Abstract
Free full text
Channelrhodopsin2 Mediated Stimulation of Synaptic Potentials at Drosophila Neuromuscular Junctions
Abstract
The Drosophila larval neuromuscular preparation has proven to be a useful tool for studying synaptic physiology1,2,3. Currently, the only means available to evoke excitatory junctional potentials (EJPs) in this preparation involves the use of suction electrodes. In both research and teaching labs, students often have difficulty maneuvering and manipulating this type of stimulating electrode. In the present work, we show how to remotely stimulate synaptic potentials at the larval NMJ without the use of suction electrodes. By expressing channelrhodopsin2 (ChR2) 4,5,6 in Drosophila motor neurons using the GAL4-UAS system 7, and making minor changes to a basic electrophysiology rig, we were able to reliably evoke EJPs with pulses of blue light. This technique could be of particular use in neurophysiology teaching labs where student rig practice time and resources are limited.
Protocol
Part 1: Animal care and genetic crosses
Maintain UAS-ChR2 and OK371-GAL4 fly lines in separate bottles containing standard fly media 8.
Collect virgins of OK371-GAL4 fly lines and males of UAS-ChR2 lines.
Put both males and females in a vial containing standard fly media mixed with 1 mM all-trans retinal (ATR). ATR food should be made by first melting regular fly media in a microwave for ~1 minute. Once melted, allow to cool for about 30 seconds to one minute and then add 100 μl of 100 mM ATR in 100% ETOH for every 10 ml of fly media. Place vials on ice, then store in a dark area at 4°C.
Let flies mate and lay eggs in a dark area at 22-25°C.
Wait 3-4 days until 3rd instar larvae are visible; at that point, dispose of adult flies.
Part 2: Rig setup
Attach any 10x dissecting scope eye piece (in our case, from Carl Zeiss Inc., www.zeiss.com, Thornwood, NY), to blue LED light source with heat sink (Thor labs, www.thorlabs.com, Newton, NJ). Attach to magnetic base with post and clamp. Cover heat sink with an electrically grounded shield to reduce electrical noise generated by the light source.
Place magnetic base with light source on air table of electrophysiology rig.
Connect light source to control circuit and connect control circuit to external voltage source (Powerlab 4/30, ADInstruments, www.adinstruments.com, Colorado Springs, CO).
Give 1-5 V pulses to control circuit to activate blue light.
Adjust magnetic base and light source until blue light beam is focused on area to be occupied by larval dissection.
Part 3: Dissection
Place six 0.1 mm insect pins into the floor of a sylgard-lined dish.
Remove a 3rd instar larvae from food media and place into any plastic Petri-dish.
Rinse larvae with saline to remove food.
Place larvae in dissecting dish near the pulled pins and add saline to ½ level.
Orient the larvae so that you can see two silvery tubes (trachea) running along the animal’s dorsal surface.
Insert a large pin directly into the tail in between the tracheal tubes. Hold the larvae down and place a second large pin into its head, being sure to stretch the body out lengthwise.
Make a small incision near the tail, and continue it up the length of the body. Make sure that the tips of the scissors are raised so as not to accidentally cut ventral nerves and/or body wall muscles.
Place four pins on the four corners of the animal’s now open midsection. Set them into the dissecting dish so as to fillet the animal. Pin preparation out taught.
Using forceps and scissors, remove the animal’s guts, trachea and fat bodies.
Rinse the prep with saline.
Locate the frontal lobes (as seen in Fig A) and ventral ganglion of the prep.
Using micro-scissors, carefully cut through the ventral ganglion just behind the frontal lobes.
Part 4: Muscle recording and blue light stimulation
Pull a 10-20 μω electrode using an electronic electrode puller (Sutter Instruments).
Fill the pulled electrode with 3 M KCl.
Place filled electrode in electrode holder and maneuver electrode tip with a micromanipulator near larval prep under dissecting microscope on electrophysiology rig.
Identify Muscle 6 (M6) in any body wall segment (Fig A).
Carefully insert electrode into M6 and watch for rapid hyperpolarization. Muscle resting membrane potentials should be anywhere from -30 mV to -70 mV.
Adjust blue light so that dissected prep is centered in light beam.
Give 20-100 ms voltage pulses to control circuit. Incrementally increase voltage supplied to control circuit. Watch for excitatory junction potentials in the muscle cell (Figure 1B).
Representative Results:
Figure 1A shows a schematic of the recording setup and filleted preparation. Figure 1B shows typical EJP evoked by short light pulses. EJP amplitude shown is summed amplitude from two motor neurons known to both innervate M6. Lower light intensities only activated one motor unit (data not shown).
Figure 1: A) General schematic of an intracellular recording rig and with blue LED. Brain (Br) is removed to inhibit rhythmic activity in the ventral ganglion (VG). ChR2 is expressed in motor neurons using the GAL4-UAS system. B) Intracellular recording from a M6 muscle. 40 ms blue light pulses (at 127 µW / mm2) reliably evoke large synaptic potentials (asterisks) in M6.
Discussion
Critical steps involve both the initial dissection and the entering of muscle cells. If nerves are cut or muscle is damaged during the initial dissection it is difficult to continue the rest of the experiment. During dissection, one must be very careful to angle dissecting scissors upwards as much as possible during dorsal incision. During the second crucial step, entering a muscle cell, one must watch for a hyperpolarization past ~30 mV. Values above -30 mV indicate that the electrode is either not properly within a muscle cell or in an unhealthy cell.
Acknowledgments
This work was supported by National Institutes of Health grants RO1GM-33205 and MH-067284 to L.C. Griffith and by a Brandeis University summer undergraduate research scholarship to N. J. Hornstein. Preliminary experiments for this technique were performed at the Marine Biological Laboratory as part of the 2008 Neural Systems and Behavior summer course (NIMH grant: R25 MH059472) in Woods Hole, MA.
References
- Keshishian H, Broadie K, Chiba A, Bate M. The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu Rev Neurosci. 1996;19:545. [Abstract] [Google Scholar]
- Collins CA, DiAntonio A. Synaptic development: insights from Drosophila. Curr Opin Neurobiol. 2007;17(1):35. [Abstract] [Google Scholar]
- Lagow RD, et al. Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion. PLoS Biol. 2007;5(4):e72. [Abstract] [Google Scholar]
- Nagel G, et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 2005;15(24):2279. [Abstract] [Google Scholar]
- Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100(24):13940. [Europe PMC free article] [Abstract] [Google Scholar]
- Schroll C, et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol. 2006;16(17):1741. [Abstract] [Google Scholar]
- Lin DM, Auld VJ, Goodman CS. Targeted neuronal cell ablation in the Drosophila embryo: pathfinding by follower growth cones in the absence of pioneers. Neuron. 1995;14(4):707. [Abstract] [Google Scholar]
- Ralph Greenspan . Fly Pushing: The Theory and Practice of Drosophila Genetics, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004. [Google Scholar]
Articles from Journal of Visualized Experiments : JoVE are provided here courtesy of MyJoVE Corporation
Full text links
Read article at publisher's site: https://doi.org/10.3791/1133
Read article for free, from open access legal sources, via Unpaywall: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762902
Citations & impact
Impact metrics
Citations of article over time
Alternative metrics
Smart citations by scite.ai
Explore citation contexts and check if this article has been
supported or disputed.
https://scite.ai/reports/10.3791/1133
Article citations
Neural pathways and computations that achieve stable contrast processing tuned to natural scenes.
Nat Commun, 15(1):8580, 03 Oct 2024
Cited by: 1 article | PMID: 39362859 | PMCID: PMC11450186
Heterogeneity of synaptic connectivity in the fly visual system.
Nat Commun, 15(1):1570, 21 Feb 2024
Cited by: 4 articles | PMID: 38383614 | PMCID: PMC10882054
Probing Synaptic Transmission and Behavior in Drosophila with Optogenetics: A Laboratory Exercise.
J Undergrad Neurosci Educ, 16(3):A289-A295, 15 Sep 2018
Cited by: 8 articles | PMID: 30254546 | PMCID: PMC6153003
FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation.
J Vis Exp, (135), 24 May 2018
Cited by: 6 articles | PMID: 29889207 | PMCID: PMC6101380
Functional Imaging and Optogenetics in Drosophila.
Genetics, 208(4):1291-1309, 01 Apr 2018
Cited by: 52 articles | PMID: 29618589 | PMCID: PMC5887132
Review Free full text in Europe PMC
Go to all (17) article citations
Data
Similar Articles
To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.
Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila.
Adv Physiol Educ, 35(1):82-91, 01 Mar 2011
Cited by: 27 articles | PMID: 21386006 | PMCID: PMC3276384
Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae.
J Vis Exp, (24):1109, 06 Feb 2009
Cited by: 12 articles | PMID: 19229189 | PMCID: PMC2762897
Electrophysiological recording from Drosophila larval body-wall muscles.
Cold Spring Harb Protoc, 2010(9):pdb.prot5487, 01 Sep 2010
Cited by: 13 articles | PMID: 20810634
The drosophila neuromuscular junction: a model system for studying synaptic development and function.
Annu Rev Neurosci, 19:545-575, 01 Jan 1996
Cited by: 215 articles | PMID: 8833454
Review
Funding
Funders who supported this work.
NIGMS NIH HHS (1)
Grant ID: R01GM-33205
NIMH NIH HHS (5)
Grant ID: R01 MH067284
Grant ID: MH-067284
Grant ID: R01 MH067284-07
Grant ID: R25 MH059472
Grant ID: R01 MH067284-06A1