Supplemental Figure Legends

S1 (figure) Domain organization of class I/II/IV HDACs from *C. elegans (a)*, *Drosophila (b)* and *Danio rerio (c)*.

Deacetylase (DAC) domains, zinc fingers and other motifs are depicted as in Figure 1. GenBank accession numbers and genetic loci are listed in brackets at right. These deacetylases have not been as well characterized as their counterparts in yeast and mammals. While the five *D. melanogaster* proteins can be easily grouped according to their mammalian homologs, the eight *C. elegans* proteins are more complicated. ceHda-2 and ceHda-3 are more homologous to HDAC1 and HDAC2 than to HDAC3. Like ceHda-6 and ceHda-8, ceHda-4 and ceHda-5 may belong to class IIb since both are highly similar to the deacetylase domains of HDAC6 and HDAC10. For zebrafish, the HDAC7 sequence needs to be verified about the binding motifs for MEF2 and 14-3-3. The two clones listed for zebrafish HDAC9 could also be from separate genes, so further analysis is needed to address this. HDAC31, HDAC3-like protein.

S2 (figure) Sequence comparison of selective human HDACs with orthologues in sea urchin and zebrafish.

a. Sequence alignment of human HDAC8 (hHDAC8) with its ortholog from the sea urchin *Strongylocentrotus purpuratus* (sHDAC8; GenBank accession number, XP_791175.1). The conserved PKA site is underlined and the serine residues for phosphorylation are highlighted in red. **b.** Sequence comparison of human HDAC4 with a putative orthologue from the sea urchin *S. purpuratus* (GenBank accession number, XP_797761.2). sHDAC4 refers to the protein from the latter organism. 14-3-3 and MEF2

1

binding sites are underlined with key residues highlighted in color. Also underlined are a Q-rich domain, important for dimerization, and a nuclear localization signal (NLS). The SP box is present in HDAC5 and HDAC9, but not in HDAC7. It is also conserved in class IIa HDACs from C. elegans and D. melanogaster. The leucine and isoleucine residues in the box resemble a nuclear export sequence, but expression of an HDAC4 fragment encompassing revealed that the box might not possess nuclear export activity¹, suggesting that it may have another function. The arrow denotes the substitution of a catalytically important tyrosine residue by histidine in the human protein. This substitution occurs in zebrafish, but not in C. elegans or D. melanogaster, so it appears to be vertebrate-specific². Note that an HDAC4-like protein from the sea squirt *Ciona intestinalis* (an invertebrate chordate) has a phenylalanine at the equivalent position². cSequence comparison of human HDAC10 (GenBank accession number, NP 114408) with a putative ortholog from the zebrafish D. rerio (zHDAC10; GenBank accession number, NP 956069.1). Two conserved motifs in the C-terminal extension are underlined and labeled with a hydrophobic (H) box and a question mark to denote their potential functional importance.

- Wang, A. H. & Yang, X. J. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. *Mol. Cell. Biol.* 21, 5992-6005 (2001).
- Lamb, N. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. *Proc. Natl. Acad. Sci. USA* 104, 17355-17340 (2007).

S3 (figure) Crystal structures of the deacetylase domains of HDAC7 and HDAC8.

a Ribbon diagram of the crystal structure of the HDAC7 deacetylase domain complexed with the inhibitor SAHA (<u>suberoylanilide hydroxamic acid</u>), with α -helices and β -strands coloured in red and yellow, respectively. **b** Ribbon diagram of overall structure of the HDAC8 deacetylase domain with bound SAHA, with α -helices and β -strands coloured in cyan and purple, respectively. **c** Ribbon diagram showing superposition of the HDAC7 HDAC8 structures. The PDB codes for the HDAC7 structure are 2NVR and 2PQO (Schuetz, A., Min, J.R., Allali-Hassani, A., Loppnau, P., Kwiatkowski, N.P., Mazitschek, R., Edwards, A.M., Arrowsmith, C.H., Vedadi, M., Bochkarev, A., and Plotnikov, A.N., data to be published), whereas the code for HDAC8 is 1T69. This figure was kindly provided by Drs. Xueyong Zhu and Ian A. Wilson (Scripps Research Institute).

C Danio rerio

Supplementary S2a (figure)

PKA

77	YIYSPEYVSMCDSLAKIPKRASMVHSLIEAYALHKQMRIVKPKVASMEEMATFHTDAYLQ	18	hHDAC8
352	VVFNQKLLQLCDQVPKIPKRASMVHTLIEAYDLLDHVTPVSPEFATKDELLTFHSQEYIE Conservation motif	293	sHDAC8
135	HLQKVSQEGDDDHPDSIEYGLGYDCPATEGIFDYAAAIGGATITAAQCLIDGMCKVAI L++V+ E D + + + ++GLGYDCP+ ++D+ + GA+++ A+ LI C++AI	78	hHDAC8
412	FLERVNLEEDSEKDEELKQQFGLGYDCPSLPLVYDFVRLVAGASLSCAKALIQQKCRIAI	353	sHDAC8
195	NWSGGWHHAKKDEASGFCYLNDAVLGILRLRRKFERILYVDLDLHHGDGVEDAFSFTSKV NW+GGWHHA++DEA+GFCY+ND VL IL+L+ F R+LYVDLDLHHGD V+DAF FT KV	136	hHDAC8
472	NWNGGWHHARRDEAAGFCYVNDIVLAILKLKEHFNRVLYVDLDLHHGDAVDDAFIFTPKV	413	sHDAC8
255	MTVSLHKFSPGFFPGTGDVSDVGLGKGRYYSVNVPIQDGIQDEKYYQICESVLKEVYQAF MTVSLHKFSPGFFPGTG ++ VG G+G++Y+++VP++DGI+DE+Y + V+++V F	196	hHDAC8
532	MTVSLHKFSPGFFPGTGSLNRVGGGRGKFYTISVPLKDGIKDEQYSDLFTRVIEQVRVKF	473	sHDAC8
315	NPKAVVLQLGADTIAGDPMCSFNMTPVGIGKCLKYILQWQLATLILGGGGYNLANTARCW P VV+Q GADT++ DPM SFN+TP+G+G+C+ +L W+L TL+LGGGGYN+ANTARCW	256	hHDAC8
592	QPSVVVVQCGADTLSSDPMQSFNLTPLGVGQCVSRVLSWKLPTLLLGGGGVNMANTARCW	533	sHDAC8
375	TYLTGVILGKTLSSEIPDHEFFTAYGPDYVLEITPSCRPDRNEPHRIQQILNYIKGNLKH +YLTG++LG+ I SEIPDHEFF YGP Y LF+ P+ + N ++ + I NL++	316	hHDAC8
652	SYLTGLVLGQKLPSEIPDHEFFLEYGPGYQLEVCPAHYTNYNTVEYMETVAKAITKNLEN	593	sHDAC8
	V 376 V	376	hHDAC8
	V 653	653	sHDAC8

Supplementary S2b (figure)

HDAC4	90	IAEFQRQHEQLSRQHEAQLHEHIKQQQEMLAMKHQQELLEHQRKLERHRQEQELEKQH +A+F+ + OL +OH+ KOOOE++ ++H O +LLE OR LE +O+O+ ++O	147	
sHDAC4	96	LAQFKERQAQLVKQHQKQQQELIMVRHVQREQLLEQQRLLEAQQQQQQQ-QQQQ	147	
HDAC4	148	REQKLQQLKNKEKGKESAVASTEVKMKLQEFVLNKKKALAHRNLNHCISSDPRYWYG ++ + O L+ K+SA ASTEVK KLO+F+LN+++ + LNH S R+W	204	
sHDAC4	148	QQAQKQHLEQLLAKKQSANASTEVKDKLQKFLLNRQQRTDYGGSGPLNHSPPYRHW	203	
HDAC4	205	KTQHSSLDQSSPPQSGVSTSYNHPVLGMYDAKDDFPLRKTASEPNLKLRSRLKQKVAE T SS+D SPP + VS ++H +G YD+ + FPLRKTAS+ NLK+RSRLK+KV E	262	
sHDAC4	204	-TPPSSMDHHSPPHN-VSPQFHHQPMGFGQYDSSN-FPLRKTASDSNLKVRSRLKEKVTE	260	N-te
HDAC4	263	RRSSPLLRRKDGPVVTALKKRPLDVTDSACSSAPGSGPSSPNNSSGSVSAENGIAPAV RR+ SPLLRR++GP +LK++P+ T S + G ++G + NG+ +V	320	rmin
sHDAC4	261	RTHGSPLLRRREGPNSLKRKPIIDTSSNSAPGSGPSSPLSAGAAGGGDSPNGLSV	316	ial e
HDAC4	321	PSIPAETSLAHRLVAREGSAAPL-PLYTSPSLPNITLGLPATGPSAGTAGOODTERLTLP ++P E S A +++ ++ + LY+SPSLPNI++G+PA A P	379	exter
sHDAC4	317	AALPEEASSATKMMLKQRLYGVVNDLYSSPSLPNISIGIPAANNPQHSPPLGQVKP	372	nsion
HDAC4	380	ALQQRLSLFPGTHLTPYLSTSPLERDG-GAAHSPLLQHMVLLEQPPAQAPLVTGLGALPL L S+ L PYL +PL G AH L M + AO ++	438	
sHDAC4	373	GL-PTASMLGAAPLNPYLPGAPLSLAGINPAHLACMTFQDFQQAQTAAMSA	422	
HDAC4	439	HAQSLVGADRVSPSIHKLRQHRPLGRTQSAPLPQN 473 ++G + P + HRPL RT SAPLP N		
sHDAC4	423	AQIGIHPKPIRPVTHRPLVRTHSAPLPNN 451 14-3-3 binding 2		
HDAC4	621	FCCHRDI SPAOSSPASATED-USUOEDDTKDRETTGI UVDTI MI KHOCTCGSSSS	674	
sHDAC4	585	FGGHRPL R +SSPA+A P +S+ TK FTTGL YDTLMLKHQC CG++ + FGGHRPLMRVRSSPAAAGIPSLSLNHHHHDHNRTKHTFTTGLAYDTLMLKHQCQCGNNQN	644	
HDAC4	675	14-3-3 binding 3 HPEHAGRIQSIWSRLQETGLRGKCECIRGRKATLEELQTVHSEAHTLLYGTNPLNRQKLD	734	
sHDAC4	645	HPEH GR+QSIW+RL E G+ +CE IR RKA+LEELQ+ HSE +TL +GT+ ++ KLD HPEHPGRLQSIWARLHERGIVSRCERIRTRKASLEELQSCHSEGYTLFFGTSQTHKAKLD	704	
HDAC4	735	SKKLLGSLASVFVRLPCGGVGVDSDTIWNEVHSAGAARLAVGCVVELVFKVATGELKNGF	794	
sHDAC4	705	S+KL F L CGG+GVD+DT+W+++ S GA R+A G V+EL FKVATGELKNGF SRKLALIPKLNFTWLSCGGLGVDTDTVWHDIQSPGAVRIAAGAVIELAFKVATGELKNGF	764	
HDAC4	795	AVVRPPGHHAEESTPMGFCYFNSVAVAAKLLQQRLSVSKILIVDWDVHHGNGTQQAFYSD	854	Deac
sHDAC4	765	A+VRPPGHHAE S MGFC+FNS+A+AAK L+ +L ++KILI+DWDVHHGN TQ+ FY D AIVRPPGHHAETSQAMGFCFFNSIAIAAKQLRLKLKLNKILIIDWDVHHGNSTQKIFYED	824	ety1
HDAC4	855	PSVLYMSLHRYDDGNFFPGSGAPDEVGTGPGVGFNVNMAFTGGLDPPMGDAEYLAAFRTV	914	ase
sHDAC4	825	P VLY+SLHR+D+GNFFPG+GAPDE G G G+G+NVN+AF GGL+PPMGDAEY+AAFR++ PHVLYISLHRHDNGNFFPGTGAPDESGCGAGLGYNVNIAFHGGLNPPMGDAEYIAAFRSI	884	doma
HDAC4	915	VMP1ASEFAPDVVLVSSGFDAVEGHPTPLGGYNLSARCFGYLTK <u>O</u> LMGLAGGRIVLALEG	974	in
sHDAC4	885	V+PIA EF+PDVVLVSSGFDA GHP PLGGY ++ CF Y+T+++MGLA GR+VLALEG VLPIAREFSPDVVLVSSGFDAANGHPNPLGGYKVTPACFSYMTRKVMGLANGRVVLALEG	944	
HDAC4	975	GHDLTAICDASEACVSALLGNELDPLPEKVLQQRPNANAVRSMEKVMEIHS 1025		
sHDAC4	945	G+DLTAICDASE C LLG++ PL E + PNANAV + + +EI S GYDLTAICDASEVCAQTLLGDDPSPLSEDAINGVPNANAVECLRRTIEIQS 995		

Key tyrosine

Supplementary S2c (figure)

HDAC10	2	GTALVYHEDMTATRLLWDDPECEIERPERLTAALDRLRQRGLEQRCLRLSAREASEEELG	61	I
zHDAC10	4	GSALIFDEEMSRYKLLWTDPACEIEVPERLTVSYEALRTHGLAORCKAVPVROATEOEIL	63	
HDAC10	62	LVHSPEYVSLVRETQVLGKEELQALSGQFDAIYFHPSTFHCARLAAGAGLQLVDAVLTGA	121	
zHDAC10	64	LASEIT VIII T EELASIITTIIN TIKATLAAGA LQLVDIVT LAHSEEYLEAVKQTPGMNVEELMAFSKKYNDVYFHQNIYHCAKLAAGATLQLVDSVMKRE	123	
HDAC10	122	VQNGLALVRPPGHHGQRAAANGFCVFNNVAIAAAHAKQKHGLHRILVVDWDVHHGQGIQY	181	Dea
zHDAC10	124	VTNGTALVRPPGHH OKTAANGFCVFNNVA AA TAKT T LTRILTVDWDVHHGQGIQI VRNGMALVRPPGHHSORSAANGFCVFNNVAFAALYAKKNYNLNRILIVDWDVHHGOGIQY	183	cety
HDAC10	182	LFEDDPSVLYFSWHRYEHGRFWPFLRESDADAVGRGQGLGFTVNLPWNQVGMGNADYVAA	241	lase
zHDAC10	184	FETDESVLYFSWHRYEH FWP LESD +VGTGTG GF +NLPWN+VGM N+DY+AA CFEEDESVLYFSWHRYEHQSFWPNLPESDYSSVGKGKGSGFNINLPWNKVGMTNSDYLAA	243	dom
HDAC10	242	FLHLLLPLAFEFDPELVLVSAGFDSAIGDPEGQMQATPECFAHLTQLLQVLAGGRVCAVL	301	ain
zHDAC10	244	F H+LLP+A+EFDPELV+VSAGFDSAIGDPEG+M A PE FAHLT LL LA G++C VL FFHVLLPVAYEFDPELVIVSAGFDSAIGDPEGEMCALPEIFAHLTHLLMPLAAGKMCVVL	303	
HDAC10	302	EGGYHLESLAESVCMTVQTLLGDPAPPLSGPMAPCQSALESIQSARAAQAPHWKSLQ	358	
zHDAC10	304	EGGY+L SL +SVC TV +LLGDP P +SG C SALESIQ+ R Q+ +W K L EGGYNLTSLGQSVCQTVHSLLGDPTPRISGLGTACDSALESIQNVRNVQSSYWSSFKHLA	363	
HDAC10	359	QQDVTAVPMSPSSHSPEGRPPPLLPGGPVCKAAASAPSSLLDQPCLCPAPSVRTAVALTT	418	
zHDAC10	364	Q + P + G P +A + +P SVKT V + QSETNPKRPRLDATNGGPKESSEPASESNPKKTAQDIVWPEPLKRMPASVRT-VVVPP	420	
HDAC10	419	PDITLVLPPDVIQQEASALREETEAWARPHESLAREEALTALGKLLYLLDGMLDGQVNSG	478	Q
zHDAC10	421	P + L LP + Q + + E T + + + + + + + + + + + + + + + +	478	-ter
HDAC10	479	IAATPASAAAATLDVAVRRGLSHGAQRLLCVALGQLDRPPDLAHDGRSLWLNIRGK	534	mina
zHDAC10	479	+ L V+V+ L H A+R+L V +G + P +DG+ + 1 K DEVCNGCVVVSDLSVSVQCALQHALTEPAERVLVVYVGDGELPVK-TNDGKVFLVQICTK	537	1 ex
HDAC10	535	EAAALSMFHVSTPLPVMTGGFLSCILGLVLPLAYGFQPDLVL-VALGPGHGLQGPHA	590	tens
zHDAC10	538	E T TT L TI GFT TIGLTLFFAI F P LVL T T ETEDKCVNRLTLCLREGESLTAGFMQALLGLILPVAYEFNPALVLGIVEETAAKTRLMRV	597	ion
HDAC10	591	ALLAAMLRGLAGGRVLALLEENSTPQLAGILARVLNGEAPPSLGPSSVASPEDVQALMYL	650	
zHDAC10	598	U T L T L T L T LIG T LGP PEDVT T WGHMTCLIQGLARGRMLTLLQGYDKDLLELTVSALSGASISPLGPLRAPKPEDVEMMEKQ	657	
HDAC10	651	RGQLEPQWKMLQC 663		
zHDAC10	658	RORLOERWGLLRC 670		I
		?		

Supplementary S4 (table) Purification of class I/II HDAC complexes from yeast									
<i>S. cerevisiae</i> Rpd3 complexes	Purification method	Conventional chromatography followed by tandem affinity with yeast cell extract expressing Rpd3- TAP or Sin3-TAP ^{1, 2}	Conventional chromatography followed by tandem affinity with yeast cell extract expressing Rpd3- TAP or Sin3-TAP ²	Tandem affinity with yeast cell extract expressing Sin3-TAP, Rpd3- TAP, Ume1-TAP, Rco1-TAP, Eaf3- TAP, Rxt1-TAP, Pho23-TAP, or Sap30-TAP ³	Tandem affinity with yeast cell extract expressing Sin3- TAP, Rpd3-TAP, Ume1-TAP, Rco1- TAP, Eaf3-TAP, Rxt1-TAP, Pho23- TAP, or Sap30-TAP ³				
	Proteins identified	Rpd3L: Rpd3, Sin3, Ume1, Pho23, Sap30, Sds3, Cti6, Rxt2, Rxt3, Dep1, Ume6, Ash1	Rpd3S: Rpd3, Sin3, Ume1, Rco1 , Eaf3	Rpd3C(L): Rpd3, Sin3, Ume1, Rxt1, Rxt2, Dep1, Sds3, Pho23 , Sap30	Rpd3C(S): Rpd3, Sin3, Ume1, Rco1 , Eaf3				
S. pombe Clr6	Purification method	Anti-HA immunoaffinity with yeast cell extract expressing Clr6-HA or Pst1-HA followed by glycerol gradient ⁴	Anti-HA immunoaffinity with yeast cell extract expressing Clr6-HA or Pst1-HA followed by glycerol gradient ⁴						
complexes	Proteins identified	Complex I: Pst1, Sds3, Clr6, Prw1 Complex I': Pst1, Sds3, Png2 , Clr6, Prw1	Complex II: Pst 2, Cph1, Cph2, Alp13, Clr6, Prw1						
S. cerevisiae Hda1 complex	Purification method	Conventional chromatography of yeast extract ⁵							
	Proteins identified	Hda1, Hda2, Hda3							
<i>S. pombe</i> Clr3 complex	Purification method	Anti-Flag immunoaffinity with yeast cell extract expressing Clr3- Flag ⁶							
	Proteins identified	Mit1, Clr1, ccq1, Clr3, Clr2							
<i>S. cerevisiae</i> Hos2-Set3 complex	Purification method	Tandem affinity with yeast cell extract expressing Set3-TAP or Hos2- TAP ⁷							
-	Proteins identified	Snt1, YIL112, Set3, SIF2, Hos2, Hst1, Cpr1,							

Note: The identified proteins in boldface denote subunits with domains (such as chromodomain and PHD finger) and enzymatic activities (such as ATPase, sirtuin and histone methyltransferase) for crosstalk with other chromatin-regulating processes.

- 1. Carrozza, M.J. et al. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. *Biochim. Biophys. Acta* **1731**, 77-87 (2005).
- 2. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. *Cell* **123**, 581-592 (2005).
- 3. Keogh, M.C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. *Cell* **123**, 593-605 (2005).
- 4. Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. *Nat. Struct. Mol. Biol.* **14**, 372-380 (2007).
- 5. Wu, J., Carmen, A.A., Kobayashi, R., Suka, N. & Grunstein, M. HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1. *Proc. Natl. Acad. Sci. USA* **98**, 4391-4396 (2001).
- 6. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. *Cell* **128**, 491-504 (2007).
- 7. Pijnappel, W.W. et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. *Genes Dev.* **15**, 2991-3004 (2001).

Supplementary S5 (table) Purification of class I HDAC complexes from <i>Xenopus</i> and mammals								
HDAC1/2	Sin3 complex	Purification method	Anti-mSin3 immunoaffinity with HeLa nuclear extract ^{1, 2}	Anti-HDAC1 immunoaffinity followed by anti- mSin3A with U937 nuclear extract ³	Anti-SAP30 immunoaffinity with HeLa nuclear extract ⁴	Anti-mSin3A immunoaffinity with K562 nuclear exract ⁵	Anti-ING1 or TAP- ING2 immunoaffinity with HeLa nuclear extract or anti-Flag with nuclear extract from H1299 cells expressing Flag- p33 ^{ING1b} (refs. 6, 7)	Anti-Flag immunoaffinity with nuclear extract from H1299 cells expressing Flag- p33 ^{ING1b} or Flag-p40 (ref. 8)
		Proteins identified	mSin3, HDAC1/2, RbAp46/48, SAP30, SAP18	mSin3A, p72, HDAC1/2, RbAp48, p45, p33	Sin3, HDAC1/2, RbAp46/48, (p33), ING1, SAP30	SAP180/RBP1, Sin3A, SAP130, HDAC1/2, RbAp46/48, SDS3, SAP38/ING1, SAP30, SAP28	RBP1, RBP1-like (SAP180), SAP130, Sin3A, HDAC1/2, RbAp46/48, p42/SDS3, BRMS1 ING1/p33 ^{ING1b} , SAP30	RBP1, Sin3A, HDAC1/2, RbAp46/48, p40, p33 ^{ING1b} , SAP30
	NuRD/Mi-2 complex	Purification method	Anti-Mi2 immunoaffinity or conventional chromatography with HeLa nuclear extract ^{9, 10}	Conventional chromatography with Xenopus egg extract ^{11, 12}	Anti-CHD4 immunoaffinity with SW13 nuclear extract ¹³	Anti-HDAC2 immunoprecipitation with HeLa cell extract ¹⁴	Tandem affinity with extract from HEK293 cells expressing MBD2- TAP or MBD3- TAP ¹⁵	Conventional chromatography with HeLa nuclear extract ¹⁶
		Proteins identified	Mi2, MTA2, HDAC1/2, RbAP46/48, MBD3	Mi2, MTA-1 like, p66, xRPD3, RbAP46/48, MBD3	CHD4/CHD3, N190, N170, N160, N140, N135, N130, N85, N75, N70, N68, N66, HDAC1/2, N61, RbAP46/48 N38, N34	Mi2, p110, p70, HDAC1/2, RbAp48	Mi2, MTA1/2/3, p66, HDAC1/2, RbAP46/48, MBD2/3	Mi2, MTA2, p66/68, HDAC1/2, RbAP46/48, MBD2/3
	CoREST complex	Purification method	Anti-CoREST immunoaffinity with HeLa cell extract ¹⁷	Anti-Flag immunoaffinity followed by glycerol density gradient sedimentation with nuclear extract from HeLa cells expressing Flag- HDAC1 (ref. 18)	Anti-Flag immunoaffinity with nuclear extract from HEK293 cells expressing Flag- BHC110 (refs 19, 20)	Conventional chromatography with HeLa nuclear extract or anti-Flag immunoaffinity with nuclear extract from 293 cells expressing Flag-BRAF35 (ref. 21)	Anti-Flag/anti-HA immunoaffinity followed by glycerol density gradient sedimentation with nuclear extract from HeLa cells expressing Flag-HA- CtBP ²²	

		Proteins identified	p110b, Znf217, p80, CoREST, HDAC1/2, Sox-like	KIAA0601, CoREST, HDAC1, p37	X-FIM, FIM, ZnF516, KIAA0182, ZnF217, BHC110, BHC80, CoREST, HDAC1/2, CtBP, BRAF35	BHC110, BHC80, CoREST, HDAC1/2, BRAF35	CtBP1, CtBP2, EuHMT, G9a, ZEB1, HDAC1/2, LSD1 (NPAO/KIAA0601), CoREST	
HDAC3	N-CoR/SMRT complex	Purification method	Anti-HDAC3 immunoaffinity with HeLa cell extract ²³⁻²⁵	Anti-Flag immunoaffinity with nuclear extract from HeLa cells expressing Flag- HDAC3 (ref. 26)	Anti-SMRT immunoaffinity with HeLa nuclear extract or anti-Flag with nuclear extract from 293T cells expressing Flag- HDAC3 (refs. 27, 28)	Anti-N-CoR immunoaffinity with HeLa nuclear extract ^{25, 29, 30}		
		Proteins identified	N-CoR/SMRT TFII-I, PP4 _{R1} , TBL1/TBLR1, HDAC3, GPS2, PP4 _c	N-CoR/SMRT, TBL1/TBLR1, HDAC3, GPS2	N-CoR/SMRT, AKAP95, HA95, TBL1, HDAC3, GPS2	N-CoR, TIF1γ, JMJD2A (KIAA0677), HsEg5, Kaiso, hsp70, IR10, TBL1/TBLR1 HDAC3, GPS2		

Note: In sub-stoichiometric amounts, HDAC1 and HDAC2 are also known to be present in many other complexes, e.g. SWI/SNF complexes^{31, 32}, PRP4 kinase complex³³, and the SMCx demethylase complex important for X-linked mental retardation³⁴. For clarity and simplicity, association of HDACs with numerous transcription factors is not listed and discussed here.

- 1. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. *Cell* **89**, 357-364 (1997).
- 2. Zhang, Y. et al. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. *Mol. Cell* **1**, 1021-1031 (1998).
- 3. Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L. & Ayer, D.E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. *Cell* **89**, 341-347 (1997).
- 4. Kuzmichev, A., Zhang, Y., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). *Mol. Cell. Biol.* **22**, 835-848 (2002).
- 5. Fleischer, T.C., Yun, U.J. & Ayer, D.E. Identification and characterization of three new components of the mSin3A corepressor complex. *Mol. Cell. Biol.* **23**, 3456-3467 (2003).
- 6. Skowyra, D. et al. Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. *J. Biol. Chem.* **276**, 8734-8739 (2001).
- 7. Doyon, Y. et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. *Mol. Cell* **21**, 51-64 (2006).
- 8. Nikolaev, A.Y., Papanikolaou, N.A., Li, M., Qin, J. & Gu, W. Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33(ING1b)/HDAC1 deacetylase complex. *Biochem. Biophys. Res. Commun.* **323**, 1216-1222 (2004).
- 9. Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. *Cell* **95**, 279-289 (1998).
- 10. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. *Genes Dev.* **13**, 1924-1935 (1999).
- 11. Wade, P.A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. *Nat. Genet.* **23**, 62-66 (1999).
- 12. Wade, P.A., Jones, P.L., Vermaak, D. & Wolffe, A.P. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. *Curr. Biol.* **8**, 843-846 (1998).
- 13. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. *Mol. Cell* **2**, 851-861 (1998).
- 14. Tong, J.K., Hassig, C.A., Schnitzler, G.R., Kingston, R.E. & Schreiber, S.L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. *Nature* **395**, 917-921.
- 15. Guezennec, X.L. et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. *Mol. Cell. Biol.* **26**, 843-851.
- 16. Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. *Genes Dev.* **15**, 827-832.

- 17. You, A., Tong, J.K., Grozinger, C.M. & Schreiber, S.L. CoREST is an integral component of the CoREST- human histone deacetylase complex. *Proc. Natl. Acad. Sci. USA* **98**, 1454-1458 (2001).
- 18. Humphrey, G.W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. *J. Biol. Chem.* **276**, 6817-6824 (2001).
- 19. Lee, M.G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. *Nature* **437**, 432-435 (2005).
- 20. Lee, M.G. et al. Functional interplay between histone demethylase and deacetylase enzymes. *Mol. Cell. Biol.* **26**, 6395-6402 (2006).
- 21. Hakimi, M.A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. *Proc. Natl. Acad. Sci. USA* **99**, 7420-7425 (2002).
- 22. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. *Nature* 422, 735-738 (2003).
- 23. Wen, Y.D., Cress, W.D., Roy, A.L. & Seto, E. Histone deacetylase 3 binds to and regulates the multifunctional transcription factor TFII-I. *J. Biol. Chem.* **278**, 1841-1847 (2003).
- 24. Wen, Y.D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. *Proc. Natl. Acad. Sci. USA* 97, 7202-7207 (2000).
- 25. Zhang, D., Yoon, H.G. & Wong, J. JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). *Mol. Cell. Biol.* **25**, 6404-6414 (2005).
- 26. Zhang, J., Kalkum, M., Chait, B.T. & Roeder, R.G. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. *Mol. Cell* **9**, 611-623 (2002).
- 27. Guenther, M.G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. *Genes Dev.* 14, 1048-1057 (2000).
- 28. Li, Y. et al. A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. *Genes Dev.* **20**, 2566-2579 (2006).
- 29. Yoon, H.G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. *EMBO J.* **22**, 1336-1346 (2003).
- 30. Yoon, H.G., Chan, D.W., Reynolds, A.B., Qin, J. & Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. *Mol. Cell* **12**, 723-734 (2003).
- 31. Sif, S., Saurin, A.J., Imbalzano, A.N. & Kingston, R.E. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. *Genes Dev.* **15**, 603-618 (2001).
- 32. Underhill, C., Qutob, M.S., Yee, S.P. & Torchia, J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. *J. Biol. Chem.* **275**, 40463-40470 (2000).

- 33. Dellaire, G. et al. Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR
- deacetylase complexes. *Mol. Cell. Biol.* 22, 5141-5156 (2002).
 34. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. *Nature* 447, 601-605 (2007).

Mammal		<u>C. elegans</u>		<u>Drosophila</u>	
Deacetylase	Associated subunit	Protein name	Developmental role	Protein name	Developmental role
HDAC1		Hda-1	One-fold stage ¹ Vuval development ³ Gonagenesis ⁵ Cell migration ^{7,8} Axon pathfinding ⁸	dRpd3/dHDAC1	Segmentation defects ² G2-M cell cycle progression ⁴ Essential for S2 cell viability ⁶ Euchromatic transcriptional repression ^{4,9} Activating SMRTER expression ^{4,9} Homeotic gene expression ¹⁰ and longevity ¹¹
	RbAp46/48	Rba-1	One-fold stage arrest ¹	p55	
	RbAp46/48	Rba-2/Lin-53	Vulval development ^{3,12}	p55	
	Sin3	Sin-3	Male sensory ray patterning ¹³	dSin3	Embryonic viability ¹⁴ Cell cycle progression ⁴ Activating SMRTER expression ⁴ Euchromatic transcriptional repression ^{4,9}
	SAP18			dSAP18	Homeotic gene expression ¹⁰
	Mi2	Let-48/Mi-2	Vulval development ^{3,15} Spatiotemporal cell differentiation ¹⁷	dMi2	Hox expression, larval and germ viability ¹⁶ Proneural gene expression ¹⁸
	p66	?		dp66	Wnt signaling ¹⁹
	MTA1	Egl-1/Lin-40	Vulval development ^{3,20}	-	
	MTA1	Egl-27	Vulval development ^{3,20} Cell polarity and migration ²¹ Hox gene expression ²²		
	CoREST	Spr-1	Inhibition of Notch signaling ²³ Vulval morphogenesis ²⁴ Gonal development ²⁴		
	LSD1	Spr-5	Presenilin expression ^{23,25}	Su(VAR)3-3	Position-effect variegation modifier ^{26,27} Initiation of heterochromatin formation ²⁶ Non-essential but important for viability ²⁷ Sterility control and ovary development ²⁷
HDAC3	N-CoR/SMRT	Hda-3	PolyQ toxicity ²⁸	dHDAC3 SMRTER	Non-essential for S2 cell viability ⁶ Non-essential for S2 cell viability ⁶
HDAC4		Hda-4/-7	Non-essential ²⁹ Chemoreceptor signaling ³⁰	dHDAC4	Non-essential for S2 cell viability ⁶ Embryo segmentation ³¹
HDAC6		Hda-6	?	dHDAC6	Non-essential for S2 cell viability ⁶
HDAC11		Hda-8	?	dHDACX	Non-essential for S2 cell viability ⁶

Supplementary S6 (table) Roles of classical HDACs and associated subunits in worm and fly development

Note: Those subject to gene inactivation analysis are listed here. Some of the deacetylases have also been analyzed in zebrafish. For example, the HDAC1 ortholog has been shown to play a role in neuogenesis^{32,33}, oligodendrocyte differentiation³⁴, neuron migration³⁵, as well as formation of craniofacial cartilage and petoral fin³⁶.

- 1. Shi, Y. & Mello, C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. *Genes Dev.* **12**, 943-55 (1998).
- 2. Mannervik, M. & Levine, M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. *Proc. Natl. Acad. Sci. USA* **96**, 6797-801 (1999).
- 3. Solari, F. & Ahringer, J. NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. *Curr. Biol.* **10**, 223-6 (2000).
- 4. Pile, L. A., Schlag, E. M. & Wassarman, D. A. The SIN3/RPD3 deacetylase complex is essential for G(2) phase cell cycle progression and regulation of SMRTER corepressor levels. *Mol. Cell. Biol.* **22**, 4965-76 (2002).
- 5. Dufourcq, P. et al. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. *Mol. Cell. Biol.* 22, 3024-34 (2002).
- 6. Foglietti, C. et al. Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. *J. Biol. Chem.* **281**, 17968-76 (2006).
- 7. Whetstine, J. R. et al. Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. *Mol. Cell* **18**, 483-90 (2005).
- 8. Zinovyeva, A. Y., Graham, S. M., Cloud, V. J. & Forrester, W. C. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding. *Dev. Biol.* **289**, 229-42 (2006).
- 9. Pile, L. A. & Wassarman, D. A. Chromosomal localization links the SIN3-RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. *EMBO J.* **19**, 6131-40 (2000).
- 10. Canudas, S. et al. dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. *Nucleic Acids Res.* **33**, 4857-64 (2005).
- 11. Rogina, B., Helfand, S. L. & Frankel, S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. *Science* **298**, 1745 (2002).
- 12. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. *Cell* **95**, 981-91 (1998).
- 13. Choy, S. W., Wong, Y. M., Ho, S. H. & Chow, K. L. C. elegans SIN-3 and its associated HDAC corepressor complex act as mediators of male sensory ray development. *Biochem. Biophys. Res. Commun.* **358**, 802-7 (2007).

- 14. Pennetta, G. & Pauli, D. The Drosophila Sin3 gene encodes a widely distributed transcription factor essential for embryonic viability. *Dev. Genes Evol.* **208**, 531-6 (1998).
- 15. von Zelewsky, T. et al. The C. elegans Mi-2 chromatin-remodelling proteins function in vulval cell fate determination. *Development* **127**, 5277-84 (2000).
- 16. Kehle, J. et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282, 1897-900 (1998).
- 17. Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. *Cell* **111**, 991-1002 (2002).
- 18. Yamasaki, Y. & Nishida, Y. Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila. *Dev. Growth Differ.* **48**, 411-8 (2006).
- 19. Kon, C., Cadigan, K. M., da Silva, S. L. & Nusse, R. Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila. *Genetics* **169**, 2087-100 (2005).
- 20. Solari, F., Bateman, A. & Ahringer, J. The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. *Development* **126**, 2483-94 (1999).
- 21. Herman, M. A. et al. EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. *Development* **126**, 1055-64 (1999).
- 22. Ch'ng, Q. & Kenyon, C. egl-27 generates anteroposterior patterns of cell fusion in C. elegans by regulating Hox gene expression and Hox protein function. *Development* **126**, 3303-12 (1999).
- 23. Jarriault, S. & Greenwald, I. Suppressors of the egg-laying defective phenotype of sel-12 presenilin mutants implicate the CoREST corepressor complex in LIN-12/Notch signaling in C. elegans. *Genes Dev.* **16**, 2713-28 (2002).
- 24. Bender, A. M., Kirienko, N. V., Olson, S. K., Esko, J. D. & Fay, D. S. lin-35/Rb and the CoREST ortholog spr-1 coordinately regulate vulval morphogenesis and gonad development in C. elegans. *Dev. Biol.* **302**, 448-62 (2007).
- 25. Eimer, S., Lakowski, B., Donhauser, R. & Baumeister, R. Loss of spr-5 bypasses the requirement for the C.elegans presenilin sel-12 by derepressing hop-1. *EMBO J.* **21**, 5787-96 (2002).
- 26. Rudolph, T. et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. *Mol. Cell* **26**, 103-15 (2007).
- 27. Di Stefano, L., Ji, J. Y., Moon, N. S., Herr, A. & Dyson, N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. *Curr. Biol.* **17**, 808-12 (2007).
- 28. Bates, E. A., Victor, M., Jones, A. K., Shi, Y. & Hart, A. C. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. *J. Neurosci.* **26**, 2830-8 (2006).
- 29. Choi, K. Y., Ji, Y. J., Jee, C., Kim, D. H. & Ahnn, J. Characterization of CeHDA-7, a class II histone deacetylase interacting with MEF-2 in Caenorhabditis elegans. *Biochem. Biophys. Res. Commun.* **293**, 1295-300 (2002).

- 30. van der Linden, A. M., Nolan, K. M. & Sengupta, P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. *EMBO J.* **26**, 358-70 (2007).
- 31. Zeremski, M., Stricker, J. R., Fischer, D., Zusman, S. B. & Cohen, D. Histone deacetylase dHDAC4 is involved in segmentation of the Drosophila embryo and is regulated by gap and pair-rule genes. *Genesis* **35**, 31-8 (2003).
- 32. Cunliffe, V. T. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. *Development* **131**, 2983-95 (2004).
- 33. Yamaguchi, M. et al. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. *Development* **132**, 3027-43 (2005).
- 34. Cunliffe, V. T. & Casaccia-Bonnefil, P. Histone deacetylase 1 is essential for oligodendrocyte specification in the zebrafish CNS. *Mech. Dev.* **123**, 24-30 (2006).
- 35. Nambiar, R. M., Ignatius, M. S. & Henion, P. D. Zebrafish colgate/hdac1 functions in the non-canonical Wnt pathway during axial extension and in Wnt-independent branchiomotor neuron migration. *Mech. Dev.* (2007).
- 36. Pillai, R., Coverdale, L. E., Dubey, G. & Martin, C. C. Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. *Dev Dyn* **231**, 647-54 (2004).