Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The Epstein-Barr Virus (EBV) latency C promoter (Cp) is the origin of transcripts for six viral proteins. The promoter is active in lymphoblastoid B-cell lines but silent in many EBV-associated tumors and tumor cell lines. In these latter cell lines, the viral episome is hypermethylated in the vicinity of this promoter. We show that in such a cell line (Rael, a Burkitt's lymphoma line), 5-azacytidine inhibits DNA methyltransferase, brings about demethylation of EBV genomes, activates Cp transcription, and induces the expression of EBNA-2. Investigation of the phenomenon demonstrates the importance of the methylation status of a particular CpG site for the regulation of the Cp: (i) genomic sequencing shows that this site is methylated when the Cp is inactive and is not methylated when the promoter is active; (ii) methylation or transition mutation at this site abolishes complex formation with a cellular binding activity (CBF2) as determined by electrophoretic mobility shift analyses, competition binding analyses, and DNase I footprinting; and (iii) a single C --> T transition mutation at this site is associated with a marked reduction (> 50-fold) of transcriptional activity in a reporter plasmid. Thus, the CBF2 binding activity is shown to be methylation sensitive and crucial to EBNA-2-mediated activation of the Cp.

Free full text 


Logo of molcellbLink to Publisher's site
Mol Cell Biol. 1995 Nov; 15(11): 6150–6159.
PMCID: PMC230866
PMID: 7565767

Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial.

Abstract

The Epstein-Barr Virus (EBV) latency C promoter (Cp) is the origin of transcripts for six viral proteins. The promoter is active in lymphoblastoid B-cell lines but silent in many EBV-associated tumors and tumor cell lines. In these latter cell lines, the viral episome is hypermethylated in the vicinity of this promoter. We show that in such a cell line (Rael, a Burkitt's lymphoma line), 5-azacytidine inhibits DNA methyltransferase, brings about demethylation of EBV genomes, activates Cp transcription, and induces the expression of EBNA-2. Investigation of the phenomenon demonstrates the importance of the methylation status of a particular CpG site for the regulation of the Cp: (i) genomic sequencing shows that this site is methylated when the Cp is inactive and is not methylated when the promoter is active; (ii) methylation or transition mutation at this site abolishes complex formation with a cellular binding activity (CBF2) as determined by electrophoretic mobility shift analyses, competition binding analyses, and DNase I footprinting; and (iii) a single C --> T transition mutation at this site is associated with a marked reduction (> 50-fold) of transcriptional activity in a reporter plasmid. Thus, the CBF2 binding activity is shown to be methylation sensitive and crucial to EBNA-2-mediated activation of the Cp.

Full Text

The Full Text of this article is available as a PDF (1.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Séguin C, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984 Jul 19;310(5974):207–211. [Abstract] [Google Scholar]
  • Comb M, Goodman HM. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990 Jul 11;18(13):3975–3982. [Europe PMC free article] [Abstract] [Google Scholar]
  • Cordier M, Calender A, Billaud M, Zimber U, Rousselet G, Pavlish O, Banchereau J, Tursz T, Bornkamm G, Lenoir GM. Stable transfection of Epstein-Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23. J Virol. 1990 Mar;64(3):1002–1013. [Europe PMC free article] [Abstract] [Google Scholar]
  • Dou S, Zeng X, Cortes P, Erdjument-Bromage H, Tempst P, Honjo T, Vales LD. The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol Cell Biol. 1994 May;14(5):3310–3319. [Europe PMC free article] [Abstract] [Google Scholar]
  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. [Europe PMC free article] [Abstract] [Google Scholar]
  • Grossman SR, Johannsen E, Tong X, Yalamanchili R, Kieff E. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7568–7572. [Europe PMC free article] [Abstract] [Google Scholar]
  • Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982 Feb 18;295(5850):620–622. [Abstract] [Google Scholar]
  • Henkel T, Ling PD, Hayward SD, Peterson MG. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994 Jul 1;265(5168):92–95. [Abstract] [Google Scholar]
  • Humphries RK, Dover G, Young NS, Moore JG, Charache S, Ley T, Nienhuis AW. 5-Azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin. J Clin Invest. 1985 Feb;75(2):547–557. [Europe PMC free article] [Abstract] [Google Scholar]
  • Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst. 1993 Aug 4;85(15):1235–1240. [Abstract] [Google Scholar]
  • Jin XW, Speck SH. Identification of critical cis elements involved in mediating Epstein-Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter. J Virol. 1992 May;66(5):2846–2852. [Europe PMC free article] [Abstract] [Google Scholar]
  • Jones PA. Altering gene expression with 5-azacytidine. Cell. 1985 Mar;40(3):485–486. [Abstract] [Google Scholar]
  • Lassar AB, Paterson BM, Weintraub H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell. 1986 Dec 5;47(5):649–656. [Abstract] [Google Scholar]
  • Laux G, Dugrillon F, Eckert C, Adam B, Zimber-Strobl U, Bornkamm GW. Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol. 1994 Nov;68(11):6947–6958. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ling PD, Hsieh JJ, Ruf IK, Rawlins DR, Hayward SD. EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol. 1994 Sep;68(9):5375–5383. [Europe PMC free article] [Abstract] [Google Scholar]
  • Ling PD, Rawlins DR, Hayward SD. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9237–9241. [Europe PMC free article] [Abstract] [Google Scholar]
  • Masucci MG, Contreras-Salazar B, Ragnar E, Falk K, Minarovits J, Ernberg I, Klein G. 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael. J Virol. 1989 Jul;63(7):3135–3141. [Europe PMC free article] [Abstract] [Google Scholar]
  • Meitinger C, Strobl LJ, Marschall G, Bornkamm GW, Zimber-Strobl U. Crucial sequences within the Epstein-Barr virus TP1 promoter for EBNA2-mediated transactivation and interaction of EBNA2 with its responsive element. J Virol. 1994 Nov;68(11):7497–7506. [Europe PMC free article] [Abstract] [Google Scholar]
  • Minarovits J, Hu LF, Minarovits-Kormuta S, Klein G, Ernberg I. Sequence-specific methylation inhibits the activity of the Epstein-Barr virus LMP 1 and BCR2 enhancer-promoter regions. Virology. 1994 May 1;200(2):661–667. [Abstract] [Google Scholar]
  • Minarovits J, Minarovits-Kormuta S, Ehlin-Henriksson B, Falk K, Klein G, Ernberg I. Host cell phenotype-dependent methylation patterns of Epstein-Barr virus DNA. J Gen Virol. 1991 Jul;72(Pt 7):1591–1599. [Abstract] [Google Scholar]
  • Park JG, Chapman VM. CpG island promoter region methylation patterns of the inactive-X-chromosome hypoxanthine phosphoribosyltransferase (Hprt) gene. Mol Cell Biol. 1994 Dec;14(12):7975–7983. [Europe PMC free article] [Abstract] [Google Scholar]
  • Qu L, Rowe DT. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. [Europe PMC free article] [Abstract] [Google Scholar]
  • Reisman D, Sugden B. trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol. 1986 Nov;6(11):3838–3846. [Europe PMC free article] [Abstract] [Google Scholar]
  • Rooney CM, Brimmell M, Buschle M, Allan G, Farrell PJ, Kolman JL. Host cell and EBNA-2 regulation of Epstein-Barr virus latent-cycle promoter activity in B lymphocytes. J Virol. 1992 Jan;66(1):496–504. [Europe PMC free article] [Abstract] [Google Scholar]
  • Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993 Apr;3(2):226–231. [Abstract] [Google Scholar]
  • Wang F, Gregory C, Sample C, Rowe M, Liebowitz D, Murray R, Rickinson A, Kieff E. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990 May;64(5):2309–2318. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimber-Strobl U, Kremmer E, Grässer F, Marschall G, Laux G, Bornkamm GW. The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene promoter. EMBO J. 1993 Jan;12(1):167–175. [Europe PMC free article] [Abstract] [Google Scholar]
  • Zimber-Strobl U, Strobl LJ, Meitinger C, Hinrichs R, Sakai T, Furukawa T, Honjo T, Bornkamm GW. Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J. 1994 Oct 17;13(20):4973–4982. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/57930799
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/57930799

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1128/mcb.15.11.6150

Supporting
Mentioning
Contrasting
12
114
2

Article citations


Go to all (87) article citations

Funding 


Funders who supported this work.

NCI NIH HHS (2)