml and coinjected with the 
proteins. As a control, WGA was mixed with [3v-N-Acetylglucosamine at 
a concentration of 0.25 M (Sigma Chemical Co.) and coinjected as above. 

Expression of Cloned cDNA In Vitro 
The Xenopus lamin L1 clone contains a point mutation that alters the 
COOH-terminal Cys codon into a stop codun. The mutated iamin LI is 
soluble and does not associate with the nuclear envelope (Krohne et al., 
1989) (mutant M8). The mouse dihydrofolate reductase clone used for the 
construction of U1A fusion mutants is a BamHl/HindIll subclone of pDS 
5 (described in Bujard et al., 1987) in pBluescribe(-). This clone and all 
U1A fusion mutants were linearized with HindllI and transcribed with T7 
RNA polymerase, essentially as described (Scherly et al., 1989). In vitro 
translation was either in wheat germ extract (Promega Corp., Madison, WI) 
according to the manufacturer's protocol, or in rabbit reticulocyte lysate, 
as follows: 2-5 t~l of mRNA (1 mg/ml) was incubated for 90 rain at 30"C 
together with 2.5 ~1 amino acid mix lacking rnethionine (Promaga Corp.), 
7.5 t~l [35S]methionine (Amersham Corp., Arlington Heights, IL), 25/~1 
rabbit reticulocyte lysate (Promega Corp.) and 35-38 #1 water. 

UIA Mutants 
The point mutant A52/53 has been described (Scherly et al., 1989). Most 
of the internal deletion mutants are described in Boelens et al. (1991), The 

remaining mutants were constructed in the same way, making use of point 
mutants (Scherly et al., 1989). Position 15 in this numbering system corre- 
sponds to amino acids 138/139. 

The fusion mutants with mDHFR were constructed by subcloning a 
BamH1/HindIII fragment of the corresponding U1A point mutant (Scherly 
et al., 1989) into the BglH/HindlH-cut mDHFR clone (see above) for 
COOH-terminal UIA fragments, or by subeloning a EamHl/HindlH frag- 
ment of mDHFR into the BamHl/Hindlll-cut corresponding U1A point mu- 
tant for NH2-terminal UIA fragments. The fusion mutants containing in- 
ternai U1A fragments were constructed by subcloning a BamHl/BamHl 
fragment of double point mutants (at positions 12/14 and 12/16, see Scherly 
et al., 1989) into the BamHl site (NtAl2/t4,16f) or the Bglll site 
(CtA12/14,16f) of mDHFR. The double point mutants were obtained either 
by site-directed mutagenesis of A14 at position 12 with the Amersham Corp. 
site-directed mutagenesis kit (At2/ld, or by subcloning the Narl/HindllI 
fragment of A16 into the Narl/HindlII-cut A12 mutant. 

Quantification of Signal Strengths 
Most gels were quantified using the Molecular Dynamics (Sunnyvale, CA) 
Phosphorlmager system equipped with ImageQuant TM software, version 
3.0. Where films were quantified instead of gels, the program Image 1.37 
for the Apple Macintosh was used in conjunction with a video camera. Only 
bands from the same experiment and measured by the same technique were 
compared with one another. 

Immunoprecipitations 
Immunoprecipitations were carried out as follows: 10 oocytes were 
homogenized in 1 ml oocyte extraction buffer (Vankan et al., 1990) and spun 
twice for 15 min to remove yolk. To the clear supernatant, i0 #1 of a 10% 
NP-40 solution and 20 ~1 of a suspension of the antibody coupled to Protein 
A-Sepharose CL4B (Pharmacia Fine Chemicals, Piscataway, NJ) were 
added. The samples were rotated for 90 rain at 4~ washed three times with 
IPP150, incubated 4 min with 30/~1 of 2 x SDS-PAGE sample buffer at 
950C, and loaded on a denaturing protein gel (see "Microinjection and Sub- 
fract/onation of Oocytes'). 

Anti-Sm precipitations were carried out with Y12 mAB (Lerner et al., 
1981). Anti-U1A precipitations used the polyclonal rabbit antiserum #856, 
directed against a section of UIA spanning amino acids Ile 93 to Ser 202, 
kindly provided by J. Harem (Columbia University, New York). 

Results  

The Nuclear Migration of the UIA Protein Does Not 
Depend on its Prior Binding to U1 snRNA 
To address the issue of whether nuclear transport of the U1A 
protein shows any dependence on U1 snRNA binding, a di- 
rect approach was chosen. First, U1 snRNA transcription 
was inhibited in Xenopus laevis oocytes by injection of 
~-amanitin into the cytoplasm. A DNA oligonucleotide 
complementary to the Y-end of U1 snRNA (UI-Y) was coin- 
jeered with the ot-amanitin. This results in the removal of the 
Y-end of the endogenous U1 snRNA by RNase H cleavage 
(Pan and Prives, 1988), and thereby also the 5'-3raG cap of 
U1 snRNA, which is essential for its nuclear migration 
(Hamm et al., 1990b, Fischer and Liihrmann, 1990). This 
ensures that U1 snRNA transport is effectively inhibited. The 
removal of the U1 snRNA 5'-end was checked by Northern 
analysis (data not shown). In vitro-translated wild-type (wt) 
UIA protein which was subsequently injected into the 
cytoplasm of the same oocytes accumulated in the nucleus 
to a certain level. Compared with untreated control oocytes 
(Fig. 1 A, compare lanes 3 and 6), this level was somewhat 
lower, however. There are several possible explanations of 
this: (a) some U1A protein moves to the nucleus together 
with U1 snRNA; or (b) the presence of newly transcribed U1 
snRNA molecules in the nuclei of the control oocytes stimu- 
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Figure 1. Influence of UIA 
binding to U1 snRNA on its 
nuclear transport. (A) Xeno- 
pus laevis oocytes were in- 
jected with a mixture of a 
DNA oligonucleotide com- 
plementary to the 5' end of U1 
snRNA (U1-5', 300 #M final 
concentration) and c~-amani- 
tin (lanes 1-3, 7-9, 2 /xglml 
final concentration), and incu- 
bated for 2 h at room tempera- 
ture. In vitro-translated UIA 
wt (lanes 1-6) or A52/53 
(lanes 7-12) protein was then 
injected into the cytoplasm of 
treated, or untreated oocytes. 
T, C, and N denote protein ex- 
tracted 14 h after injection 
from total oocytes, cytoplas- 

mic or nuclear fractions, respectively. Oocytes in lanes 4-6 and 
10-12 were not treated with c~-amanitin or the UI-5' deoxyoligonu- 
cleotide. (B) Immunoprecipitation of A wt and A52/53 with anti- 
UtA and anti-Sm antibodies. Xenopus laevis oocytes were injected 
with either in vitro-translated A wt protein (lanes 1 and 2) or 
A52/53 (lanes 3 and 4). After incubation for 14 h at 19"C, the 
oocytes were homogenized and immunoprecipitated with either a 
polyclonal anti-U1A rabbit antiserum (856, lanes 1 and 3) or a 
monoclonal anti-Sin antibody (Y/2, lanes 2 and 4), 

Figure 2. Inhibition of U1A transport by incubation at 0~ A mix- 
ture of in vitro-translated UIA wt protein and lamin L1 was injected 
into the cytoplasm of Xenopus laevis oocytes. The oocytes were 
then incubated at 0~ (lanes 1-3, 7-9) or 19~ (lanes 4-6) for 
14 h. Half of the oocytes kept at 0~ were then incubated for addi- 
tional 12 h at 19~ (lanes 7-9). 

U1A Enters the Nucleus by an Active 
Transport Mechanism 

Having established that the nuclear transport of U1A and U1 
snRNA can be independent of each other, we investigated 
whether UIA reaches the nucleus by simple diffusion, or 
whether there is an active transport mechanism. For a vari- 
ety of nuclear proteins it has been possible to discriminate 
between these two possibilities by incubating the experimen- 
tal system at 0~ (Newmeyer et al., 1986; Breeuwer and 
Goldfarb, 1990). This reduces active transport considerably, 

lates nuclear accumulation of U1A (see below). Neverthe- 
less, the fact that nuclear accumulation of U1A is observed 
under conditions where U1 snRNA transport is inhibited in- 
dicates that U1A can be transported to the nucleus by a mech- 
anism which is independent of binding to U1 snRNA. Fur- 
ther evidence comes from a variant of the experiment 
described above (Fig. 1 A, lanes 7-12). Here, the protein in- 
jected after the treatment with ot-amanitin/U1-5' was A52/53. 
This point mutant of U1A is unable to bind U1 snRNA in 
vitro (Scherly et al., 1989). To determine whether this is also 
the case in vivo, A52/53 as well as wt UIA were immunopre- 
cipitated from oocytes with an antibody against the common 
U snRNP proteins present in U1 snRNP (Y12, Lerner et al., 
1981). This antibody can precipitate U1A only if it is as- 
sociated with U1 snRNA in the assembled U1 snRNP. The 
result (Fig. 1 B, lanes 2 and 4) shows that wt U1A is precipi- 
tated by this antibody, whereas A52/53 is not. Both forms 
of the protein can be immunoprecipitated by an anti-U1A- 
antibody (#856, Fig, 1 B, lanes 1 and 3). Thus, in vivo as 
well as in vitro, A52/53 cannot bind to U1 snRNA. In spite 
of this, it migrates to the nucleus to a certain level (Fig. 1 
A, lane 12), a process which is not markedly influenced by 
the inhibition of U1 snRNA transport (Fig. 1 A, compare 
lanes 9 and 12). 

Figure 3. (A) Inhibition of 
U1A transport by wheat germ 
agglutinin. Xenopus laevis 
oocytes were injected into the 
cytoplasm either with water 
(lanes 1-3), WGA (lanes 4-6), 
or a mixture of WGA with 
N-aeetylglucosamine ( GIc- 
NAc, lanes 7-9), mixed with 
U1A protein and Lamin L1 
proteins. After t4 h of incuba- 
tion, oocytes were processed 

as described in Materials and Methods. (B) Nuclear migration of 
U1 snRNA is not inhibited by WGA. T7 U1, U5, and U6 snRNA 
were injected either alone (le~) or with a solution of 20 mg/ml 
WGA (right) into the cytoplasm of oocytes. The oocytes were dis- 
sected after 14 h incubation into nuclear and cytoplasmic fractions, 
the RNAs were extracted and analyzed on an 8 % polyacrylamide 
denaturing gel. 
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whereas diffusion is only reduced to ,,090 % of the level ob- 
served at ambient temperature. To assay U1A transport, U1A 
wt was injected together with the actively transported nu- 
clear protein Lamin L1 (Krohne et al., 1989) into the 
cytoplasm of oocytes and incubated at 0 or 19~ respec- 
tively (Fig. 2, lanes 1-3 and 4-6). Subsequently, the cyto- 
plasmic and nuclear fractions were analyzed. Nuclear ac- 
cumulation of  U1A is drastically reduced in the oocytes 
incubated at 0~ (lane 3) when compared with oocytes in- 
cubated at 19~ (lane 6). The same is true for L1. Most im- 
portantly, this effect is reversible. Oocytes which have been 
incubated at O~ for 14 h and then at 19~ for an additional 
12 h accumulate U1A and L1 in the nucleus to essentially the 

same level as control oocytes kept at 19~ (Fig. 2, compare 
lanes 9 and 6). As a control, the mouse dihydrofolate reduc- 
tase (mDHFR) protein was injected into the cytoplasm of 
Xenopus oocytes. After 14 h incubation at 0 or 19~ respec- 
tively, the oocytes were dissected into nucleus and cytoplasm 
and analyzed on a denaturing protein gel. Nuclear accumula- 
tion was almost identical at 0 or 19~ indicating free 
diffusion (data not shown). 

The existence of an active transport mechanism for U1A 
led us to investigate the effect of  a general inhibitor of  the 
transport of a variety of nuclear proteins, the plant lectin 
WGA (Finlay et al., 1987; Dabauvalle et al., 1988). Xenopus 
laevis oocytes were coinjected with a solution of 20 mg/ml 
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WGA (see Materials and Methods) and U1A with Lamin L1 
as internal control (Fig. 3 A, lanes 4-6). This treatment in- 
hibits U1A and L1 transport to a marked extent (compare 
lane 6 with the nuclear signal from untreated control oo- 
cytes, lane 3). The effect is specific, since it can be overcome 
by the coinjection of the competing sugar N-acetylglucos- 
amine (Fig. 3 A, compare lanes 9 and 6). N-acetylglucos- 
amine is known to relieve the inhibitory effect of WGA (Fin- 
lay et al., 1987). The transport of the pol l]I-transcribed U6 
snRNA is similarly inhibited by WGA, while neither U1 nor 
U5 snRNA transport is markedly affected by WGA at these 
concentrations in our experiments (Fischer et al., 1991; Fig. 
3 B). This again suggests that transport of U1 srLRNA and 

U1A protein are mechanistically dissimilar. The lack of 
significant amounts of nuclear UIA protein in the presence 
of WGA (Fig. 3 A, lane 6) further suggests that most, if not 
all, of the U1A transport observed in these experiments oc- 
curs independently of U1 snRNA. 

The Region of UIA Which Is Necessary 
and Suffurient for Nuclear Transport Consists of the 
Central 110 Amino Acids of the Protein 
Given the evidence for active, Ul-independent transport, we 
next investigated the requirements in terms of primary struc- 
ture in U1A for this process. Of particular interest was the 
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observation of a sequence in U1A (argl07 glu lys arg lys pro 
lys; Feeney and Zieve, 1990) which bears a resemblance to 
the SV-40 T antigen class of nuclear localization signals (see 
introduction). To identify the regions of UIA important for 
transport competence, we performed an extensive mutagenic 
analysis. Since the experimental system showed a high de- 
gree of variability in terms of transport activity, an internal 
control (usually lamin L1) had to be coinjected with each mu- 
tant, and the transport competence of a given mutant was al- 
ways compared to the nuclear accumulation of wt U1A pro- 
tein in the same batch of oocytes. As a further means to 
correctly assay the active transport of a mutant, each experi- 
ment was conducted at 0 and 19~ and the nuclear accumu- 
lation was compared. Gel bands were quantified either by di- 
rect scanning with an analytical imaging system, or by 
densitometry of exposed films. Mutants were classified as 
positive, intermediate, or negative. To be scheduled as posi- 
tive, a mutant had to accumulate in the nucleus to a level 
>70% of the wt, and the transport had to be reduced upon 
cooling to 0~ by at least a factor of 3.5. Intermediate pheno- 
type mutants accumulated in the nucleus to within 40-70% 
of the wt and showed a reduction of transport by a factor of 
1.5 to 3.5 upon cooling to 0~ Any activity below these 
values was scheduled as transport negative. Each mutant was 
classified according to the outcome of several independent 
experiments. Because of the large number of mutants tested 
and the complexity of the results obtained, most of the data 
is presented in summary form in Fig. 4. 

The first series of constructs tested consisted of internal 
deletion mutants (Fig. 4 A). Deletion of the region contain- 
ing the putative NLS (mutant Aa94/Hg) decreased, but did 
not abolish, nuclear transport which already indicated that 
although this sequence element may contribute to transport 
competence, it is not alone sufficient for a transport-positive 
phenotype. Non-overlapping internal deletions spanning 
various lengths of the central 110 amino acids of U1A 
(Aalt9/l~9, Aal39/204) also decreased nuclear transport. Only 
the removal of the whole middle segment of the U1A protein 
led to complete loss of active transport (mutant Aa94/~04). 

As a next step in the analysis, NH2- and COOH-terminal 
fragments of the U1A protein were tested as truncations as 
well as in fusion constructs with the cytoplasmic protein 
mouse dihydrofolate reductase (mDHFR, Fig. 4, B and C). 
NH2-terminal U1A fragments increasing in length (whether 
as truncations, data not shown, or as fusions, Fig. 4 B) 
showed a continuous increase in transport activity, ranging 
from negative for a mutant ending at amino acid 94 
(N,A~2f) through intermediate to positive for mutants end- 
ing at positions 139 and 204 (N,Atsf and NtAi6f; Fig. 4 B). 
A corresponding series of COOH-terminal fusion proteins 
(Fig. 4 C) showed the complementary behavior, namely a 
transport-positive phenotype for the fragment starting at po- 
sition 94 (C,AJ) ,  reduction in transport activity as the 
fragments got shorter, and no transport for the mutants start- 
ing at positions 119, 139, and 204 (C~A~4f, C~A~ff, and 
CtA~6f; Fig. 4 C). The results presented so far with the de- 
letion and fusion derivatives of U1A are all consistent with 
the picture that the region between amino acids 94 and 204 
directs nuclear transport. The effect of removal of several 
non-overlapping subfragments of this region suggests that the 
more of this region that is present, the stronger is the NLS 
activity. Two points, however, have to be made in this con- 

text. First, the results in Fig. 4 C were obtained with COOH- 
terminal fragments tested as fusion mutants with mDHFR. 
Mutant proteins that were truncated, beginning either at po- 
sitions 94 or 102, were transport defective. Second, com- 
parison of Aa94a03and Aa94:tl9 with C~A~3f and C~AI4f, respec- 
tively (Fig. 4 A and C), reveals that the fusion proteins 
accumulate in the nucleus to a lesser extent than the deletion 
derivatives. We have no good explanation for these differ- 
ences and can only suggest that structural effects due to hav- 
ing the U1A NLS, or parts of it, in different contexts, can 
influence its activity. 

Thus far, the results obtained with the internal deletion 
mutants (Fig. 4 A), the NH2-terminal and the COOH- 
terminal U1A fragments (as mDHFR-fusions, Fig. 4, B and 
C) are consistent with the hypothesis that the central 110 
amino acids (from amino acid 94 to 204) are necessary and 
sufficient to confer transport competence to the U1A protein. 
Several mutants tested did not fit into this picture, however 
(Fig. 4 D). They include internal deletion mutants (Aal02/n9, 
Aa102/139, and Aal02:204), an  NH2-terminal mDHFR fusion 
mutant (N,AI3f) and a truncation mutant (A13), and all ac- 
cumulate in the nucleus to a higher level than the wt protein 
(data not shown). In all these mutants, the NH2-terminal 
section of U1A ends at amino acid 102. Two possible expla- 
nations for this phenomenon can be considered: first, se- 
quences COOH-terminal of position 102 might downregu- 
late the activity of a transport signal present in the vicinity 
of this site, such that mutants missing the downstream se- 
quences would be transported to a higher level than mutants 
containing them. Second, an artificial nuclear transport sig- 
nal might be created by mutagenic manipulations of the U1A 
sequence at this position. 

To discriminate between these possibilities and to assay 
directly for the NLS activity of the U1A fragment between 
amino acids 94 and 204, we fused both this and a shorter 
fragment (from amino acid 94 to 119) to both ends of 
mDHFR and tested them in the transport assay (Fig. 5). 
Conferring nuclear transport to a non-nuclear protein is one 
of the criteria which have been used to define NLSs (Sil- 
ver, 1991; and references therein). The shorter fragments 
(CtA~2:~4f and N~A12:Id) do not confer active transport on 
mDHFR, whereas the longer ones (C,At2:~6f and N,A~::t6f) 
do. The corresponding gels are depicted in Fig. 5, B-E. 
There is essentially no difference in the nuclear accumula- 
tion of C~A~E:~4f and N~A12/~4f at 19~ (Fig. 5 B, lanes 6 and 
9) and at 0~ (Fig. 5 C, lanes 6 and 9), showing that they 
are not actively transported. CtA~16f and N,A~2:~6f, on the 
other hand, show a marked difference between the transport 
level at 19~ (Fig. 5 D, lanes 3 and 6) and at 0~ (Fig. 5 
E, lanes 3 and 6). Together with the earlier results this de- 
fines the fragment from amino acid 94 to 204 as the NLS 
of the U1A protein. Note that this region is almost com- 
pletely non-overlapping with the sequences of U1A required 
for interaction with U1 snRNA (Scherly et al., 1989; Lutz- 
Freyermuth et al., 1990; Nagai et al., 1990). 

The Nucleo-cytoplasmic Distribution of U1A Depends 
on UIA Binding Sites 
The fraction of U1A protein found in the nucleus varies be- 
tween 20 and 50% of the total injected material in different 
experiments, dependent on the batch of oocytes used. Most 
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Figure 5. (A) Scheme for in- 
ternal fragments of U1A pro- 
tein transferred to the COOH- 
terminal ( C~Al2~4f , C~AI2/I6f) 
or NH2-terminal (N~12n~f, 
NtA12a6f) end of mouse dihy- 
drofolate reductase (mDHFR). 
See legend to Fig. 4 for 
explanation of symbols. (B) 
Transport activity of U1A 
wt, CtAl2/14f and NtAt2/14f at 

.19~ Xenopus laevis oocytes 
were injected with a mixture 
of lamin L1 and U1A wt or one 
of the above U1A mutants. Af- 
ter t4 h incubation at 19~ 
oocytes were dissected and 
the subfractions analyzed. (C) 
Corresponding experiment for 
CtA12/14f and NtA12114f at 
0~ (D) Corresponding ex- 
periment for CtAI2/16f and 
NtA12/16f at 19~ (E) Cor- 
responding experiment for 
CtAl2It6f and NtAt2/16f at 0~ 
All mutants (see also Fig. 5, 
B, C, and D) run as doublets. 
The relevant bands are marked 
with white dots. 

nuclear proteins migrate to the nucleus to a higher level, in- 
cluding the lamin L1 used as internal control in this study, 
accumulating in the nucleus to between 50 and 70 % of total 
protein. We investigated possible reasons for this difference. 
To determine whether slow kinetics was responsible for the 

comparatively low nuclear accumulation, a time course over 
72 h was performed. Oocytes were injected with UIA and 
Xenopus N1 protein (Kleinschmidt et al., 1986) as internal 
control and incubated at 19~ After 0, 8, I6, 32, 48, and 
72 h, five oocytes were dissected into cytoplasm and nu- 

Kambach and Mattaj Nuclear Transport of U1A Protein 17 



Figure 6. Effect of cytoplas- 
mic and nuclear binding sites 
for U1A protein on its nu- 
cleocytoplasmic distribution. 
(A) The genes for the U1 
snRNA mutants UI&D (a sub- 
stitution mutant in the Sm site 
which does not bind the core 
proteins and is incapable of 
nuclear migration, lanes 4-6) 
and Pol III U1 (a U1 wt snRNA 
transcribed by RNA polymer- 

ase III, incapable of leaving the nucleus, lanes 7-9) and U2 snRNA 
(lanes 10-12) were injected together with a DNA oligonucleotide 
complementary to the 5'end of U1 snRNA into the nuclei of Xeno- 
pus iaevis oocytes. The oocytes were incubated for 2 h at room tem- 
perature and then injected with in vitro-translated U1A protein. 
Control oocytes in lanes 1-3 were not injected with a U snRNA 
gene. T, C, and N, protein extracted from total oocytes or cytoplas- 
mic or nuclear fractions, respectively, 14 h after injection. (B) As 
in Fig. 5 A, showing an example where the nuclear/cytoplasmic ra- 
tio of U1A wt reached an exceptionally high level in control oocytes 
(lanes I and 2). (C) As in Fig. 5 A, showing an example where the 
nuclear/cytoplasmic ratio of U1A wt reached an exceptionally low 
level in control oocytes (lanes 1-3). (D) UIA wt was injected into 
the cytoplasm ofXenopus laevis oocytes. After 14 h incubation, the 
Pol III U1 gene (lanes 4-6), or the gene for UlzkD (lanes 7-9, 
both genes at 1 mg/ml) were injected into the nuclei of the oocytes. 
All oocytes were then incubated for additional 12 h, dissected, and 
the fractions analyzed. Oocytes in lanes 1-3 were not injected with 
a UI snRNA gene. The figures from the quantitation by the Phos- 
phorlmager are as follows: Pollll U1, 139% transport of A wt con- 
trol; Ulz~D, 77 % transport of A wt control. The values for the lamin 
L1 internal control are 106% (Pol III U1 ) and 107 % (UIAD) trans- 
port of L1 external control. 

cleus, the fractions pooled, and analyzed together with ex- 
tracts from total oocytes on denaturing protein gels. The 
level of nuclear accumulation of both U1A and N1 (as judged 
by comparison of signal intensities from nuclear and cyto- 
plasmic fractions) reached levels of about 30 and 80%, 
respectively, of the total amount injected after 12 h, and 
this level did not change markedly after longer incubation 
periods (data not shown). Thus, slow kinetics does not seem 
to be responsible for the difference in nuclear accumulation 
levels of U1A and other karyophilic proteins. 

Several explanations for the transport behavior of U1A are 
possible. The in vitro-translated protein might only be func- 
tional in terms of transport activity to a limited extent, be- 
cause of the lack of posttranslational modifications. Alterna- 
tively, the protein may be anchored in the cytoplasm by 
binding to some component, or it may be shuttling between 
cytoplasm and nucleus. In the latter case, it should be possi- 
ble to influence the nucleo-cytoplasmic distribution of U1A 
by introduction of binding sites for the protein in the cyto- 

plasm or the nucleus. To test this, two different U1 snRNA 
mutants were introduced into oocytes to create additional 
UIA binding sites in cytoplasm or nucleus, respectively. 

The first U1 snRNA tested for its effect on U1A protein dis- 
tribution was UIAD. This RNA cannot bind the common U 
snRNP proteins, and is therefore unable to enter the nucleus 
(Hamm et al., 1990b). The second mutant tested was a U1 
snRNA transcribed by RNA polymerase I~ (Pol HI U1) due 
to the altered promoter structure of its gene. This transcript 
cannot leave the nucleus (Hamm and Mattaj, 1990). Both 
RNAs, however, retain the binding site for the U1A protein 
(Scherly et al., 1989). After in vivo transcription of these 
mutants, U1A protein was injected and the cytoplasmic/nu- 
clear ratio of U1A protein determined after overnight incuba- 
tion. SnRNA distribution was determined by Northern anal- 
ysis to check for efficient transcription of the injected snRNA 
genes (data not shown). The effect of these mutant RNAs on 
nuclear accumulation levels of U1A is depicted in Fig. 6 A. 
The presence of additional binding sites for U1A in the 
cytoplasm due to the introduction of U l z ~  shifts the cyto- 
plasmic/nuclear ratio to higher values compared with un- 
treated control oocytes (compare the signal ratio of lanes 5 
and 6 with the ratio of lanes 2 and 3). Conversely, the in- 
troduction of additional nuclear binding sites by injection of 
Pol III Ulwt increases nuclear accumulation of U1A when 
compared with the control (compare the signal ratio of lanes 
8 and 9 with the signal ratio of lanes 2 and 3). Introduction 
of U2 snRNA has no effect (compare the signal ratio of lanes 
11 and 12 with the signal ratio of lanes 2 and 3). These effects 
were reproducible, although not large. We noted, however, 
that the degree to which the introduction of the mutant U1 
snRNAs influenced the distribution of U1A depended on the 
basic transport level of the experiment. Fig. 6 B depicts a 
case where a high basic level of U1A nuclear accumulation 
is significantly reduced upon introduction of Ulz~d3 (com- 
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pare lanes 2 and 4), whereas Fig. 6 C shows a marked in- 
crease in nuclear accumulation of U1A by the introduction 
ofPol III U1 in an experiment with a low basic transport rate 
(compare lanes 3 and 6). 

The above results could still be explained either by the as- 
sumption that the U1 snRNA molecules present in cytoplasm 
or nucleus could act as competitors for the transport reaction 
and thereby influence the nucleo-cytoplasmic distribution of 
UIA through simple mass action, or by the U1A shuttling be- 
tween cytoplasm and nucleus and reaching an equilibrium 
dependent upon the number of binding sites in each compart- 
ment. To differentiate between these two possibilities, the 
time order of the above experiments was reversed. First, U1A 
protein was injected into the cytoplasm of oocytes. After 
overnight incubation, the gene for Pol III U1 or U1AD, 
respectively, was injected, and, after 12 h of additional incu- 
bation, their effect on U1A distribution was determined by 
comparison with control oocytes. The nuclear/cytoplasmic 
ratio of U1A was increased to 139% in the case of Pol III U1 
(Fig. 6 D, compare signal ratios of lanes 2 and 3 with 5 and 
6, and see figure legend for details of quantitation). The in- 
jection of U1AD gene decreased the nuclear/cytoplasmic ra- 
tio of U1A to 77 % (Fig. 6 D, compare signal ratios of lanes 
2 and 3 with 8 and 9). The effect was reproducible both quali- 
tatively and quantitatively in five independent experiments. 
The conclusion is that U1A must be shuttling between 
cytoplasm and nucleus, since its nucleo-cytoplasmic distri- 
bution can be disturbed by the introduction of nuclear bind- 
ing sites even after it has reached equilibrium. 

Discuss ion  

UIA Nuclear Transport and Binding to UI snRNA 

A series of experiments that address several aspects of the 
nuclear transport of the U1 snRNP-specific A protein have 
been presented. First, it was shown that nuclear migration 
of U1A does not depend on its binding to U1 snRNA. This 
is consistent with previous results obtained in mouse fibro- 
blasts where nuclear accumulation of U1A and U1C was 
shown to be unaffected by inhibition of U1 snRNA synthesis 
(Feeney et al., 1989). The concept of two independent trans- 
port pathways for U1 snRNA and U1A is supported by the 
differential inhibition of nuclear transport of the two by 
WGA. U1 snRNA transport is not affected by WGA under 
the conditions used here (Fischer et al., 1991, Fig. 3 B). 
(There is evidence that WGA can affect U1 transport under 
some conditions; Michaud and Goldfarb, 1992 and E. Lurid, 
personal communication.) On the other hand, U1A protein 
transport is markedly inhibited by the lectin and thus behaves 
like a variety of other non-RNA-associated nuclear proteins 
(Finlay et al., 1987; Dabauvalle et al., 1988). 

The snRNA-independent transport pathway for U1A could 
be shown here to be an active process: nuclear accumulation 
of U1A is drastically reduced by cooling to 0~ Particularly 
notable in this context is the finding that transport-defective 
U1A mutants (such as C~At2~14f and NtAi2t~4f) enter the nu- 
cleus to a significant extent at 0~ whereas transport- 
competent mutants (such as C,AI2~6f and NtAz2~6f) and the 
wt protein do not. Transport arrest at 0~ for nuclear pro- 
teins that are smaller than the diffusion limit across the nu- 
clear pore complex has been observed previously (Breeuwer 

and Goldfarb, 1990). The proposed explanation was that 
NLS-containing proteins bind to some cytoplasmic "recep- 
tor", and the resulting complex is retained in the cytoplasm 
at 0~ (Breeuwer and Goldfarb, 1990). 

The UIA NLS 

The assay for transport competence of a series of U1A mu- 
tants, including internal deletions and fusions to the non- 
nuclear mouse DHFR protein, determined the sequence ele- 
ments within U1A necessary and sufficient for nuclear 
transport. Neither the NH2-terminal nor the COOH-termi- 
hal copy of the RNP80 motif (Sillekens et al,, 1987) are re- 
quired for transport activity. Rather, the results from the in- 
ternal deletion mutants, and in particular from the fusion of 
internal U1A fragments to mDHFR suggest that the sequence 
spanning the region from amino acids 94 to 204 is responsi- 
ble for nuclear migration of U1A. The overall transport ac- 
tivity of U1A appears to be the result of cumulative effects 
encoded by sequence elements dispersed throughout this 
segment. Evidence for this interpretation stems from the fact 
that nonoverlapping deletions of this region all led to re- 
duced, but not abolished, transport activity, whereas re- 
moval of the whole element results in a completely transport- 
defective mutant. The sequence of amino acids 94-204 is 
shown in Fig. 7. Positively charged amino acids, found in 
other defined NLSs (see below), are underlined. Compari- 
son of Figs. 4 and 5 shows that none of these positively 
charged amino acids are either essential, or sufficient, for 
nuclear accumulation of U1A. The similarity between U1A 
and the highly related U2B" protein is particularly low in this 
region (Sillekens et al., 1987). Mechanistic differences be- 
tween nuclear transport of these two proteins are therefore 
possible. The fact that there is almost no overlap between the 
sequences required for the binding of U1A to U1 snRNA 
(Scherly et al., 1989; Lutz-Freyermuth et al., 1990; Nagai 
et al., 1990) and nuclear transport activity (this study) fits 
well with the apparent existence of two independent migra- 
tion pathways for U1 snRNA and U1A. 

Data collected from U1A mutants ending at amino acid 
102 were not consistent with the conclusions drawn above. 
These mutants were highly active in transport, irrespective 
of the presence or absence of other sequence elements shown 

12 13 14 
IAKMKGTFVERDRKREKRKPKSQETPATKKA VQGGGA 

94 102 119 

15 
TPVVGAVQGPVPG MPPMTQAPRIMHHMPGQPPYMPPP 

139 

16 
GMIPPPGLAPGQIPPGAMPPQQLMPGQMPPAQPLSEN 

204 

Figure 7. Sequence of the region of U1A required for efficient nu- 
clear targeting. Basic residues are underlined. The positions of var- 
ious residues in the amino acid sequence are below the line. The 
numbering system above the sequence is that of the mutant proteins. 
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to be required for transport competence in other mutants. 
The fact that this behavior does not depend on the context 
(it is displayed by the corresponding fusion, truncation, and 
internal deletion mutants) argues strongly for the creation of 
an artificial NLS by the introduction of a foreign sequence 
(gly ser) at this position. In particular, the fact that amino 
acids 94-119, when fused to mDHFR, have no NLS activity 
argues strongly that the sequence surrounding amino acid 
102 is not, on its own, capable of directing nuclear accumu- 
lation. An alternative possible explanation, based on the fact 
that the U1A protein shuttles between the nucleus and the 
cytoplasm (see below), is that this collection of mutants al- 
lows nuclear import but prevents nuclear export. Many 
results are difficult to reconcile with this hypothesis, e.g., the 
difference between A102/119 and A94/119, but it cannot be 
completely ruled out at this point. 

When compared with "classical" NLSs, like the SV-40 T 
antigen NLS (Kalderon et al., 1984a,b; Lanford and Butel, 
1984) or the more complex Nucleoplasmin NLS (Dingwall 
et al., 1982; Robbins et al., 1991), the U1A NLS displays 
some specific features. First, it is not a "peptide NLS", i.e., 
a segment of 5 to 8 basic amino acids interrupted by a pro- 
line, as is the case for the signals of a whole class of karyo- 
philic proteins (for reviews see Goldfarb, 1989; Garcia- 
Bustos et al., 1991; Silver, 1991). Though the central 110 
amino acids of U1A identified as its NLS bear a net positive 
charge (Sillekens et al., 1987, Fig. 7), the fact that transport 
activity depends in a cumulative way on the presence of the 
segment as a whole indicates a marked structural difference 
between the UIA NLS and the aforementioned NLSs. Pro- 
teins that contain more than one independent NLS (e.g., 
Polyoma T antigen; Richardson et al., 1988) or a single bi- 
partite NLS (Nucleoplasmin; Robbins et al., 1991) have been 
documented. The large size and apparent internal redun- 
dancy of the U1A NLS does not seem similar to either of 
these classes. The cumulative negative effect of combining 
non-overlapping deletions, or the similar positive effects of 
including more of the NLS segment in fusion proteins, sug- 
gests that much or all of the ll0-amino acid segment of the 
protein is required for normal NLS function. It may be that 
correct folding of this segment of the protein is required to 
generate the NLS. The only other reported NLS that may be 
similar is that of the yeast Gal 4 protein. The NH2-terminal 
74 amino acids of Gal 4 contain an NLS, and several point 
mutations scattered throughout this region of the protein 
affect the efficiency of nuclear localization of the Gal 4 pro- 
tein (Silver et al., 1988). It should be borne in mind that the 
apparent complexity of the U1A NLS may be due to the fact 
that the protein shuttles between the cytoplasm and the nu- 
cleus. If there is also a signal for nuclear export in U1A it 
could to.replicate the analysis of the NLS. We have not, how- 
ever, found a class of mutants whose phenotype is easily ex- 
plicable by the destruction of such an export signal. It will 
nevertheless be of interest to compare the NLS of U1A with 
that of other shuttling proteins when they are characterized. 
It may well be that the import and export signals are inter- 
digitated and difficult to separate. 

Establishment of the Nuclear~Cytoplasmic 
Equilibrium of U1A Protein 
U1A consistently accumulated in the nucleus to a lesser ex- 
tent than other karyophilic proteins used as internal controls. 

A time course experiment revealed that this was not due to 
slow transport kinetics. What factor(s) then determined the 
nucleo-cytoplasmic distribution of U1A? As we could dem- 
onstrate, the introduction of additional binding sites for U1A 
in the cytoplasm or the nucleus in the form of U1 snRNA mu- 
tants restricted to one of the two compartments influenced 
the intracellular distribution of U1A. These effects were in- 
dependent of the order in which protein and RNA were intro- 
duced, i.e., a pre-established protein distribution was altered 
by artificially increasing the number of nuclear or cytoplas- 
mic binding sites for the protein. Together, these results sug- 
gest that the nucleo-cytoplasmic distribution of U1A at equi- 
librium is not determined by its transport rate, but rather by 
the number of free binding sites in the two compartments. 
The binding site of the U1A protein is the second hairpin loop 
of U1 snRNA (Scherly et al., 1989). U1 snRNA leaves the 
nucleus immediately after its transcription, but then rapidly 
reaccumulates in the nucleus after assembly in the cytoplasm 
with common U snRNP proteins (Mattaj, 1988; Zieve et al., 
1988). Our results suggest that the number of free nuclear 
and cytoplasmic U1A binding sites will determine the intra- 
cellular distribution of the U1A protein. The physiological 
relevance of this is not immediately clear, but the effect will 
be to ensure that there will always be a moderate excess of 
U1A protein over U1 snRNP in the nucleus. Thus, if U1A 
should dissociate from an snRNP, there will be an excess of 
free protein helping to ensure that the full complement of U1 
proteins are restored. On the other hand, the nuclear excess 
of free U1A protein will be maintained at a relatively low 
level. This might be important to prevent its interaction with 
RNAs other than U1 in the nucleus. 

For many years it was a matter of debate whether nuclear 
proteins reached the nucleus by active transport or by 
diffusion and subsequent binding to (nondiffusible) nuclear 
components (for discussion see Dingwall et al., 1982). 
While the distribution of U1A is probably determined by 
binding interactions, it is of interest that it reaches the nu- 
cleus by an active transport mechanism. Whether export 
from the nucleus is also an active process is currently un- 
known. Attempts have been made to determine this ex- 
perimentally by direct injection of the protein into the nuclei 
of oocytes followed by incubation at 0 or 19"C and subse- 
quent dissection, analogous to the recent experiments with 
the B3 and B4 proteins (Mandell and Feldherr, 1990). How- 
ever, in the case of U1A, the results obtained were very in- 
consistent (our own unpublished data). Insight into this 
question is therefore only to be expected from the use of 
other experimental systems. 

Whether the binding of U1A to U1 snRNA prevents re- 
export of the protein directly, by covering up an "export sig- 
nal," or is because of the attachment of UIA to an RNP which 
is either too large or too immobile to be exported from the 
nucleus, thus remains an open question. 

Received for publication 21 February 1992 and in revised form 26 March 
1992. 
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