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Abstract. 1t is crucial to the eucaryotic cell cycle that
the centrosome undergo precise duplication to gener-
ate the two poles of the mitotic spindle. In the bud-
ding yeast Saccharomyces cerevisiae, centrosomal
functions are provided by the spindle pole body
(SPB), which is duplicated at the time of bud emer-
gence in Gl of the cell cycle. Genetic control of this
process has previously been revealed by the character-
ization of mutants in CDC31 and KARI, which prevent
SPB duplication and lead to formation of a monopolar
spindle. Newly isolated mutations described here
(mpsl and mps2, for monopolar spindle) similarly

cause monopolar mitosis but their underlying effects
on SPB duplication are unique. The MPSI gene is
found by electron microscopy to be essential for
proper formation of the site at which the new SPB
normally arises adjacent to the existing one. By con-
trast, a mutation in MPS2 permits duplication to pro-
ceed, but the newly formed SPB is structurally defec-
tive and unable to serve as a functional spindle pole.
Distinct temporal requirements for the CDC31, MPSI,
and MPS2 gene functions during the SPB duplication
cycle further demonstrate the individual roles of these
genes in the morphogenetic pathway.

eucaryotic cell cycle. This organelle, which serves as

the focus of microtubule organization in an inter-
phase cell, must be precisely duplicated to create either pole
of the mitotic spindle as the cell enters mitosis (for review,
see Brinkley, 1985; MclIntosh, 1983). Duplication of the
centrosome in many eucaryotes is coupled to duplication of
the centrioles situated within it (see review by Sluder, 1989).
The centrioles themselves have been shown by studies of la-
beled tubulin incorporation to undergo duplication in a con-
servative manner, such that each parental centriole remains
intact while a new centriole is assembled from new material
at an adjacent site (Kochanski and Borisy, 1990). The centri-
oles are then segregated in a semiconservative pattern, each
centrosome retaining a former centriole while also gaining
a new one (Kochanski and Borisy, 1990). It remains un-
known whether other centrosomal components, which are
poorly delineated by any available cytological methods, un-
dergo similar patterns of duplication and segregation. Nor
do we understand much about the functions that control cen-
trosomal duplication. Inhibition of protein synthesis either in
fertilized sea urchin eggs (Sluder et al., 1990) or in Xenopus
blastulae (Gard et al., 1990) blocks the cell cycle, but cen-
trosomal duplication continues to occur. In these experi-
ments, the demonstrable depletion of maturation-promoting
factor upon inhibition of protein synthesis is thought to ex-
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plain the failure of cell cycle progression (Gard et al., 1990;
Sluder et al., 1990). If this is the case, then the agent that
promotes centrosome duplication must differ and therefore
remains to be identified.

A similar uncoupling of cell cycle control from spindle
pole formation has been achieved by mutation in yeast cells
(Baum et al., 1988; Uzawa et al., 1990), where centrosomal
function is provided by the discrete spindle pole body
(SPB),! which is situated within the nuclear envelope. Elec-
tron microscopic analysis of the SPB in Saccharomyces
cerevisiae has shown its duplication and separation to be pre-
cisely controlled in wild-type cells (Byers and Goetsch,
1974; for review, see Byers, 1981a), as well as in the cdc (cell
division cycle) mutants (Byers and Goetsch, 1974). When
most cdc mutants are arrested by transfer to the nonpermis-
sive temperature, the SPB cycle uniformly becomes arrested
at a stage appropriate to other indices of cell cycle progres-
sion, including DNA synthesis and bud formation (Byers and
Goetsch, 1975). A defect specific to SPB duplication has,
however, been recognized in the formation of monopolar
spindles by cdc3I strains subjected to the nonpermissive
temperature (Byers, 19815). Here, bud formation and DNA
synthesis proceed in the absence of SPB duplication and the
cells then undergo monopolar mitosis (Schild et al., 1981),
all of the chromosomes segregating to the single functional
pole, thereby causing a doubling of ploidy in the single sur-
viving daughter cell. The CDC3! gene has been found to en-
code an essential Ca**-binding protein similar to calmodu-

1. Abbreviation used in this paper: SPB, spindle pole body.
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lin (Baum et al., 1986), but the manner in which calcium
may regulate SPB duplication remains obscure.

Effects on SPB duplication similar to those shown for
cdc31 have also been reported for conditional loss-of-func-
tion and over-expression alleles of the KARI gene (Rose and
Fink, 1987). The original mutation in KARI was recognized
by its defect in karyogamy, or nuclear fusion (Conde and
Fink, 1976), which is known from cytological analysis to be
initiated by fusion of the SPBs (Byers and Goetsch, 1975).
Coincidence of defects in karyogamy and SPB duplication,
in conjunction with the finding that a hybrid product, when
overexpressed, can be seen to be localized in the vicinity of
the SPB (Vallen, L., and M. Rose, personal communica-
tion), strongly suggests a functional role for the KARI gene
product within the SPB.

‘We report here the isolation of temperature-sensitive muta-
tions in two new loci (MPSI and MPS2, monopolar spindles);
mutants in both of these genes are specifically defective in
duplication of the SPB at the nonpermissive temperature.
Electron microscopy has revealed that the new mutants dis-
play forms of the SPB that are distinct from wild type, as well
as from each other or from that observed for cdc3! or karl.
The basis for these differences has been investigated by de-
termining the stage at which each gene function is required
during SPB duplication. These order-of-function studies
demonstrate that strains mutant in MPSI, MPS2, and CDC3!
are defective in temporally distinct stages of the SPB dupli-
cation pathway.

Materials and Methods

Yeast Strains, Cell Culture, and Genetic Techniques

Yeast media and genetic techniques were as described by Hartwell (1967)
and Sherman et al. (1971). The yeast strains used in this study are listed
in Table 1. The collection of temperature-sensitive yeast strains (Hartwell,
1967) used here was obtained from Michael Culbertson. The original iso-
lates of mpsl-1 and mps2-1 were successively outcrossed to strain S288C
and its derivatives: R14, M10, and M11 (Table I). Diploid strains 3264N-5¢
and 4024N-16d, homozygous at the mating type locus, were constructed by
selecting rare tetraploids between H243-13-2 and D326-1 or D402-1, and
the diploid meiotic products from sporulation of these tetraploids were
screened for strains homozygous for mating type and the mps loci. Diploid
strains Wx209-8a and Wx217-10b, also homozygous for mating type, were
isolated by transient exposure of an appropriate haploid strain to the nonper-
missive temperature and screening for clones of diploid cells.

The mpsI-I mutation maps to chromosome IV, 5 cM distal to cdc7. This
location was determined by tetrad analysis of a cross of a mpsl-1, trpl strain
(Wx161-3a, Table I) to a cdc7 strain (H91-3-4, Table I), and by examining
segregation of flanking markers in recombinant tetrads. The data resulting
from this cross are presented in Table II. The gene order is trpl - CENIV -
cdc7 - mpsl.

The mps2-1 mutation maps to chromosome VII, 21 cM proximal to cyh2.
The mps2-1 mutation complements crl3, which maps to the same region of
chromosome VII (McCusker and Haber, 1988). A five-point mapping cross
was carried out, in which the pertinent markers are mps2, cyh2 (Wx193-7b,
Table I) X leul, trp5, metl3 (REE963, Table I). The data from this cross
are presented in Table III. The gene order on this arm of chromosome VII
is supported by examination of the segregation of flanking markers in
recombinant tetrads. The gene order is CENVII - leul - trp5 - mps2 - cyh2
- metl3.

Cell Synchronization and Release from Arrest

Cells were arrested in Gl with a-factor (7-10 uM) obtained from Sigma,
Star Biochemical (Torrance, CA), or as a custom synthesis using F-MOC
chemistry on a peptide synthesizer (model 488; Applied Biosystems Inc.,
Foster City, CA). The efficiency of a given arrest was monitored by deter-
mining the budding index (the proportion of budded cells in a sample of 200
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Table I. Strain List

Strain Genotype Source

5288C « gal2 R. K. Mortimer*

R14 a leu2-3 R. F. Gaber#

M10 a leu2-3,112 trpl-7 ura3-52 W. R. Boorstein$

Ml11 o leu2-3,112 trpl-7 ura3-52 W. R. Boorstein$

H243-13-2 o/« trpl/trpl ural/ural D. Hawthornel

Wx209-8a  a/a cdc31-2/cdc31-2, This study
ade2/ade2, trpl/trpl

D326-1 alo mpsl-1/mpsl-1 trpl/trpl This study
leu2-3,112/+ ura3-52/ura3-52

D402-1 alo. mps2-1/mps2-1 trpl/trpl This study
leu2-3,112/+ ura3-52/ura3-52

3264N-5¢ a/a mpsl-1/mpsi-1 This study
trpl/trpl Ura™

4024N-16d  ala mps2-1/mps2-1 This study
trpl/trpl Ura*

Wx217-10b a/a mpsl-1/mpsl-1 trpl/trpl This study
mps2-1/mps2-1 cyh2/cyh2
ura3-52/ura3-52 His~

Wx161-3a  a mpsI-1 his7 trpl ura3-52 This study

H91-3-4 a cdc7 ade? ura3 leu2 lys2 L. H. Hartwelll

Wx193-7b  a mps2-1 cyh2 canl ura3-52 This study
leu2-3,112

REE963 o spoll::URA3 ura3 lys2 R. E. Esposito!

tyrl leul trp5 metl3 his6
lysl ade2 aro7

* Donner Laboratory, University of California, Berkeley, CA.
 Department of Biochemistry, Northwestern University, Evanston, IL.

$§ Department of Physiological Chemistry, University of Wisconsin, Madi-
son, WI.

Il Department of Genetics, University of Washington, Seattle, WA.

1 Department of Molecular Genetics and Cell Biology, University of Chicago,
Chicago, IL.

Table II. Tetrad Data for Mapping mpsli-1

Gene pair PD T NPD Total cM
mpsl, cdc7 18 2 0 20 5
mpsl, trpl 16 4 0 20 10
cdc7, trpl 18 2 0 20 5

PD is parental ditype, T is tetratype, NPD is nonparental ditype, and the map-
ping function is [(T X 6 NPD)/total asci] X 50 = cM.

Table I11. Tetrad Data for Mapping mps2-1

Gene pair PD T NPD Total cM
mps2, cyh2 32 23 0 55 21
mps2, trp5 18 21 2 41 41
mps2, metl3 16 31 0 47 33
mps2, leul 20 33 3 56 46
cyh2, metl3 32 15 0 47 16
cyh2, trp5 11 26 4 41 61
trp5, leul 26 15 0 41 18

Definitions and the mapping function are given in Table III.

cells) of briefly sonicated aliquots. Arrests were deemed adequate when
95% of the cells in the culture were unbudded, as later confirmed by flow
cytometry. Cells were released from arrest by two rinses in growth media
equilibrated to the temperature being used for the release. Subsequent reen-
try into the cell cycle and cell cycle arrest were monitored by budding index
and flow cytometry.

Cytological Techniques

All cytological experiments were carried out with diploid strains, which
have larger SPBs and spindles that are more readily visualized by both
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fluorescence and electron microscopy. Preparation of cultures for im-
munofluorescent staining entailed fixation with formaldehyde, spheroplast-
ing, and incubation with antibodies as described by Kilmartin and Adams
(1984) and madified by Jacobs et al. (1988), using the rat monoclonal anti-
body YOL1/34 (anti-a-tubulin) and FITC-conjugated goat anti-rat antibod-
ies (Aceurate Chemical & Scientific Corp., Westbury, NY). DNA was
stained with DAPI (1.0 ug/ml; Sigma Chemical Co., St. Louis, MO).
Stained cells were viewed with a Nikon Microphot FX fluorescent micro-
scope and photographed with Kodak Kodachrome 200 Professional film.

Yeast cells were prepared for flow cytometry by the method of Hutter and
Eipel (1979) using the DNA stain, propidium iodide (Sigma Chemical Co.).
Stained cells were analyzed on a Becton Dickinson FACSCAN flow cytome-
ter using the CELLFIT and LYSYS software packages to obtain and analyze
data.

Yeast cells were prepared for thin-sectioning by procedures described by
Byers and Goetsch (1974, 1975). Serial sections were viewed on a Philips
EM300 electron microscope.

Results

Isolation of the mps Mutations

Previous studies of cdc31 (Byers, 1981b; Schild et al., 1981)
and karl (Rose and Fink, 1987) have demonstrated that these
mutants share several common phenotypes, including for-
mation of a monopolar spindle at the point of temperature-
sensitive arrest. The accompanying disorganization of the
mitotic spindle provides an easily recognized defect that
could serve as the basis for identifying other mutants defec-
tive in SPB duplication. We therefore screened a collection
of temperature-sensitive-for-growth yeast strains (Hartwell,
1967) for members exhibiting this cytological phenotype.
Mutant cells which had been incubated at 36°C for 4 h
were subjected to immunofluorescent staining of their mi-
crotubules and the stained cells were scored in a double-
blind assay for the presence of aberrant microtubule arrays
(Materials and Methods). During the budded phase of the
cell cycle, wild-type strains contain mitotic spindles that ap-
pear as straight bundles of microtubules (Fig. 1 A), whereas
mutants of interest lacked such arrays when incubated at the
nonpermissive temperature (Fig. 1, B and C). In all, twelve
recessive temperature-sensitive mutations, representative of
ten complementation groups, were found to be unable to

FITC

DAPI

form normal mitotic spindles at 36°C; each segregated as a
single nuclear locus in crosses to wild-type strains (data not
shown).

Further analysis of the mutants included flow cytometric
assays to characterize the overall pattern of chromosome
replication and segregation, and electron microscopy to
specify the state of the SPBs. By these criteria, mutations
defining two of the ten complementation groups displayed
defects specific to SPB duplication (described below). These
SPB-defective mutations were outcrossed six times to wild-
type strains to verify that the temperature-sensitive mutation
cosegregated with the aberrant microtubule organization
phenotype and to generate the strains used for genetic map-
ping, and for the following phenotypic characterization (see
Table I, Materials and Methods). These two complementa-
tion groups, mpsl and mps2 (monopolar spindle), identify
new loci on chromosomes IV and VII, respectively (Tables
II and III, Materials and Methods).

The Single SPB in mpsl-1 Strains Has
an Enlarged Half-Bridge

The mpsi-1 mutation maps to a new centromere-linked locus
on chromosome IV, 5 ¢cM distal to cdc7 (see Table II, Materi-
als and Methods). Fig. 1 B shows the microtubule organiza-
tion observed in large-budded cells of an mpsl-I strain 4 h
after transfer to 36°C. These cells display disorganized ar-
rays of microtubules and a single region of DAPI-stained
chromosomal DNA, suggesting that the cells have not en-
tered mitosis. The apparent disruption of spindle organiza-
tion is consistent with gross defects in chromosome segrega-
tion. Flow cytometry (Fig. 2 A) reveals that mpsl-I cells,
when incubated at 36°C, accumulate substantially more
DNA per cell than that in similarly treated control cells. The
mpsl-1 mutation is lethal; cells transferred to 36°C for 4 h
continue budding but yield <10% viable cells when restored
to the permissive temperature (25°C). When survivors were
plated and the resulting colonies tested for their ploidy by
flow cytometry, 80% of the cell clones had DNA contents
greater than the initial strain (data not shown). The genera-
tion of such polyploids by transient exposure to the nonper-

A
"

Figure 1. Immunofluorescent staining of wild-type and mps mutant yeast strains. Yeast cells were stained to display microtubules (FITC)
and DNA (DAPI) as described in Materials and Methods. The yeast strains, (4) wild-type (a diploid obtained by mating M10 and M11,
Table 1), (B) mpsi-I (D326-1), and (C) mps2-1 (D402-1), were grown at 25°C and transferred to 36°C for 4 h. The wild-type strain (4)
exhibits normal mitotic spindles, whereas these structures are absent in large-budded cells of mps strains incubated at the nonpermissive

temperature. Bar, 1.0 um.

Winey et al. Yeast SPB Duplication
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Figure 2. Flow cytometric analysis of mps mutant strains. The
histogram of wild-type strain (M10/ML11, open curve) serves as a
standard for the histograms of the mutant (stippled curve) strains
(A) mpsl (D326-1) and (B) mps2 (D402-1), after 4 (D326-1)or 6 h
(D402-1) at 36°C. In the histogram of the wild-type strain, the left
peak is G1 cells and the right peak is G2 and M cells. The mps
mutants display cells of increased ploidy (peaks to the right of the
wild-type G2/M peak). Similar results were obtained with rho® de-
rivatives of D402-1 and D326-1 (data not shown), indicating that
mitochondrial DNA is not the source of the unusual DNA content
observed in these mutants. In these histograms the x-axis is relative
DNA content as expressed in propidium iodide fluorescence, and
the y-axis is the relative number of cells normalized to the maxi-
mum peak. Each sample represents 10,000 cells.

missive temperature is consistent with the observed defects
in chromosome segregation.

The defects in microtubule organization and chromosome
segregation seen in a mpsl-I cell were found to result from
the formation of a monopolar spindle. Only a single SPB per
nucleus was found when budded cells of a mps/-I mutant in-
cubated at 36°C were analyzed by electron microscopy of
serial sections (Fig. 3, B and C), whereas budded cells of
the same strain grown at 25°C contained two SPBs per nu-
cleus (Fig. 3 A), each acting as a pole of the mitotic spindle
as in wild type. The monopolar spindles observed in mpsi-1
strains are similar to those seen in cdc3] and karl strains,
except that the SPB itself is morphologically unique.
Whereas the half-bridge associated with the SPB in a cell ar-
rested by cdc31 or karl is small and indistinct (Byers, 1981b;
Rose and Fink, 1987), the half-bridge in an mpsI-I cell trans-
ferred to 36°C is strikingly enlarged (Fig. 3, B and C), ex-
tending 180 nM (s = 31 nM, n = 28) outward from the edge
of the SPB, while that observed for the same strain at permis-
sive temperature extended half as far (90 nM, s = 8 nM,
n = 5; Fig. 3 A). A similar enlargement of the half-bridge
(to a length of 150 nM) has previously been found for the
satellite-bearing SPB borne by cells arrested in Gl by a-fac-
tor or by temperature-sensitivity for CDC28 (Byers and
Goetsch, 1974), but the mps! defect shown here uniquely
leads to formation of an enlarged half-bridge in the absence
of satellite formation.

Strains Containing mps2-1 Produce a Monopolar
Spindle Plus a Defective SPB

The aberrant microtubule organization observed in large-
budded cells of an mps2-1 strain 4 h after transfer from 23
to 37°C is shown in Fig. 1 C. About half the cells treated
in this manner were found to acquire two foci of microtubule
staining. Unlike the wild-type controls (Fig. 1 A4), however,
these foci are not connected to one another by a mitotic spin-
dle. When incubated at 37°C, strains containing the mps2-I

The Journal of Cell Biology, Volume 114, 1991

mutation become arrested in the cell cycle, yielding large-
budded cells with a G2 content of DNA. Unlike mpsi-1, most
mps2-l-arrested cells remain viable (>90%, data not shown,
also see Fig. 4 C). Nevertheless, upon continued incubation
at this temperature, missegregation of chromosomes results
in the accumulation of cells with DNA contents greater than
the control wild-type strain (Fig. 2 B). The mps2-I mutation
identifies a new locus on the left arm of chromosome VII,
21cM proximal to cyh2 (see Table III, Materials and Meth-
ods). Many of the phenotypic features displayed by mps2 are
shared by a previously reported mutation, ndcl-I, which
maps to a distinct locus (Thomas and Botstein, 1986).
Strains carrying the mps2-I mutation give rise to a mono-
polar spindle that differs from that observed in mpsl, cdc31,
or karl strains. Electron microscopy has revealed that mps2-1
is unique among these mutations in that it causes the forma-
tion of two structurally distinct SPBs (Fig. 3, D and E). One
SPB lies at the focus of both cytoplasmic and nuclear micro-
tubules, forming a monopolar spindle similar to that seen in
cdc31 or karl strains. This monopolar spindle is presumed
to be dysfunctional in a manner similar to that observed for
cdc31 or karl, as it gives rise to monopolar chromosome
segregation and subsequent polyploidization. The second
SPB is incapable of acting as a functional mitotic pole, as
it lacks any attached nuclear microtubules. Nevertheless,
there are cytoplasmic microtubules associated with this struc-
ture, thereby explaining why it is recognizable as a focal
point for microtubule organization in cells subjected to im-
munofluorescent staining of tubulin. This interpretation is
supported by the asymmetric distribution of DAPI staining
in mps2-1 strains at the arrest: chromosomal DNA appears
to be associated exclusively with one focus of microtubule
staining (presumably the SPB that bears nuclear microtu-
bules), but not the other (the upper ones in Fig. 1 C).
Besides lacking nuclear microtubules, the defective SPB
in mps2-1 strains has some other interesting cytological fea-
tures. First, it does not appear to be inserted into the nuclear
envelope like a functional SPB, but seems instead to reside
on the cytoplasmic surface of the envelope (Fig. 3 E). It has,
in some instances, been found to be associated with a half-
bridge (Fig. 3 E), but this feature could not be demonstrated
in all cases. Consistently, the defective SPB appears to lack
the “inner plaque,” the diffuse layer of material on the nuclear
face of the functional SPB in which the nuclear microtubules
terminate (Rout and Kilmartin, 1990). Finally, the defective
SPB is often found to have migrated into the distal region of
the bud, where it resides on the tip of a thin extension of the
nuclear envelope (Fig. 3 F). The occurrence of this extensive
movement in the absence of any spindle microtubules sug-
gests that some other agent is responsible for its movement.

Functions of the MPS Genes, but Not CDC31, Are
Required After o-Factor Arrest

Structural differences between the SPBs in cells subject to
mutational inactivation of CDC31, MPSI, and MPS2 indicate
that these genes may be responsible for distinct functions in
the duplication pathway. We undertook to identify the stage
of SPB duplication during which each genetic function was
required by exploiting the reversible arrest of SPB duplica-
tion brought about by treatment of the cells with a-factor.
This treatment blocks the cell-cycle in Gl at an intermediate
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Figure 3. Electron micrographs of the mps mutants. A normal mitotic spindle is seen in a mpsl-I strain (D326-1) grown at 25°C (4). In
contrast, the same strain produces monopolar spindles when incubated at 36°C for 4 h (B and C). The half-bridge structures in 4, B,
and C are highlighted by arrows. Strains carrying the mps2-/ mutation (D402-1) display a monopolar spindle (D) and a defective SPB (arrow,
E) in serial sections. The defective SPB (E, arrow) lacks microtubules on its nuclear face and does not appear to be fully inserted into
the nuclear envelope, which is marked by nuclear pores (arrowheads in D-F). The monopolar spindle (m) emanating from the functional
SPB shows no apparent interaction with defective SPB (E). At later times of mps2-I arrest the nucleus gains a characteristic deformation
(F) that bears the defective SPB (arrow) while the functional SPB (not shown) remains in the nucleus proper. Similar phenotypes were
detected for 15 or more nuclei that were completely serially sectioned for each mutant strain. Bar, 0.2 um.

step of SPB duplication, each cell containing a single satel-
lite-bearing SPB (Byers and Goetsch, 1975). At the next
detectable step, an apparent maturation of the satellite cul-
minates in formation of side-by-side SPBs that are intercon-
nected by a fully formed bridge. Since satellites have not
been observed in cdc31 cells simultaneously challenged with
a-factor and the nonpermissive temperature (Winey, M., and
L. Goetsch, unpublished data), we are led to believe that there
is a specific requirement for CDC3] in satellite deposition.
On this basis, we reasoned that if cdc3/ cells were arrested

Winey et al. Yeast SPB Duplication

at the satellite-bearing stage by addition of a-factor at the
permissive temperature and then washed free of a-factor at
the nonpermissive temperature, the preexisting satellite-bear-
ing SPB would already have become competent to undergo
duplication, and bipolar mitotic spindle formation would en-
sue in the absence of any active CDC3! gene product.
This prediction was verified by releasing a cdc31 strain
from o-factor arrest at either 25 or 36°C. Progression of
these cells into the cell cycle was determined by microscopic
assays for bud formation and by flow cytometric assays of
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Figure 4. Flow cytometric analysis of
the cdc3! and mps mutants released
at nonpermissive temperature from
a-factor arrest. The (A) cdc3l-2,
(B) mpsl-1, and (C) mps2-1 strains
(Wx209-8a, 3264N-5¢, and 4024N-
16d, respectively) were arrested with
a-factor at 25°C, and then released at
36°C. Aliquots of cells for flow cyto-
metry were taken at the arrest (0), at
1,2, and 3 h after release from arrest
(, 2, and 3, respectively), and from

the initial culture (C) as a standard for the position of Gl and G2+M cells. The (4) cdc3]-2 strain completes an entire cell cycle (new
Gl cells at 2 h) after release from arrest before arresting with G2+M DNA content (3 h). The (B) mpsl-I strain shows no cell cycle arrest,
failing in the first cycle and producing cells with aberrant DNA contents. The (C) mps2-1 strain shows cell cycle arrest with G2+M DNA
content (2 and 3 h) in the first cell cycle after release from arrest. After recovery from «-factor arrest, the generation times in this experiment

are V2 h. The x- and y-axes for each time-point are the same as in Fig. 2.

DNA content to monitor entry into S-phase. Bud formation
and DNA synthesis were found to be completed in ~1.0 h
(Fig. 4 A). At this time, microtubule organization was as-
sessed by immunofluorescent staining for tubulin, and nor-
mal mitotic spindles were observed at both 25 (100%, n =
150) and 36°C (91%, n = 132). Continued incubation of the
cells at 36°C showed that these cells proceeded to complete
one full cell cycle and then arrest quantitatively in the next
cell cycle as 91% (n = 288) large budded cells with G2 con-

tent of DNA (3.0-h timepoint, Fig. 4 A); 100% (n = 180)
of the cells displayed monopolar spindles upon immunofiuo-
rescent staining. Electron microscopic analysis confirmed
that the SPBs had undergone both duplication and separation
to become components of a mitotic spindle (Fig. 5 A) in the
first cell cycle after release from o-factor arrest and had then
formed the characteristic monopolar spindle upon arrest in
the second cell cycle (Fig. 5 B). Electron microscopy also
served to demonstrate that the cells initially arrested by

Figure 5. SPB duplication upon release from «-factor arrest without CDC3I or MPS gene functions. The cdc31-2, mpsl-I, and mps2-1
strains (Wx209-8a, 3264N-5c, 4024-16d, respectively) were arrested at 25°C with a-factor and then released from this arrest at 36°C.
At various times after release the cells were prepared for electron microscopy. The cdc3I-2 strain displayed normal spindles (4) in all
of 14 cells at 1 h after release, while cells allowed to continue incubation at 36°C for 3 h exhibited monopolar spindles (B) in all of 16
nuclei examined. All 16 cells of the mpsl-1 strain examined had immediately formed monopolar spindles (C) with SPBs displaying the
enlarged half-bridge (arrow). The mps2-1 strain displayed both a monopolar spindle and defective SPB (arrow, D) in each of 10 cells exam-
ined. Cells arrested by a-factor at 25°C were confirmed to contain satellite-bearing SPBs, as exhibited by the mps2-I strain (E, arrow
marks the satellite). Bar, 0.2 um.
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o-factor did, indeed, contain satellite-bearing SPBs (data
not shown). These results demonstrate that the CDC31I gene
function had already been executed at the stage of a-factor
arrest and therefore was not further required for SPB dupli-
cation subsequent to release from the arrest.

Repeating this experiment with the mps! and mps2 mu-
tants showed, on the other hand, that these gene functions
have not been executed at the point of a-factor arrest, but are
still required for completion of SPB duplication upon re-
lease. Flow cytometric analysis of these strains demon-
strated that both of them displayed their mutant phenotypes
in the first cell cycle after release from «a-factor arrest at
36°C. The mpsl mutant showed its characteristic pattern of
chromosome missegregation (Fig. 4 B), and the mps2 strain
underwent G2 arrest (Fig. 4 C). In further assays of these
cells, immunofiuorescent staining of the microtubules showed
that the cells were unable to complete SPB duplication upon
release from o-factor arrest at 36°C, forming monopolar
spindles in 91% (n = 248) of the mpsl cells and in 98%
(n = 126) of the mps2 cells. Spindle formation was normal
when the cells were released at 25°C (mpsl: 94% spindles,
n = 220; mps2: 98% spindles, n = 109). Electron micros-
copy of the cells that were released at 36°C revealed the same
types of aberrant SPBs (Fig. 5, C and D) as those seen when
these mutants were transferred directly to 36°C from loga-
rithmic growth. Furthermore, electron microscopy of the
a-factor-arrested cells confirmed that both mutants arrested
with satellite-bearing SPBs (mpsl: data not shown; mps2:
Fig. 5 E). These results, therefore, differ from those ob-

A

tained for cdc31 and suggest that MPS! and MPS2 act at
one or more later points in the SPB duplication pathway than
does CDC31.

mpsl-1 Is Epistatic to mps2-1

Having found that both MPS! and MPS2 are required after
the point of a-factor arrest, we sought to determine which
of the two genes acts first upon release. Because the relevant
mutations differ in their cytological phenotypes, it was feasi-
ble to address this issue by use of an epistasis test. A strain
doubly mutant for MPSI and MPS2 (Wx217-10b, Table I) was
released from a-factor arrest at 36°C and was found to ex-
hibit phenotypes similar to those of mps! strains. Flow cyto-
metric analysis showed that the doubly mutant strain ex-
hibited the rapid increase in ploidy characteristic of mpsl
strains (Fig. 6 A). Furthermore, the double mutant showed
other characteristics of the mps! mutant including rapid
death at the nonpermissive temperature (<10% viability af-
ter 4 h at 36°C) and the lack of cell-cycle arrest. Finally, elec-
tron microscopy of the mpsl, mps2 strain after release from
a-factor arrest at 36°C revealed that the monopolar spindle
found within each cell originated from a SPB that bore an
enlarged half-bridge similar to that seen upon failure of the
MPSI function alone (Fig. 6 B). The defective SPB seen in
mps2 strains was never detected in these doubly mutant cells.
The phenotypic identity between mps] mutants and the mpsl,
mps2 double mutant demonstrates that mps! failure obviates
the expression of the mps2 phenotypes, suggesting that the
MPSI gene acts before MPS2 in the SPB duplication pathway.

Figure 6. Epistasis test of mpsl-l and mps2-1. A mpsl-1, mps2-1 doubly mutant strain (Wx217-10b) was arrested at 25°C with a-factor
and released from this arrest at 36°C. The flow cytometric profiles {(4) at the arrest and at various times after release are as in Fig. 4.
The doubly mutant strain exhibits the same behavior as a mps/ mutant strain (see Fig. 4 B). Electron microscopy of cells from this experi-
ment revealed 13 monopolar spindles with clearly enlarged bridges (B, arrow) and five other monopolar spindles for which the bridges

were not as distinct. Bar, 0.2 um.
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Discussion

We have described the identification of two yeast genes,
MPSI and MPS2 (monopolar spindle), that are required for
SPB duplication. Temperature-sensitive alleles of these
genes share some phenotypes with the previously described
monopolar spindle mutants, cdc3! (Byers, 1981b) and karl
(Rose and Fink, 1987). When either of the mps mutants is
incubated at the nonpermissive temperature, aberrant spin-
dle organization is evident upon immunofluorescent staining
of microtubules, and there are accompanying defects in chro-
mosome segregation leading to polyploidization. Analysis
by electron microscopy has revealed novel effects on SPB
structure in the mps mutants. Strains mutant in MPSI! were
found to possess an enlarged half-bridge adjacent to the sin-
gle SPB. Strains mutant in MPS2 undergo an aberrant cycle
of SPB duplication to yield one functional SPB and another
that resides entirely in the cytoplasmic compartment, lack-
ing any microtubules on its nuclear face.

Interaction of the mps Mutants with the Cell Cycle

The mps mutants differ from one another in their effects on
the cell cycle. Like cdc31 (Byers, 1981b) and kar! (Rose and
Fink, 1987), mps2-1 causes arrest of the cell cycle at a stage
characterized by a large bud and a G2 content of DNA,
whereas mpsl-] fails to cause cell-cycle arrest upon transfer
to the nonpermissive temperature. Hartwell and Weinert
(1989) have argued that arrest of the cell cycle might result
either from an intrinsic defect in a cellular component which
normally provides an appropriate substrate for the next step
of the cycle, or from an extrinsic controlling function that as-
sesses completion of prerequisite events before allowing cell
cycle progression. Indeed, RAD9 has been identified as an
extrinsic control function, or checkpoint, that is required for
cell-cycle arrest in response to DNA damage (Weinert and
Hartwell, 1988). One might postulate that the arrests ob-
served in the cdc31, karl, and mps2 mutants are examples
of intrinsic blocks to cell-cycle progression because the for-
mation of a monopolar spindle does not provide the appro-
priate structure for mitosis. However, the failure of mps/
strains to undergo cell cycle arrest reveals that formation of
amonopolar spindle per se does not necessarily cause arrest,
thereby implicating some sort of extrinsic control in the cell
cycle arrests observed for the cdc31, karl, and mps2 mutants.

a -Factor

The Spindle Pole Body Duplication Pathway

We have shown that the monopolar spindle mutants provide
a basis for genetic dissection of the SPB duplication pathway,
which previously was based largely on cytological criteria
(Byers and Goetsch, 1975). SPB duplication, in brief, begins
late in G1 when the satellite, seen in the electron microscope
as a small tuft of darkly staining material, appears on the cy-
toplasmic surface of the half-bridge at a site distal to the SPB
proper (Fig. 7; Byers and Goetsch, 1975). The satellite per-
sists until a bona fide daughter SPB, fully embedded in the
nuclear envelope, arises at the same site. Duplication there-
fore appears to be a conservative process, the existing SPB
remaining intact while the satellite serves as the precursor
to the new SPB. Upon completion of this duplication event,
the side-by-side SPBs are connected by a complete bridge,
which is later severed as the SPBs undergo separation to
form a mitotic spindle, leaving a half-bridge on each SPB.
We reasoned that failures in distinct steps of the SPB duplica-
tion pathway might be responsible for the novel SPB mor-
phologies observed among mutants that undergo monopolar
spindle formation. Our experimental results support this
conclusion and can be integrated with previous cytological
findings (Byers, 1981a) to suggest the pathway for SPB dupli-
cation shown in Fig. 7.

Of the three genes investigated, CDC3] appears to be
required first in SPB duplication, possibly playing a role in
satellite formation. Although satellite formation itself is
difficult to monitor in a quantitative manner, it has been pos-
sible to analyze more rigorously whether CDC31 is required
before or after the stage in which cells first display a satellite.
We have found, in fact, that an entire cell cycle is completed
by cdc31 strains released from a-factor arrest (when the sat-
ellite is present) at the nonpermissive temperature, indicat-
ing the absence of any essential role for CDC31 after satellite
formation is completed. It is possible, on the basis of these
findings, that execution of the CDC3! function late in one
cycle of ongoing growth serves to permit both satellite for-
mation and SPB duplication in the subsequent cycle. This no-
tion is supported by the recent finding that when cdc31 cells
are brought to arrest in an earlier phase of G2 by treatment
with nocodazole and then released from the drug at the non-
permissive temperature, they complete mitosis and then be-
come arrested with a monopolar spindle in the subsequent
cell cycle (Winey, M., unpublished observation).

Figure 7. Proposed pathway of
SPB duplication in Saccharomy-
ces cerevisiae. This schematic
representation of the SPB dupli-
cation pathway is based on previ-
ous cytological analysis (Byers,
1981a), and the results reported
here. Microtubules are displayed
only on the nuclear side of the
SPB to indicate its orientation.
The steps dependent on the MPSI,
MPS2, and CDC31 gene activi-

a3

ties are indicated, as are the types of SPBs that result from failure in the given step. As diagrammed, the SPBs associated with monopolar
spindles are seen to increase in size, as characterized by Byers (1981b). The bracketed structure is a possible intermediate between satellite-
bearing and duplicated-but-unseparated SPBs suggested by the mps2 phenotype (see Fig. 5 D).

The Journal of Cell Biology, Volume 114, 1991

752



The next known gene function to act in SPB duplication
is MPSI. The satellite-bearing SPB of a mpsl-I cell arrested
with o-factor at the permissive temperature is unable, upon
removal of a-factor, to progress through further stages of
SPB duplication at the nonpermissive temperature. Because
MPS] is required after a-factor arrest, whereas the CDC31
function has already been executed at this stage, we believe
that MPSI may also act after CDC3! in an uninterrupted cell
cycle. Further information on the order of gene functions is
gained from the finding that mps! is epistatic to mps2, the
doubly mutant strain being phenotypically identical to a
strain mutant in mps! alone. Although we believe this to in-
dicate that MPSI acts before MPS2, we must entertain the
alternative interpretation that MPS2 is required before MPS]
but that development of the mps2 mutant phenotype requires
MPSI gene activity. We discount the latter interpretation be-
cause the appearance in mps2 strains of the defective SPB,
which is not seen in cdc3! or mps] mutants, provides further
evidence that mps2 strains have progressed farther through
the SPB duplication pathway than the other mutants.

For the reasons indicated above, we conclude that MPS?2
acts later in the pathway than either CDC3I or MPSI. In the
absence of MPS2 function, a satellite-bearing SPB proceeds
through a defective duplication cycle to yield only one func-
tional SPB, which we presume to be the same one that origi-
nally was present, while the satellite gives rise to the defec-
tive SPB. The defective SPBs observed in MPS2 mutants
appear mature on their cytoplasmic faces, from which cyto-
plasmic microtubules emanate, but seem not to have become
inserted into the nuclear envelope. Failure of insertion into
the envelope would prevent access of the nuclear face to the
nucleoplasm and thereby preclude the assembly of spindle
microtubules. Surprisingly, the defective SPB is able to un-
dergo separation from the functional SPB without being at-
tached to any spindle microtubules. The mechanism of this
separation remains obscure, but may possibly involve activi-
ties of the cytoplasmic microtubules associated with the
defective SPB.

The phenotypes of mps! and mps2 establish certain as-
pects of the SPB duplication pathway that previously were
supported only by circumstantial evidence. As noted above,
it has been known for some time that satellite formation on
the half-bridge anticipates appearance at a similar position
of the second SPB proper, but there was no direct evidence
that the satellite actually gave rise to the nascent SPB. No
intermediate steps in the enlargement of the satellite or its
insertion into the nuclear envelope had been observed (Byers
and Goetsch, 1975), so it was conceivable that SPB duplica-
tion entailed a simple redistribution of the material that pre-
viously comprised the existing SPB. However, the simul-
taneous presence of both a normal SPB and an aberrant one
after failure of the MPS2 function now provides compelling
evidence that the nascent SPB is newly formed at the site pre-
viously occupied by the satellite while the existing SPB re-
mains intact. Furthermore, this phenotype uniquely demon-
strates that the possible enlargement of the satellite to form
the nascent SPB can occur independently of its insertion into
the nuclear envelope. These findings, in conjunction with the
evidence that failure of SPB duplication in mps/ cells results
primarily from a defect in the site at which satellite forma-
tion occurs (on the half-bridge), substantiate the aforemen-
tioned model that SPB duplication proceeds by a conserva-
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tive mechanism. That is to say, the role of the existing SPB
in duplication may be simply to ensure the availability of an
adjacent site for assembly of the nascent SPB.

Finally, it should be noted that the screening method uti-
lized here to identify MPS! and MPS2, though time-
consuming, might profitably be pursued to greater extent be-
cause only a single allele of each gene has yet been isolated.
Further screening could yield additional alleles that might
differ in phenotype and thereby offer further insight into the
functions mediated by these genes. In addition, other genes
specifically required for SPB duplication could be identified.
Regardless, genetic characterization of the two genes identi-
fied here already provides a basis for analyzing these SPB-
related functions at the molecular level. Recent advances in
the isolation of yeast SPBs and their immunochemical char-
acterization provides improved methods for analyzing SPB
assembly and in establishing whether these gene products
are themselves components of the SPB (Rout and Kilmartin,
1990). These approaches, coupled with recent advances in
the mass isolation of mammalian centrosomes (Komesli et
al., 1989) and new assays for their activity (Klotz et al.,
1990), should also permit us to search for conserved bio-
chemical functions that may be involved in the duplication
and regulation of centrosome-like organelles in a broader
range of organisms.
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