
Supporting Information
Gianoulis et al. 10.1073/pnas.0808022106
SI Materials and Methods
GOS Data Collection and Preprocessing. For this study, we filtered
the data from the first phase of the GOS expedition to keep only
those sites that used a 0.1- to 0.8-�m filter size (with the
exception of the Sargasso Sea station 11, which was excluded
because it is suspected of contamination; see ref. 1); thus, only
prokaryotes are part of this analysis. For the remaining 37 sites
(Table S1), the site metadata were downloaded from the CAM-
ERA database (2). For this study, measurements for tempera-
ture, sample depth, water depth, salinity, and monthly average
chlorophyll level were used. Because 10 salinity measurements
were missing, we averaged the salinity for all nonzero (excluded
freshwater site) salinity measurements. In some cases, we were
able to corroborate the missing measurements’ validity through
extrapolating from the World Ocean Database (3). For the
protein sequence data, the 6.1 million predicted proteins (4)
were downloaded from CAMERA.

Mapping Peptides to Sites. Peptides were mapped to sites based on
the read-to-scaffold and orf-to-scaffold mappings available at
CAMERA (2). Thus, to assign these peptides to a particular site,
we used a mapping algorithm that cross-referenced between
reads, scaffolds, and peptides based on predicted gene coordi-
nates (Fig. S5). Therefore, there were instances in which reads
that formed part of a single peptide originated from 2 different
sites; because this allowed peptides to be ‘‘present’’ in multiple
sites, we term these ‘‘multisite’’ peptides (for additional details,
see below).

Mapping Cofactors for Modules. Cofactors were mapped to each
module via EC number by using the Brenda database (5). To
normalize the effects of module size, the fraction of chemical
reactions requiring certain cofactors per module is regarded as
the cofactor-dependence of module (Table S8). We then used a
goodness of fit test (K-S test) to compare the distribution of
canonical correlation analysis (CCA) structural correlation co-
efficient between the amino acids that have no cofactors
(score � 0) and those with cofactors (score � 0) (P � 0.05).

Assignment and Pathway Score. The 111 Kyoto Encyclopedia of
Genes and Genomes (KEGG) maps, 141 modules, and 191
operons were assigned as in ref. 6. For clarity, in the remainder
of the text, we use the term pathway to refer to all of these levels.
Module definitions were downloaded from KEGG (7), and
operons were constructed as in ref. 8. In brief, protein sequences
were searched against the extended database of proteins as-
signed to orthologous groups (OGs) in STRING 7.0 (8), by using
BLASTP (9), and a pathway was called present when a hit
matching 1 of its proteins occurred (with a BLAST score of at
least 60 bits). All results described were also manually scruti-
nized to reduce artefactual assignments.

The pathway frequency for each site was assigned by summing
the total number of instances of that pathway for a particular site
and normalizing by total number of assignments for that site to
compensate for sample coverage differences. For all analyses,
pathways for which the summed count over all sites constituted
equal to or �0.01% of the total count were removed to avoid
artifacts.

In addition, we calculated a mismatch rate where we looked to
see how many times the top 5 BLAST hits for each peptide
mapped to the same pathway. We find that 80% of the top-5 hits
will map to the same pathway with a corresponding drop at less

stringent bit scores, suggesting our results are threshold-
independent. A second source of miscalling could be cross
hitting of pathways by more ‘‘generalist’’ enzymes. Therefore, we
have manually checked the assignments and sought confirmation
at multiple levels of resolution (map-module-operon-OG) for all
of the case stories reported in this study.

Pairwise Correlations and Linear Regression. We computed pairwise
Spearman correlations between each pathway frequency vector
and each environmental metadata vector for the same sample
set, (P values corrected for multiple testing by using the Ben-
jamini–Hochberg false discovery rate; see ref. 10). Linear mod-
els were constructed in 2 directions: (i) the environmental factor
was treated as the response variable and predicted from a subset
of pathway frequencies; and (ii) the inverse model where path-
way frequency was treated as the response variable and predicted
from environmental factors. To identify the subset of predictive
variables, we used a stepwise regression analysis based on
Akaike’s information criterion (implementation in R stats pack-
age). To avoid overfitting in (i), we used only the top 20 pathways
that showed the highest pairwise correlation (as measured by
uncorrected P value) with the environmental feature modeled.
As in many feature selection methods, one is not guaranteed the
‘‘best’’ subset, and we acknowledge that there can be multiple
suboptimal solutions. Linear models were considered significant
at P � 0.05 for both the total model and the estimate of the
variable coefficients. For regressions in both directions, the
pathway frequencies were standardized to a mean of 0 and a SD
of 1. For (i), we used the centered, quantile-normalized envi-
ronmental data transformed into percentiles to ensure a truly
normal distribution and, thus, accurate P values.

Clustering. The environmental data matrix was first standardized
to mean of 0 and SD of 1. We evaluated distances by using
1-correlation and used average linkage hierarchical clustering.
The clustering procedure was repeated by using spectral k-means
without significance differences (data not shown).

Discriminative Partition Matching (DPM). To analyze whether
groupings of sites based on similar environmental features also
shared functional similarities, we clustered the sites based on
their quantitative environmental metadata, resulting in 2 distinct
clusters or site sets. Next, we partitioned the sites in the
metabolism matrices (see Fig. 1 A) into the same 2 site sets and
calculated the mean normalized frequency for each pathway in
each site set (see below for generalized approach). If the means
of the pathway frequency between the 2 site sets were not
significantly different, this would suggest that the environment-
based partitioning does not reflect functional differences. If the
distributions do differ significantly, it would imply that the
environmental features are related to the specific aspect of
metabolism. Also, we computed the 2-sample t test for each
individual map, module, operons, and cluster of orthologous
groups of proteins (COG). Those pathways that were signifi-
cantly different (Benajamini–Hochberg corrected P � 0.05)
were combined to form the DPM footprint (Table S4).

CCA. The goal of CCA is to identify the set of projections that
maximally correlate 2 sets of variables (11). For a more detailed
description of the relations of CCA to other common techniques,
including principal components analysis and least squares re-
gression, see ref. 12.
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Due to the large number of dimensions and small number of
data points, the solution can be unstable; thus, we applied a
variant of CCA, regularized CCA (see ref. 13; implementation
in ref. 14). We estimated regularization parameters �1 and �2
(penalty to covariance matrices) via a leave-one out cross-
validation procedure (implementation in ref. 14; see Table S11).
Because of the interdependencies between metabolic pathways,
canonical weights must be interpreted with caution. For this
reason, we also calculated the structural correlation coefficient,
which is the correlation between the original variable and the
canonical variate. This allows one to specifically answer the
question how important is this one variable (metabolic pathway)
relative to all of the other variables (metabolic pathways) (see
below for additional evaluation metrics). Those pathways, which
had a structural correlation coefficient �0.3, formed the CCA
footprint (Table S5). Also, we investigated the effect of changing
this threshold (see Table S11). Principal components analysis
and the resultant biplot on the environmental features show
these features to be basically orthogonal (Fig. S4).

Evaluation Metrics and Controls. Construction and results from control
matrices. To control for relative differences in metabolic pathways
among the geographic locations simply reflecting sampling bias,
we constructed 2 control matrices, composed of proteins that
would not be expected to change among sites, such as those
involved in basal transcription or translational machinery. The
first is composed of those COGs categorized as information
processing, and the second, those involved in cellular processes.

We used Student’s t test and found that, although the distri-
butions of the means for the control matrices (composed of those
COGs annotated as belonging to either information or cellular
processing) are not significantly different between the 2 envi-
ronmental site sets (P � 0.07 and 0.08, respectively), there are
significant differences in metabolism (P � 9 � 10�3 and 4 �
10�14, COG and KEGG annotated metabolism definitions; see
refs. 7 and 15). However, we do see the same asymmetry as
originally noted in the GOS paper for DNA polymerase, topo-
isomerase, and gyrase (4), by aggregating across the basal
machinery this effect is minimized. Thus, the greatest strength
of DPM is as a means of evaluating the functional significance
of a particular partitioning and in controlling for potential
sampling bias through the testing of control matrices (expected
to be environmentally invariant) alongside matrices that are
suspected of being environmentally variant.
More detailed CCA evaluation metrics. As in PCA, there are a number
of metrics that can be used to determine the number of
dimensions, in this case canonical variates, that should be
included in the analysis (12). The overall canonical correlations
for both dimension 1 and dimension 2 are high for KEGG maps,
module, and operons; however, there is a significant drop in
average redundancy between dimension 1 and dimension 2 and
further dimension 2 and dimension 3, making it appropriate to
use only these 2 dimensions in the overall analysis (Table S11).
We can also measure the amount of information the environ-
ment is able to ‘‘cover’’ from the environment and vice versa by
calculating the average variance of the dimensions and the
redundancy (11). These measurements are both high for the
environment but lower for the metabolic pathways. This suggests
that there are many weaker signals coming from the metabolic
matrices as opposed to a few strong ones.
Generalization of DPM. We provided a specific use of DPM in the
text; however, DPM can be generalized. There are 3 basic steps
to DPM. (i) The sites from the first matrix are partitioned to
create site sets. (ii) The second matrix is partitioned in accor-
dance with these site sets. (iii) A t test (or ANOVA for more than
2 site sets) is performed to test whether the site sets are
statistically different in the attributes of the second matrix.

Distributions of multisite and single-site peptides. In cases where a
single peptide came from reads from different sites (multisite
peptides) (16), we calculated the overlap between the reads and
the peptide in 2 different ways. In the first, we considered the
percentage of the read that was within a peptide (Eq. 1), and in
the second case, we assessed the amount that the read contrib-
uted to the peptide (Eq. 2).

Fraction of read within peptide �
Read overlap with peptide

Read length

[1]

Fraction of peptide within read �
Read overlap with peptide

Peptide length

[2]

As illustrated in Fig. S3, the distributions of both peptide and
read overlap are identical. This suggests that there are no major
differences in assembly quality between the multisite and single
site differences. However, it does not mean anything about the
assembly quality itself. Only that if one assumes the assembly to
be correct, there is no discernable differences between single and
multisite peptides.

Comparison with Variance-Maximization Approaches. Compare and
contrast with other methods. An entirely different approach to the
one presented in the text assumes that the inherent variability of
the environments could be directly observed by examining the
global variance in the metabolic dataset; i.e., one identifies the
pathways with greatest variance without directly measuring
whether they covary specifically with the environment. First, we
used standard deviation to find pathways that changed the most
across the sites. We also used a PCA to identify the pathways that
encapsulate the greatest proportion of variance. We then as-
sessed the performance of these methods to identify metabolic
adaptation to environmental parameters, based on their ability
to recapture the environmental-based partitioning by using only
the metabolic pathways identified as significant for each method
by measuring cluster similarity (see below). Simply identifying
the metabolic pathways with the greatest variance did not always
reflect changes in the environmental parameters (see Fig. S2).
Indeed, both methods that simultaneously incorporate environ-
mental and metabolic data significantly outperform the vari-
ance-based, independent methods, and, perhaps, unsurprisingly,
the linear models, which are more appropriate for investigating
single relationships than looking at global context. These results
were consistent, despite varying the number of pathways by using
a variety of different thresholds for all methods SD, PCA, LM,
DPM, and CCA (see Table S11).
Compare and contrast PCA and CCA. PCA and CCA actually have a
deep relationship through formulation of the eigen problem,
nicely illustrated in Borga et al. (12). Although they are related,
there are completely different underlying assumptions motivat-
ing the use of one type and not the other. Although PCA
attempts to capture the variance in a single dataset, CCA
captures the within and between covariance (cross-variance)
between 2 datasets. Thus, PCA can be used to extract compo-
nents with the highest global variance, and has been used
extensively in comparative metagenomics under the assumption
that any variance observed could be attributed to environmental
changes. Such reasoning makes sense when comparing qualita-
tively dissimilar environments. As an example, the difference
between soil and water cannot really be quantified in a mean-
ingful way, because all of the variables are changing simulta-
neously. Thus, more precise measurements to see how say
metabolism varies as a function of the environment would not be
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informative or even necessarily feasible. However, where envi-
ronments change only slightly along a continuum of features,
CCA provides the strength of covariation between both envi-
ronmental and metabolic differences.
Metrics to compare cluster similarity. Cluster similarity was measured
by computing both a normalized mutual information (NMI)
score, which measures the amount of information lost if one
applies the classification ‘‘clustering’’ from the first partition to
the second (17), and the rand index (18), which computes the

number of ‘‘correct’’ pairwise interactions between the 2 sets of
clusters. The closer the NMI score is to 1.0 the better the
metabolic footprint generated from the method performed in
recapitulating the structure of the environmental data. For each
set, a significance value for the rand index was computed by
randomly shuffling the clustering assignment, recalculating the
index after each iteration, and counting the number of times the
index computed from the random data exceeded the index
computed from the real data after 10,000 iterations.
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Fig. S1. Comparison of different classes of methods. We evaluated the efficacy of 3 different classes of methods based on their explicit use of the quantitative
environmental data, which we term independent, isolated, and simultaneous. Independent methods include no environmental description (green), isolated only
one environmental feature at a time (purple), and simultaneous methods incorporate all environmental features simultaneously (blue). For clarity, we refer to
the highly-weighted set of pathways generated for each method as a footprint. Each of the 5 methods was used to generate a metabolic footprint, and each
bar represents the NMI score for that footprint of method. No statistically significant difference was observed between scores within each particular category
(P � 0.05).
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Nucleotide Metabolism Glycan Biosynthesis and Metabolism Cofactor and Vitamin Metabolism

Biosynthesis of Secondary Metabolites Xenobiotic Degradation and Metabolism

Fig. S2. Bullseye plot of CCA-derived structural correlations. Shown are results from CCA for KEGG (A) and module (B). The x and y axes represent the structural
correlation coefficients (normalized weights) in the first and second dimension, respectively. The closer either environmental features (red triangles) or metabolic
pathways (color coded by functional category) are to the perimeter of the outer ellipse, the better they fit the model. Also, the closer an environmental feature
is to a metabolic pathway the stronger the covariation between them. The inner ellipse (radius 0.3) represents those features that did not fit the model (for further
explanation, see ref. 14). Those pathways in the inner ellipse can be thought of as environmentally invariant, and those outside this ellipse as environmentally
variant.
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Fig. S3. Biplot and boxplot of standardized environmental variables. To examine possible dependencies between the variables, we performed principal-
component analysis. (A) We next plotted component 1 and 2. One can see that the variables with the exception of temperature and salinity are basically
orthogonal to one another. (B) Boxplot of standardized variables.
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Fig. S4. Distribution of multisite and all-peptide and read overlaps. We term peptides whose reads derived from multiple geographic locations ‘‘multisites.’’
(A and B) Fraction of each peptide that is within read (A) and the fraction the read ‘‘contributes’’ to the peptide (B). The same plots are shown for all peptides:
peptide overlap (C) and read overlap (D). While B and D are in part assessing if differences in assembly between multi- and single-site peptides exist, A and C
illustrate more functionally that there is no observable difference between 2 types.
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Table S1
Table S2
Table S3
Table S4
Table S5
Table S6
Table S7
Table S8
Table S9
Table S10
Table S11

Scaffold

Reads

? ? ? Peptides

Given a scaffold where
R - set of reads
BS- set of buckets to which reads from R belong
P - set of peptides

BucketA BucketB

Pseudocode:
foreach p in P:
 s=p’s scaffold
 find R(s) 
 foreach r in R(s):
  if r overlaps with p
   put p in r’s bucket

Fig. S5. Mapping peptides to geographic locations (sites). Schematic and pseudocode for mapping of peptides to a particular site are shown. The goal of this
algorithm is, given this set of reads [color coded blue or green, depending on which bucket (site) they were recovered from], this set of peptides (boxes), and
the coordinates from the scaffold (long black line), to determine to which buckets the peptides (boxes) belong.
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