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A Proofs of Theoretical Results

Proof of Proposition 1. Theorem 3 from Rüschendorf and de Valk (1993) (1) shows that for a set

of random variables Z1, Z2, . . . , Zm with arbitrary dependence, there exist non-random functions

gi such that Zi = gi(Z1, Z2, . . . , Zi−1, Zi+1, . . . , Zm, Vi) a.s., i = 1, . . . ,m, where V1, V2, . . . , Vm are

jointly independent Uniform(0, 1) random variables. We utilize this result to write each ei as a

function of all other ej, j 6= i, and an independent random variable. We first apply this result to

each column of E. That is, by Theorem 3 from Rüschendorf and de Valk (1993) (1) it follows that

there exist non-random functions fij such that

eij = fij(e1j , e2j , . . . , ei−1,j , ei+1,j , . . . , emj , u
∗

ij) a.s.

for i = 1, . . . ,m where u∗

1j , u
∗

2j , . . . , u
∗

mj are jointly independent Uniform(0, 1) randomly variables.

Combining these across the columns of E there exist non-random functions fi such that

ei = fi(e1, e2, . . . , ei−1, ei+1, . . . , em,u∗

i ) a.s.

for i = 1, . . . ,m where u∗

1,u
∗

2, . . . ,u
∗

m are jointly independent n-vectors Uniformly distributed on

[0, 1]n.

Let σ(−i) = σ(e1, e2, . . . , ei−1, ei+1, . . . , em) be the sigma-algebra generated from all ej , j 6= i,

and let F(−i) be the probability distribution function on σ(−i) with respect to Borel measure. We

construct ui as follows:

ui =

∫
eidF(−i) =

∫
fi(e1, e2, . . . , ei−1, ei+1, . . . , em,u∗

i )dF(−i).

Since u∗

1,u
∗

2, . . . ,u
∗

m are jointly independent and ui = ti(u
∗

i ), where ti(u
∗

i ) =
∫

fi(e1, e2, . . . , ei−1, ei+1,

. . . , em,u∗

i )dF(−i), it follows that u1,u2, . . . ,um are jointly independent. Let U be the m×n matrix

where row i is ui, and let M = E − U. Then model (a) can be rewritten as X = BS + M + U.

Since M is a matrix of dimension m × n with n < m, there exist an m × r matrix Γ and an r × n

matrix G (where r is the column rank of M), such that M = ΓG. Specifically, we take the singular

value decomposition M = ADVT , and let Γ = AD and G = VT . Thus, X = BS + ΓG + U,

where the rows of U are independent from one another.

1



Since ui =
∫

eidF(−i), it follows that ui = hi(ei), where hi is a non-random function. This

shows the existence of the decomposition where U is a function of E and only of E. Finally,

we will show that Pr(ui 6= 0) > 0. If ui = 0 a.s., then ui = ti(u
∗

i ) =
∫

fi(e1, e2, . . . , ei−1,

ei+1, . . . , em,u∗

i )dF(−i) = 0 a.s. Since u∗

i is distributed Uniform on [0, 1]n, it follows that ti(·) = 0

a.s. This implies that ei = fi(e1, e2, . . . , ei−1, ei+1, . . . , em,u∗

i ) = fi(e1, e2, . . . , ei−1, ei+1, . . . , em)

a.s., which is a contradiction of the assumption that there exists no Borel measurable function fi

such that ei = fi(e1, e2, . . . , ei−1, ei+1, . . . , em) a.s. Thus, it holds that Pr(ui 6= 0) > 0. This shows

that the decomposition holds where U 6= 0.

See the following section Remarks on Proposition 1 for some further remarks on this theorem

and proof.

Proof of Corollary 1. Given Y and G, B and Γ are fixed. Therefore,

Pr (x1, . . . ,xm|Y,G) = Pr (u1, . . . ,um|Y,G)

= Pr (u1|Y,G) × · · · × Pr (um|Y,G)

= Pr (x1|Y,G) × · · · × Pr (xm|Y,G) .

Proof of Proposition 2. Let W =

(
S

G

)
and Pw = I − WT

(
WWT

)
−1

W. For the ith

hypothesis test’s data we can write model (b) as:

xi = (bi γi)W + ui.

The residuals are:

ri = xiPw

= (biS + γiG + ui)Pw

= uiPw.

Since the ui are independent across rows, the ri are as well given S and G. The estimates for bi

and γi are:

(b̂i γ̂i) = [(bi γi)W + ui]W
T
(
WWT

)
−1

= (bi γi) + uiW
T
(
WWT

)
−1
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Since each b̂i is a function of only bi and ui, it follows that the estimates b̂i are independent across

tests. To show estimation-level multiple testing independence write:

xi = [xi − x̂i] + x̂i

=
[
(bi γi)W + ui − (bi γi)W − uiW

T
(
WWT

)
−1

W
]

+ (b̂i γ̂i)W

= ui

[
I − WT

(
WWT

)
−1

W
]

+ (b̂i γ̂i)W

= g(ui)

Conditional on b̂i, S, γ̂i, and G, the only random component of g(ui) is ui. It follows that

Pr
(
x1,x2, . . . ,xm|B̂,S, Γ̂,G

)

= Pr
[
g(u1), . . . ,g(um)|B̂,S, Γ̂,G

]

= Pr
[
g(u1)|B̂,S, Γ̂,G

]
× · · · × Pr

[
g(um)|B̂,S, Γ̂,G

]

= Pr
(
x1|B̂,S, Γ̂,G

)
× · · · × Pr

(
xm|B̂,S, Γ̂,G

)
.

The results for the residuals and parameter estimates under the null hypothesis constrained model

fits follow analogously. It should be noted that S can be modified based on Ω0 so that it restricts

b̂i ∈ Ω0. This restricted S is a deterministic adjustment to the original S, so the results follow as

above.

Proof of Corollary 2. Let b̂i and b̂
0

i be the parameter estimates under the unconstrained and

null hypothesis constrained model fits, respectively. Let ri and r0
i be the residuals under the

unconstrained and null hypothesis constrained model fits, respectively. By repeating the proof

for Proposition 2, one can also show that γ̂i and γ̂
0
i are independent across tests. For any fixed

function, f
(
b̂i, b̂

0

i , ri, r
0
i , γ̂i, γ̂

0
i

)
, it follows that these values are independent across tests. The

test-statistics and p-values are special cases of such functions.

B Remarks on Proposition 1

Remark 1. If ei is independent from all other rows of E, then setting ui = ei is valid for

Proposition 1 to hold.

Remark 2. If ei has no independent variation, i.e., there exists a Borel measurable g such that

ei = g(e1, . . . , ei−1, ei+1, . . . , em), then we can set ui = 0. In this case, the random variation

of the data for test i is completely confounded with the variation of the other tests, so test i is

stochastically not a separate test, but a convolution of the other tests.
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Remark 3. Suppose that the dependence in E is due to unmodeled factors H, where E[xi|H] =

aiT(H), ei = aiT(H) + u∗

i , and the u∗

i are jointly independent across tests. In this case, setting

ui = u∗

i satisfies the properties required for Proposition 1.

Remark 4. If we assume that E is Normal, the result can be derived in a different fashion, which

might provide more insight for some readers. First consider just two hypothesis tests, where e1

and e2 are dependent Normal vectors. That is, for a fixed sample j, e1j and e2j are Normally

distributed with Cov(e1j , e2j) 6= 0. It is well known that we can write:

e1j = zj + u1j

e2j = zj + u2j

where zj , u1j , and u2j are all independent Normal random variables. Also, Cov(e1j , e2j) = Var(zj),

Var(e1j) = Var(zj) + Var(u1j), Var(e2j) = Var(zj) + Var(u2j), and Cov(u1j , u2j) = 0. In other

words, two dependent Normal random variables can be partitioned into a dependent component,

zj , and independent components u1j and u2j. This can be extended by using standard results

on multivariate Normal random variables for any set of m dependent Normal random variables.

According to Proposition 3 below, if ej is the jth column of E, then we can write

ej = Azj + uj,

where A is an m×m∗ matrix (m∗ ≤ m), zj is Normally distributed m∗ vector, and uj is a Normally

distributed m-vector. The components of uj are independent. In the proof of Proposition 1, we

showed that E = M + U where U is independent across its rows. By setting the j column of U to

be uj and the jth column of M to be Azj , the remainder of the proof follows the same.

Proposition 3. Let e be a random vector of length m, where e ∼ MVN(0,Σ), Σ is a positive

definite matrix, and C = diag{σ11, . . . , σmm}. Then there exists a matrix A of constants, a constant

λ0, and independent random vectors z ∼ MVN (0, I) and u ∼ MVN (0, λ0C) such that:

e∗ = Az + u,

where e∗ and e have the same distribution.

Proof of Proposition 3. Since Σ is positive definite and symmetric, all of the diagonal elements

of Σ must be positive, so C is positive definite and C−1 exists and is positive definite. Then

Σ = CC−1Σ = CK, where K is positive definite. Let λ0 > 0 be the smallest eigenvalue of
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K. Then K = K − λ0I + λ0I and the matrix K∗ = K − λ0I is non-negative definite. Applying

the spectral theorem we can write Σ = C(K∗ + λ0I) = LTL + λ0C. Setting A = LT , we have

Σ = AAT + λ0C. Using properties of the Normal distribution E[e∗] = 0 and Var [e∗] = Var [Az] +

Var [u] = AAT + λ0C, so e∗ ∼ MVN(0,Σ) as required.

C Estimating G in Practice

We present two scenarios of estimating G in practice, and provide a specific algorithm to estimate

G in one of them.

Dependence of an Unknown Structure. The first scenario is when nothing is known about the

dependence structure and it is the case that d + r ≪ n, where d is the row-dimension of S(Y) and

r is the row-dimension of G. This scenario is inspired by the setting where dependence is induced

by common latent variables, such as in microarray data analysis (2). Failing to include all relevant

factors is a common issue in genomics leading to latent structure (2,3). Consider a study where n

subjects are randomly assigned to one of two treatments, and microarrays are utilized to measure

genome-wide RNA levels from a tissue of interest in each subject. The goal is to identify genes that

show different levels of RNA expression between the two treatment groups. Also suppose that the

subjects are of different ages and are composed of both males and females. It is highly likely that

there will be a large number of genes that show differential expression with respect to age or sex.

If these factors are not included among the primary variables Y, then there will be dependence

among those genes differentially expressed with respect to age or sex. Because ΓĜ will be included

into the model X = BS + ΓĜ + U used to perform the hypothesis tests, it follows that Ĝ acts as

a set of surrogate variables for the latent structure or dependence noise. Because of this, we call

this approach “surrogate variable analysis” (SVA).

In this scenario, G can be interpreted as a set of variables that act as surrogates for these

unmodeled factors. Let Z be the set of unmodeled factors whose signature in the data is captured

by E[xi|Z] = hiT(Z), where hi is an n-vector and T(Z) is an r × n matrix. For G to be a valid

dependence kernel, the rows of G must span the same space as the rows of T(Z). Therefore,

for multiple testing dependence caused by latent structure due to unmodeled factors, G can be

interpreted as a valid linear basis for the effect of the factors on the data. By utilizing techniques

similar to factor analysis, G can be analyzed to scientifically interpret the latent structure and

potentially identify the relevant Z.

Below we present an algorithm for estimating G in this first scenario, called iteratively re-

weighted surrogate variable analysis (IRW-SVA). The basic idea when estimating G in this scenario

is to identify a subset of tests that show a strong association with G (i.e., γi 6= 0), but no association
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with S (i.e., bi = 0). The estimate of G can then be formed based on the right singular vectors

of the data corresponding to this subset of tests. This approach accomplishes two things. First,

it does not require the dependence kernel estimate Ĝ to be orthogonal to S. Since it will rarely

be the case that S and G are orthogonal, even under well-designed randomized studies, forcing S

and Ĝ to be orthogonal will lead to persistent anti-conservative bias. Second, by taking a subset

of the data, bias from S in the estimate Ĝ is reduced. The approach we take is to simultaneously

up-weight the tests that show strong association to G and down-weight tests that show strong

association with S. Once the estimate Ĝ is formed, the model X = BS + ΓĜ + U is fit and the

tests are performed on the bi in the usual manner.

Highly Structured Dependence. A second scenario where estimating G is feasible in practice is

when there is strong dependence among tests, but enough is known about the dependence structure

so that Γ can be characterized a priori to a large extent. This is likely in the case of strong spatial

dependence where the covariance structure is often specified in the model, for example, in brain

imaging problems (4, 5). Here it may be the case that d + r ≈ n, which would be problematic for

our IRW-SVA algorithm below. However, in this second scenario, Γ is largely already characterized

because of the covariance constrains, providing the degrees of freedom needed to estimate G when

d + r ≈ n. Whereas the IRW-SVA algorithm below requires one to fit Γ in addition to B once

Ĝ is formed, this will not be necessary when Γ is highly structured. Indeed, once Ĝ is formed,

it can be shown that identifying Γ is straightforward. Thus, we anticipate an effective algorithm

in this setting will (i) characterize the structure of Γ based on the well characterized dependence

structure, (ii) estimate Ĝ from a properly formed subset of X, (iii) rotate Γ according to Ĝ, and

(iv) subtract ΓĜ from X before performing any inference. This allows one to utilize what is known

about the dependence structure to overcome the fact that d + r ≈ n in this case.

In brain imaging, a body of sophisticated theory and methods have been developed that cal-

culate the tail distribution of maximal statistics under this spatial dependence model. Under our

framework, instead of the goal being to account for the complex dependence structure among the

statistics when calculating their tail probabilities over the population of all studies, the goal would

instead be to estimate G in each specific study. If G is well estimated, calculating the distribution

of maximal statistics now becomes straightforward because they are independent, once we have

also conditioned on G (as detailed in Proposition 2 of the main text). The decomposition ΓG+U

also has a direct scientific interpretation. The matrix G represents a set of axes in R
n that fully

capture the random realization of the spatial dependence. The vector γi denotes the position of

the ith voxel among these axes.

Iteratively Re-weighted SVA. The basic idea when estimating G in this scenario is to identify

a subset of tests whose data show a strong association with G, but not a strong association with
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S. The estimate of G can then be formed based on the right singular vectors of this subset. This

approach accomplishes two things. First, it does not require the dependence kernel estimate Ĝ to

be orthogonal to S. Since there will generally be a low probability that S and G are orthogonal,

even under randomized studies, forcing S and Ĝ to be orthogonal will lead to persistent anti-

conservative bias. Second, by taking a subset of the data, bias from BS in the estimate Ĝ is

reduced. The approach we take is to up-weight the tests that show strong association to G and

very low association with S.

We use the empirical posterior probability estimates, P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ

)
obtained from

the approach of Storey et al. 2005 (6) to weight the tests. This technique is related to other

approaches (7,8), but Storey et al. specifically demonstrate how to deal with composite hypotheses

such as bi = 0,γi 6= 0. Briefly, given a our current estimate of Ĝ(b) we break down the probability

estimation into two components:

P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ(b)

)
= P̂r

(
bi = 0|γi 6= 0,X,S, Ĝ(b)

)
P̂r
(
γi 6= 0|X,S, Ĝ(b)

)
.

Here we sketch the Storey et al. (6) approach for estimating P̂r
(
bi = 0|γi 6= 0,X,S, Ĝ(b)

)
; the

estimation of P̂r
(
γi 6= 0|X,S, Ĝ(b)

)
is analogous. We first form F -statistics F1, . . . , Fm using

standard linear models for testing the hypotheses:

H0i : bi = 0 vs. H1i : bi 6= 0.

Note that when fitting this model, γi is a free parameter and Ĝ(b) is also utilized. We then

calculate bootstrap null statistics F 0k
i for k = 1, . . . ,K by using the standard method (9). Again,

by including model fits involving γ̂i and Ĝ(b) when forming the bootstrap samples, we are able to

bootstrap from the proper conditional null distribution (6). Suppose that the null and alternative

statistics have probability density functions g0 and g1. Then if π0 of the null hypotheses are true,

the probability density function of Fi is g = π0g0 + π1g1. From Bayes theorem,

Pr(bi = 0|Fi) =
π0g0(Fi)

π0g0(Fi) + (1 − π0)g1(Fi)
,

where we have replaced P̂r
(
bi = 0|γi 6= 0,X,S, Ĝ(b)

)
with Pr(bi 6= 0|Fi) at a quantifiable loss

of information (8). Since the Fi are a sample from g = π0g0 + (1 − π0)g1 and the F 0k
i are a

sample from g0, we can form an estimate of the likelihood ratio g0/g using a non-parametric

logistic regression where we consider the Fi to be “successes” and the Fi0 to be “failures” (7).

Since we only seek an estimate that is proportional to the true probability (because these are being
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used as relative weights in the singular value decomposition), we set π0 = 1 and calculate the

corresponding posterior probability estimate directly from the estimated likelihood ratio. Once

P̂r
(
bi = 0|γi 6= 0,X,S, Ĝ(b)

)
and P̂r

(
γi 6= 0|X,S, Ĝ(b)

)
are formed, they are simply multiplied

to obtain P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ(b)

)
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Iteratively Re-weighted Surrogate Variable Analysis Algorithm

1: Fit the model X = BS + E by least squares, and calculate the residual matrix R = X− B̂S.

2: Perform a singular value decomposition of R, and let vk be the kth right eigenvector, k =

1, . . . , n.

3: Let r̂ be the number of statistically significant vk according to the algorithm by Buja and

Eyuboglu (1992) (10), which is reproduced below.

4: Set Ĝ(0) equal to the r̂ × n matrix where row k is vk.

For b = 1, 2, ..., B iterations:

5: Form the empirical Bayes estimates P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ(b)

)
based on Storey, Akey, and

Kruglyak (2005) (6).

6: Perform a weighted singular value decomposition of X where row i is weighted by

P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ(b)

)
.

7: Set Ĝ(b+1) to be the r̂ × n matrix of the first r̂ right eigenvectors from Step 6.

8: Perform a weighted singular value decomposition of X where row i is weighted by the final

weights: P̂r
(
bi = 0,γi 6= 0|X,S, Ĝ(B)

)
.

9: Set ĝk to be the right eigenvector from Step 8 that is most correlated with vk, k = 1, . . . , n.

Set Ĝ to be the r̂ × n matrix where row k is ĝk, k = 1, . . . , r̂.

10: Perform the significance analysis on the bi using the model X = BS + ΓĜ + U, where Ĝ is

treated as a set of fixed covariates and appropriate adjustments to the degrees of freedom for

standard error estimates and hypothesis testing are made.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Remark 1. When the range of test-specific variances is large, it may improve the surrogate variable

estimates to initially scale each test specific variance to one, which could be straightforwardly

accomplished at Step 1. This scaling would ensure that each test’s data contributes equally in

the estimation of G, so estimates are less heavily influenced by those tests with extremely large
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variance. However, for the typical range of variances seen in genomic data, we have not observed

any improvement in the algorithm when applying such as adjustment.

Remark 2. Across studies G can be viewed as a random matrix so that partitioning E = ΓG+U

has connections to the familiar partitioning of errors in a mixed model. However, our goal is to

perform inference for the variable B conditional on the observed values of S and G. When mixed

effects model are applied in the usual setting, the dimension along which the sampling occurs

is the same as the inference dimension. There is usually a single random sample and a single

observation of G, for example, if we were to observe the expression values for a single gene rather

than thousands of genes. However, in our scenario, the manifestation of G can be observed in

the data sets corresponding to the multiple tests. This is again due to the fact that the sampling

occurs along a different dimension (columns of X) than the inference (rows of X). As compared to

traditional studies, the information we have is equivalent to being able to observing the exact same

random effect in many studies. This difference has two important implications. First, even when G

and S are assumed to be independent, such as in a randomized study, by chance G and S may be

correlated in any study, resulting in confounding for many tests; this would not be the case in the

traditional setting where the random effect is modeled over many repeated studies and independent

samplings. Second, since the same set of vectors G are in the data’s true model for multiple tests

simultaneously, it is possible in our scenario to directly estimate G by averaging appropriately over

the data for all tests. To summarize, over repeated studies G is a random variable; in any fixed

study, G is a fixed set of vectors that parameterizes the data for the set of multiple hypothesis tests.

Because of this, standard random effects estimators, such as the best linear unbiased predictors

(BLUPs), are problematic for two reasons. First, they assume G and S are independent, which

means that at a technical level, the estimates of G and S are orthogonal. Standard BLUPs will

result in biased estimates of G and hence B. Second, to estimate BLUPs, the distributions of G

and U must be specified in advance, which is either difficult or requires substantial assumptions on

the part of the analyst.

Buja and Eyuboglu Algorithm. For completeness we reproduce the Buja and Eyuboglu (10)

algorithm for estimating the dimension of the dependence kernel, G. The algorithm is applied to R

calculated in Step 1 of the iteratively re-weighted SVA algorithm. (It could also be recalculated at

each re-weighted iteration, if one chooses to do so.) The algorithm compares the singular values in

the observed residual matrix to the corresponding singular values in randomized residual matrices,

where each row is permuted individually to break down any structure across rows.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Buja and Eyuboglu Algorithm

1: Calculate the singular value decomposition of the residual matrix R = UDVT . Since R is a

residual matrix resulting from a d degrees of freedom model fit, the last d eigen-values are zero.

2: Let λℓ be the ℓth singular value, which is the ℓth diagonal element of D, for ℓ = 1, . . . , n. For

right singular value k = 1, . . . , n − d set the observed statistic to be:

Tk =
λ2

k∑n−d
ℓ=1 λ2

ℓ

which is the variance in the residual matrix explained by the kth right singular vector.

3: Form a matrix Rp by permuting each row of R independently and calculating the residuals

R0 = Rp − B̂pS from fitting the model Rp = BpS +Ep to remove any structure across rows of

the matrix, and calculate its singular value decomposition R0 = U0D0V
T
0 .

4: For right singular value k form a null statistic:

T 0
k =

λ2
0k∑n−d

ℓ=1 λ2
0ℓ

as above, where λ0ℓ is the ℓth diagonal element of D0.

5: Repeat steps 4-7 a total of B times to obtain null statistics T 0b
k for b = 1, . . . , B and k =

1, . . . , n − d.

6: Compute the p-value for right singular vector k as:

pk =
#{T 0b

k ≥ Tk; b = 1, . . . , B}

B

7: Estimate the number of significant surrogate variables by r̂(α) =
∑n−d

k=1 1(pk ≤ α), for a pre-

specified threshold α.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D Evaluation of the IRW-SVA Algorithm

Simulation Results. Our approach to estimating G is based on identifying a subset of tests

whose true model includes G but does not include S (i.e., the subset of tests i such that γi 6= 0 and

bi = 0). If we could perfectly identify this subset, then it would be possible to form an unbiased

estimate of G regardless of the correlation with S, as long as the subset was large enough to span

10



Table S1. A summary of the parameters for the simulated microarray studies. The simulation scenarios

encompass discrete and continuous G of varying dimension and varying magnitude of the signal associated

with G. For each of these different parameterizations, both high and low regression correlation between S

and G and high and low association overlap in the number of tests with non-zero effects from S and G are

considered. Full simulation details appear in Table S2.

Study Type of G Dimension of G Magnitude of bi Regression Correlation Association Overlap

One Discrete r = 1 Moderate Low Low
Two Discrete r = 1 Moderate Low High
Three Discrete r = 1 Moderate High Low
Four Discrete r = 1 Moderate High High
Five Continuous r = 1 Moderate Low Low
Six Continuous r = 1 Moderate Low High

Seven Continuous r = 1 Moderate High Low
Eight Continuous r = 1 Moderate High High
Nine Discrete r = 1 Large Low Low
Ten Discrete r = 1 Large Low High

Eleven Discrete r = 1 Large High Low
Twelve Discrete r = 1 Large High High

Thirteen Discrete r = 2 Moderate Low Low
Fourteen Discrete r = 2 Moderate Low High
Fifteen Discrete r = 2 Moderate High Low
Sixteen Discrete r = 2 Moderate High High

the row space of G. The two parameters that most influence our ability to estimate the relevant

subset of tests are (i) the “regression correlation” between S and G, or the percentage of the column

space of S explained by G and (ii) the “association overlap”, or the percentage of tests whose true

model includes G and S (via γi 6= 0 and bi 6= 0, respectively).

We simulated 100 studies with a variety of different forms for G and the γi. Each simulated

study consisted of 1,000 tests and 20 samples divided into two equal treatment groups, parame-

terized by S. In our notation, S is a 2 × 20 matrix, the first row parameterizing the intercept,

the second row the group membership, and we are interested in testing whether bi2 = 0 for each

hypothesis test. For each simulated study, tests 1-300 have non-zero bi2 drawn from a common

distribution, so that the alternative hypothesis is true for each one. We varied the regression corre-

lation by either randomizing G with respect to S, or allowing for consistent correlation between G

and S. The first case mimics a randomized study, where we would expect unmodeled latent factors

to be orthogonal to S on average. The second case more closely resembles an observational study,

where unmodeled factors are more likely to be correlated with S. We also varied the association

overlap by varying the percentage of tests with both nonzero bi and γi. The simulation parameters

are summarized in Table S1.

For each simulated study we performed an unadjusted significance analysis (i.e., not modeling

G at all), an analysis applying the above Iteratively Re-weighted Surrogate Variable Analysis (IRW

SVA) algorithm, and an “ideal scenario” analysis on independent data where we simulate the data
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Fig. S1. Boxplots of the root mean square error between the true ranking (based on the non-
centrality parameter) and the estimated ranking. For each case, the boxplots show the variability
in rankings for the ideal scenario with independent tests (green), IRW SVA with dependence (blue),
and unadjusted analysis with dependence (red). For each parameterization of G the four clusters
of boxplots correspond to low regression correlation/low association overlap, low regression corre-
lation/high association overlap, high regression correlation/low association overlap, high regression
correlation/high association overlap. G was simulated as (A) discrete with r = 1, (B) continuous
with r = 1, (C) discrete with large non-zero γi, r = 1 and (D) discrete with r = 2.
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exactly as above but set G = 0. We compared the operating characteristics of these three cases

across all simulated scenarios on the basis of two important metrics: stability of test rankings and

correct null distributions. One of the most important aspects of any multiple testing significance

analysis is behavior of the relative significance ranking of tests (i.e., ordering the tests from most

to least significant). One way to rank the tests is based on the magnitude of the F-statistics for

testing if bi2 6= 0. In our two-sample scenario, the ideal ranking is that based on the non-centrality

parameter of each true alternative test. In Fig. S1 we show boxplots of the root mean squared error

(RMSE) in the rankings for all tests with b 6= 0 with respect to this ideal ranking. The better the

ranking, the smaller the mean and standard deviation of the RMSE will be. From Fig. S1 it can

be seen that the rankings are variable in the unadjusted analysis with dependence. Applying the

IRW SVA algorithm reduces the variability in the rankings nearly to the level of the corresponding

study without independence.

A second important component in any significance analysis is that the null statistics should

follow the correct null distribution (i.e., the one utilized in forming significance measures). At the

level of the p-values, it is well known that most method for estimating multiple testing error rates

are accurate only when the distribution of the null p-values is stochastically greater than or equal

to the Uniform(0, 1) distribution (11–13). For the simulated studies under each set of parameters,

we calculated a Kolmogorov-Smirnov (KS) test comparing the distribution of p-values for the null

tests (tests 301-1000) to the Uniform(0, 1) distribution. If the null p-values are Uniform(0, 1)

distributed for each study, then across all 100 simulated studies the KS-test p-values should also be

Uniform(0, 1) distributed. This “double KS-test” is a robust approach for determining if the null

p-values have the appropriate distribution across repeated samples from the same population (2).

Fig. S2 plots the quantiles of the KS-test p-values across one hundred simulated studies versus the

Uniform(0, 1) quantiles. If the null distribution is accurate for a particular analysis, the quantiles

should lie along the diagonal identity line.

As with the test rankings, the unadjusted analysis under dependence behaves poorly, yielding

p-values not following the Uniform(0, 1) distribution for the true null hypothesis tests. Again,

adjusting for surrogate variables gives nearly identical results to the ideal scenario where the tests

are independent. The double KS-test gives strong evidence that this pattern is consistent across

hundreds of simulated studies, and we did not just get lucky under a single simulated scenario.

Adjusting for surrogate variables results in a correct null distribution, and this translates into

improved FDR estimates. Fig. S3 shows that correcting the null distribution in Experiment 5

reduces error in both q-value estimates and global measures of significance, such as estimates of

π0, the proportion of true null hypotheses (13). We are able to directly correct dependence at

the level of the originally observed data using surrogate variable analysis to obtain corrected error

13



Fig. S2. KS-test quantile-quantile plots comparing the distribution of the null p-values for each
simulated study to the Uniform distribution. For each case, the plots show the ideal scenario with
independent tests (green), IRW SVA with dependence (blue), and unadjusted analysis with depen-
dence (red). For each parameterization of G, the four KS-test plots correspond to low regression
correlation/low association overlap, low regression correlation/high association overlap, high re-
gression correlation/low association overlap, high regression correlation/high association overlap.
G was simulated as as (A) discrete with r = 1, (B) continuous with r = 1, (C) discrete with large
non-zero γi, r = 1 and (D) discrete with r = 2. It can be seen from these plots that p-values in the
case of independent data follow the Uniform(0, 1) distribution as expected, but dependence causes
deviation from this distribution. Application of IRW-SVA restores the appropriate null distribution
and results in correct inference.
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Fig. S3. Behavior of FDR estimates for the case of Experiment 5 (see Table S2 for details).
For each case, the plots show the ideal scenario with independent tests (green), IRW SVA with
dependence (blue), and unadjusted analysis with dependence (red). (A) Plots of q-value curves for
100 simulated studies versus the true FDR. Ideally these curves will on average lie slightly above
the line of equality, indicating a conservative estimate, and have relatively little variability. This
is true for both the independent data and surrogate variable adjusted analyses, but not for the
unadjusted analysis with dependence. (B) Histograms of the π0 estimates (π0 = proportion of true
null tests) across 100 simulated studies, these estimates should have a slight conservative bias, in
other words they should on average be slightly larger than the true value of 0.7, again with small
variability. The unadjusted analysis with dependence shows large variation in the π0 estimates.
This error is eliminated through application of the proposed IRW-SVA algorithm.
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rate estimates. By using surrogate variables we eliminate the need for post-hoc adjustments to

the null distribution of one-dimensional test-statistics (14) when calculating multiple testing error

rates. Our results indicate that valid inference critically depends on a correct distribution of null p-

values within any specific study. We have shown that directly estimating and incorporating G into

significance analyses empirically corrects the null distribution across a variety of simulated cases.

These results indicate that estimating G is possible even in difficult scenarios such as observational

studies with highly interrelated variables.

Simulation Details. For each experiment described in Table S1 we simulated 100 independent

studies with m = 1000, n = 20, and uij
i.i.d
∼ N(0, σi) where σi

i.i.d
∼ InvGamma(10, 9). For each

study S was a vector of indicator variables equal to one for the first 10 samples and zero for the

last 10. B was simulated as an m vector where the first three hundred elements were distributed

as independent N(0, 2.5) random variables in the case of moderate signal and N(3.5, 1) random

variables for the large signal. In each case the last 700 elements of B were set equal to zero,

making these the null tests. In all simulated studies γij
i.i.d
∼ N(0, 2.5) or was set equal to zero.

When there was low association overlap γi1 was non-zero for tests 201-700 and when there was

high association overlap γi1 was non-zero for tests 101-600. When r = 2, γi2 was non-zero for

tests 401-900. For experiments 1-4 and 9-16, gjk was a discrete random variable. In cases where

regression correlation was low gjk
i.i.d
∼ Bernoulli(0.5) and in cases where regression correlation was

high gjk
i.i.d
∼ Bernoulli(0.7) for j = 1, . . . , 10 and gjk

i.i.d
∼ Bernoulli(0.2) for j = 11, . . . , 20. For

experiments 5-8, gij was a continuous random variable. In cases where regression correlation was

low gjk
i.i.d
∼ N(0, 1) for all j and in cases where the regression correlation was high gjk

i.i.d
∼ N(0, 1)

for j = 1, . . . 10 and gjk
i.i.d
∼ N(1, 1) for j = 11, . . . 20. An important point is that the case of low

regression correlation mimics a randomized study where on average G and S occupy orthogonal

linear spaces, but in any fixed study G and S may be regression correlated by chance. All p-values

were calculated based on a parametric F -test based on comparing the full model including S to

the model without S. In the IRW SVA analysis the null and alternative models also included the

surrogate variable estimates. All computations were performed in the R programming language.

Further details on the simulations can be seen in Table S2.

Remark. A potentially interesting avenue for future research is to characterize the finite sample

and asymptotic properties of estimators of the dependence kernel. In terms of asymptotic results,

we expect that the most useful results will be concerned with the scenario where the sample sizes,

n, stay fixed and the number of tests, m, grows large. When asymptotically consistent estimators

exist as m → ∞, then in the limit we can extend the result of Proposition 1, replacing the true

kernel with the estimate. As a weaker result but potentially equally useful in practice, it may also

prove interesting to investigate whether estimates of the dependence kernel are sufficient to induce
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Table S2. Details on the distributions used in the simulations.

Experiment gij in group 1 gij in group 2 Non-zero γij Distribution of γij

One gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 201-700 N(0, 2.5)

Two gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 101-600 N(0, 2.5)

Three gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 201-700 N(0, 2.5)

Four gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 101-600 N(0, 2.5)

Five gi1
i.i.d
∼ N(0, 1) gi1

i.i.d
∼ N(0, 1) Tests 201-700 N(0, 2.5)

Six gi1
i.i.d
∼ N(0, 1) gi1

i.i.d
∼ N(0, 1) Tests 101-600 N(0, 2.5)

Seven gi1
i.i.d
∼ N(0, 1) gi1

i.i.d
∼ N(1, 1) Tests 201-700 N(0, 2.5)

Eight gi1
i.i.d
∼ N(0, 1) gi1

i.i.d
∼ N(1, 1) Tests 101-600 N(0, 2.5)

Nine gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 201-700 N(0, 2.5)

Ten gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 101-600 N(0, 2.5)

Eleven gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 201-700 N(0, 2.5)

Twelve gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 101-600 N(0, 2.5)

Thirteen gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 201-700 N(0, 2.5)

gi2
i.i.d
∼ Bern(0.5) gi2

i.i.d
∼ Bern(0.5) Tests 401-900 N(0, 2.5)

Fourteen gi1
i.i.d
∼ Bern(0.5) gi1

i.i.d
∼ Bern(0.5) Tests 101-600 N(0, 2.5)

gi2
i.i.d
∼ Bern(0.5) gi2

i.i.d
∼ Bern(0.5) Tests 401-900 N(0, 2.5)

Fifteen gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 201-700 N(0, 2.5)

gi2
i.i.d
∼ Bern(0.7) gi2

i.i.d
∼ Bern(0.2) Tests 401-900 N(0, 2.5)

Sixteen gi1
i.i.d
∼ Bern(0.7) gi1

i.i.d
∼ Bern(0.2) Tests 101-600 N(0, 2.5)

gi2
i.i.d
∼ Bern(0.7) gi2

i.i.d
∼ Bern(0.2) Tests 401-900 N(0, 2.5)

so-called weak dependence (15).

Application to a Population Genomics Study. Idaghdour et al. (16) recently published a

study measuring leukocyte gene expression in 46 desert nomadic, mountain agrarian, and coastal

urban Moroccan Amazigh individuals. The goal of the study was to identify genes that show dif-

ferential expression across the three geographically defined populations, which each involve notably

different lifestyles and experience very little migration among them. In addition to the popula-

tion indicator variable, the sex of the patients and batch variable (a technical variable), were also

recorded. Our model for the expression of gene i for individual j can then be written as follows:

xij = b0i + b1i1{desertj} + b2i1{mountainj} + b3i1{batchj} + b4i1{sexj} + eij . (d)

The goal of the study is to test the hypotheses:

H0i : b1i = 0 & b2i = 0 vs. H1i : b1i 6= 0 or b2i 6= 0.

We performed an unadjusted analysis (i.e., an analysis ignoring any dependence) using standard

F -tests of the above hypotheses. At FDR = 1%, 5%, and 10% there are respectively 2,701, 5,111,
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and 6,718 genes called significantly differentially expressed with respect to geographical region.

We next applied IRW-SVA algorithm, where the model S includes both the “batch” and “sex”

variables in addition to the geographical population variable. This is an important point for utilizing

the proposed algorithm: if measured variables such as batch and sex are known to be possibly in

the true model, then they should be included explicitly in the model, even if they are not the focus

of the significance analysis. The surrogate variable estimation algorithm can easily incorporate

these variables, and conditioning on variables that are known to play a key role in expression can

improve the estimates of the remaining surrogate variables. Applying the IRW-SVA algorithm,

we can recalculate significance for each gene. The number of genes significant at FDR = 1%, 5%

and 10% are respectively 1,940, 4,261, and 5,900. This illustrates another key point: taking into

account dependence may actually reduce the observed empirical power in any given study. The

reduction in observed power occurs when row spaces spanned by G and S overlap. This is seen

extensively in the simulated examples above and in the main text. In the expression study, some of

the apparent “signal” is in fact due to confounding between the dependence kernel and geographical

population variable. Thus, while we have a reduction in the number of genes called significant, the

genes that are called significant are more likely to be truly differentially expressed with respect

to the geographical population variable. In our analysis, the top surrogate variable (i.e., first row

of Ĝ) has correlation 0.23 with the “desert” indicator variable. When regressing the geographical

population variable on the rows of Ĝ, we obtain an R-squared value of 0.68. It is likely that some

latent factor, partially confounded with being geographically located in the desert, is driving part

of the differential expression signal in the unadjusted analysis. This is not surprising given that

this study has some observational (as opposed to randomized) sampling characteristics (16).

We can use the estimated posterior weights to determine on a qualitative level the distribution

of signal due to geographic location and due to unmodeled factors. Fig. S4 shows the distribution

of the scaled weights derived from the P̂r(b1i 6= 0 or b2i 6= 0) and P̂r(γi 6= 0) estimates. It is

clear that a large percentage of genes are affected by one or more unmodeled factors, much more

so than the number of genes that have a high probability of being associated with the geographical

population. These relative weights can be used as both a model diagnostic and to identify the most

robustly differentially expressed genes between populations.

Finally, as a proof of concept meant for illustrative purposes only, we applied the IRW-SVA

algorithm to this study, where we left out the “batch” variable from equation (d). The batch

variable is easily verified to be a major source of expression variation. By repeating the analysis

without “batch”, we are able to see if the Ĝ estimate captures the batch variable. The most

significant of the six surrogate variables estimated has correlation 0.71 with the batch variable, so

the top surrogate variable is a good estimate of this technical factor. Also, the R-squared value of
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Fig. S4. Distribution of relative weights used in the IRW-SVA algorithm. Step 8 of the IRW-
SVA algorithm weights the tests’ data based on the product of the posterior probability estimates
P̂r(b1i 6= 0 or b2i 6= 0) and P̂r(γi 6= 0). The distribution of the relative contribution of (A)

P̂r(b1i 6= 0 or b2i 6= 0) and (B) P̂r(γi 6= 0) to these weights in the Idaghdour et al. study is shown.
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batch regressed on the rows of Ĝ is 0.54. Therefore, IRW-SVA was able to provide an estimate of

this unmodeled technical factor directly from the gene expression data, without using the measured

batch information. In practice however, we would include measured variables likely to have a large

influence on gene expression such as the batch variable.
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