Supporting Information

Nosiheptide Biosynthesis Featuring a Unique Indole Side Ring Formation on a Characteristic Thiopeptide Framework

Yi Yu^{1,2}, Lian Duan¹, Qi Zhang¹, Rijing Liao¹, Ying Ding¹, Haixue Pan¹, Evelyn Wendt-Pienkowski³, Gongli Tang¹, Ben Shen³, and Wen Liu^{1,2}*

¹ State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai, 200032, China
² Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiaotong University, 1954 Huashan Rd., Shanghai, 200030, China

³ Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA

* To whom correspondence should be addressed: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai, 200032, China. Wen Liu, Email: wliu@mail.sioc.ac.cn, Tel: 86-21-54925111, Fax: 86-21-64166128

Strain/Plasmid/Primer	Characteristic(s) Reference	
E. coli		
DH5a	Host for general cloning	Invitrogen
LE392	Host for constructing the genomic library	Promega
ET12567	Donor strain for conjugation between E.coli and	(1)
	Streptomyces	
Streptomyces		
S. actuosus ATCC	Wild type strain, nosiheptide producing	ATCC
25421		
SL4001	∆nosG mutant, nosiheptide non-producing	This study
SL4002	△nosM mutant, nosiheptide non-producing	This study
SL4003	SL4002 derivative that contains pSL4020 for	This study
	expressing <i>nosM</i> in trans, nosiheptide producing	
SL4004	△nosH mutant, nosiheptide non-producing	This study
SL4005	AnosL mutant, nosiheptide non-producing	This study
SL4006	AnosN mutant, nosiheptide non-producing	This study
SL4007	△nosP mutant, nosiheptide non-producing	This study
Plasmids		
pMD19-T	E. coli subcloning vector	TaKaRa
pOJ446	E.coli-Streptomyces shuttle vector for construction	NRRL 14791
	of the genomic library	

Table S1.	Bacterial	strains	and	plasmids	used in	ı this	study
							•

pOJ260	E.coli-Streptomyces shuttle vector for gene	NRRL14785
	inactivation, nonreplicating in Streptomyces	
pKC1139	E.coli-Streptomyces shuttle vector for gene	(2)
	inactivation, temperature sensitive replication in	
	Streptomyces	
pSET152	<i>E.coli-Streptomyces</i> shuttle vector for heterologous	(2)
	complementation, site-specific integration in	
	Streptomyces	
pSL4001	pOJ446-based S. actuosus genomic library	This study
	cosmid	
pSL4002	pMD19-T derivative containing a 0.7 kb PCR	This study
	product from S. actuosus genomic DNA	
pSL4003	pOJ260 derivative containing a 0.7 kb fragment,	This study
	construct for <i>nosG</i> inactivation	
pSL4004	pMD19-T derivative containing a 2.2 kb PCR	This study
	product from pSL4001	
pSL4005	pMD19-T derivative containing a 2.1 kb PCR	This study
	product from pSL4001	
pSL4006	pKC1139 derivative containing a 4.3 kb fragment,	This study
	construct for <i>nosM</i> in-frame inactivation	
pSL4007	pMD19-T derivative containing a 1.8 kb PCR	This study
	product from pSL4001	

pSL4008	pMD19-T derivative containing a 2.0 kb PCR	This study
	product from pSL4001	
pSL4009	pKC1139 derivative containing a 3.8 kb fragment,	This study
	construct for <i>nosH</i> in-frame inactivation	
pSL4010	pMD19-T derivative containing a 2.0 kb PCR	This study
	product from pSL4001	
pSL4011	pMD19-T derivative containing a 1.9 kb PCR	This study
	product from pSL4001	
pSL4012	pKC1139 derivative containing a 3.9 kb fragment,	This study
	construct for <i>nosL</i> in-frame inactivation	
pSL4013	pMD19-T derivative containing a 1.9 kb PCR	This study
	product from pSL4001	
pSL4014	pMD19-T derivative containing a 1.8 kb PCR	This study
	product from pSL4001	
pSL4015	pKC1139 derivative containing a 3.7 kb fragment,	This study
	construct for <i>nosN</i> in-frame inactivation	
pSL4016	pMD19-T derivative containing a 1.9 kb PCR	This study
	product from pSL4001	
pSL4017	pMD19-T derivative containing a 2.0 kb PCR	This study
	product from pSL4001	
pSL4018	pKC1139 derivative containing a 3.9 kb fragment,	This study
	construct for <i>nosP</i> in-frame inactivation	

pSL4019	pMD19-T derivative containing a 0.5 kb PCR	This study
	product from pSL4001	
pSL4020	pSET152 derivative containing a 0.9 kb fragment,	This study
	construct for $\triangle nosM$ complementation in trans	

Table S2. Primers used in this study for in-frame deletion of *nosM*, *nosH*, *nosL*, *nosN* and *nosP* in *S. actuosus*.

Gene	Primers used in this study (5'-3')*
nosM	M-inf-Ls: CGACAAGCTTCAGGGAGCCGTTGAGGACG
	M-inf-La: GTG <u>TCTAGA</u> CCACCGGAAACCCCTTCCATGTC
	M-inf-Rs: TCCT <u>TCTAGA</u> GGAGACGGCGCCCTGTACCG
	M-inf-Ra: TCGA <u>GAATTC</u> GGTGGAACGCGCTTTCGG
nosH	H-inf-Ls: C <u>AAGCTT</u> CCTCAACGGCTCCCTGAAGTCC
	H-inf-La: G <u>TCTAGA</u> GCGGGTGAGGGTGTCGGTCAG
	H-inf-Rs: TCTAGAACCGACCTGCTGCCCTTCCTCAC
	H-inf-Ra: C <u>GAATTC</u> CGAAGGTCATCGGGATCAGGC
nosL	L-inf-Ls: C <u>AAGCTT</u> ACGCCCCGCAGGAAGAACC
	L-inf-La: <u>TCTAGA</u> ATTGCCTGGGAGTTCTGCG

	L-inf-Rs: TCTAGACGTCGACCACTTCGTGAACC
	L-inf-Ra: <u>GAATTC</u> GTGGTCGAGGGCGATGG
nosN	N-inf-Ls: C <u>AAGCTT</u> CCGTGCACCAGGTAGACGG
	N-inf-La: GA <u>TCTAGA</u> GAAAGGGATGTGCACATAGATCATC
	N-inf-Rs: TG <u>TCTAGA</u> GAGATGGCCATGTCCCAGC
	N-inf-Ra: C <u>GAATTC</u> GCAGATGCAGGATGTACCCC
nosP	P-inf-Ls: GGAC <u>AAGCTT</u> TTCAAGTCCCACCAGAAGGGCC
	P-inf-La: GCGA <u>GAATTC</u> AAGCGGTCCCAGGACATCG
	P-inf-Rs: CGAC <u>GAATTC</u> AACGTCACCTGGGACGTC
	P-inf-Ra: GGT <u>TCTAGA</u> TTCACCCTGAAGACCACGCTGG

* Restriction sites for HindIII (AAGCTT), XbaI (TCTAGA) and EcoRI (GAATTC) are double-underlined

Inactivation of nosG, nosM, nosH, nosL, nosN and nosP in S. actuosus

To inactivate *nosG*, the 0.7 kb ThioF-ThioR PCR product P1 (0.7 kb internal fragment of *nosG*, ref. *3*) was initially cloned into pMD19-T, yielding pSL4002. The 0.7 kb HindIII-XbaI fragment was recovered from pSL4002 and then cloned into the same sites of pOJ260, giving the recombinant plasmid pSL4003.

To inactivate *nosM*, a 2.2 kb fragment amplified by PCR using the primers M-inf-Ls/M-inf-La and a 2.1 kb fragment amplified by using the primers M-inf-Rs/M-inf-Ra were initially cloned into pMD19-T, giving pSL4004 and pSL4005, respectively. After sequencing to confirm the fidelity,

the 2.2 kb HindIII/XbaI and 2.1 kb XbaI/EcoRI fragments were recovered and co-ligated into the HindIII/EcoRI site of pKC1139, yielding the recombinant plasmid pSL4006, in which a 144 bp in-frame coding region (corresponding to AA₃-AA₅₀ of the deduced product NosM) of *nosM* was deleted.

To inactivate *nosH*, a 1.8 kb fragment amplified by PCR using the primers H-inf-Ls/H-inf-La and a 2.0 kb fragment amplified by using the primers H-inf-Rs/H-inf-Ra were initially cloned into pMD19-T, giving pSL4007 and pSL4008, respectively. After sequencing to confirm the fidelity, the 1.8 kb HindIII/XbaI and 2.0 kb XbaI/EcoRI fragments were recovered and co-ligated into the HindIII/EcoRI site of pKC1139, yielding the recombinant plasmid pSL4009, in which a 1761 bp in-frame coding region (corresponding to $AA_{26}-AA_{612}$ of the deduced product NosH) of *nosH* was deleted.

To inactivate *nosL*, a 2.0 kb fragment amplified by PCR using the primers L-inf-Ls/L-inf-La and a 1.9 kb fragment amplified by using the primers L-inf-Rs/L-inf-Ra were initially cloned into pMD19-T, giving pSL4010 and pSL4011, respectively. After sequencing to confirm the fidelity, the 2.0 kb HindIII/XbaI and 1.9 kb XbaI/EcoRI fragments were recovered and co-ligated into the HindIII/EcoRI site of pKC1139, yielding the recombinant plasmid pSL4012, in which a 1131 bp in-frame coding region (corresponding to AA₈-AA₃₈₅ of the deduced product NosL) of *nosL* was deleted.

To inactivate *nosN*, a 1.9 kb fragment amplified by PCR using the primers N-inf-Ls/N-inf-La and a 1.8 kb fragment amplified by using the primers N-inf-Rs/N-inf-Ra were initially cloned into pMD19-T, giving pSL4013 and pSL4014, respectively. After sequencing to confirm the fidelity, the 1.9 kb HindIII/XbaI and 1.8 kb XbaI/EcoRI fragments were recovered and co-ligated into the

HindIII/EcoRI site of pKC1139, yielding the recombinant plasmid pSL4015, in which a 1113 bp in-frame coding region (corresponding to AA_{15} - AA_{385} of the deduced product NosN) of *nosN* was deleted.

To inactivate *nosP*, a 1.9 kb fragment amplified by PCR using the primers P-inf-Ls/P-inf-La and a 2.0 kb fragment amplified by using the primers P-inf-Rs/P-inf-Ra were initially cloned into pMD19-T, giving pSL4016 and pSL4017, respectively. After sequencing to confirm the fidelity, the 1.9 kb HindIII/EcoRI and 2.0 kb EcoRI/XbaI fragments were recovered and co-ligated into the HindIII/XbaI site of pKC1139, yielding the recombinant plasmid pSL4018, in which a 912 bp in-frame coding region (corresponding to AA_{10} - AA_{314} of the deduced product NosP) of *nosP* was deleted.

Introduction of pSL4003, pSL4006, pSL4009, pSL4012, pSL4015 or pSL4018 into *S. actuosus* was carried out by *E. coli-Streptomyces* conjugation, following the procedure described previously (4). For inactivation of *nosG*, the colonies that were apramycin-resistant were identified as the recombinant strain SL4001, whose genotype was further confirmed by Southern hybridization. For inactivation of *nosM*, *nosH*, *nosL*, *nosN* and *nosP*, the colonies that were apramycin-resistant at 37°C were identified as the integrating mutants, in which a single-crossover homologous recombination event took place. These mutants were further cultured in liquid TSB medium for three rounds without the presence of apramycin. The genotypes of resulting strains that were apramycin-sensitive were confirmed by PCR amplification and sequencing, leading to the identification of the recombinant strain SL4002, SL4004, SL4005, SL4006 and SL4007, respectively.

In trans complementation of *nosM* for the nosiheptide production in *S. actuosus*

To make the *nosM* expression construct, a 0.5 kb PCR product containing *nosM* was amplified by PCR using the primers 5'-TCC<u>AAGCTT</u>ATGGTTAGCAGCGCTTTAGC-3' (HindIII site double-underlined) and 5'-TGG<u>TCTAGA</u>CCCAGTCGCAGAACGTGCAC-3' (XbaI site double-underlined) and cloned into pMD19-T, yielding pSL4019. The 0.5 kb HindIII/XbaI fragment was recovered from pSL4019 and co-ligated with a 0.4 kb EcoRI/HindIII fragment harboring the promoter *PermE** into the EcoRI/XbaI site of pSET152, yielding pSL4020, in which the 0.5 kb fragment containing *nosM* is under the control of the *PermE** promoter.

Introduction of pSL4020 into SL4002 was carried out by *E. coli-Streptomyces* conjugation, following the procedure described previously (4). Colonies that were apramycin resistant were identified as the recombinant strain SL4003.

Figure S1. HPLC analysis of nosiheptide (solid circle) production in the wild type strain (I) and the *nosG* mutant SL4001 (II).

References

- MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H., and MacNeil, T. (1992) Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector, *Gene 111*, 61-68.
- Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N., and Schoner, B. E. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. Gene *116*, 43-49.
- Liao, R., Duan, L., Lei, C., Pan, H., Ding, Y., Zhang, Q., Chen, D., Shen, B., Yu, Y., and Liu, W. (2009) Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications, *Chem. Biol. 16*, 141-147.
- Kieser, T., Bibb, M., Butter, M., Chater, K. F., and Hopwood, D. A. (2000) Practical Streptomyces Genetics, The John Innes Foundation, Norwich.