

Supplementary Figure 1

Supplementary Figure 1 T_{EM} do not convert to T_{CM} following secondary challenge. CD45.2 B6 mice were infected i.v. with 1×10^6 pfu of VSV-Indiana and 128 days later FACS-purified CD62L¹⁰ memory CD8 T cells were transferred into CD45.1 B6 mice. 1 day later mice were challenged with VSV-New Jersey. 107 days after transfer, the tetramer positive transferred cells were analyzed for CD62L expression in the spleen. Data shown are from gated tetramer positive CD8 T cells and are from two representative animals.

Supplementary Figure 2

Supplementary Figure 2 Increasing DC numbers results in enhanced T_{EM} generation. $1x10^5$ splenocytes from CD45.2 OT-I TCR transgenic mice were transferred into CD45.1 B6 mice, and infected with VSV-ova ($1x10^6$ pfu i.v.) 1 day later. Daily i.p. injections of FLT3-L (10ug) or PBS were given 4 days before infection and continued for 7 days. 67 days post infection the level of CD62L was examined on splenic OT-I T cells.

Supplementary Figure 3 Proposed model for the differentiation pathways of T_{CM} and T_{EM} cells. The model depicts the differentiation pathways of T_{CM} and T_{EM} cells generated from (a) high precursor frequency where naïve T cells after being activated generate primary effectors which differentiate into either T_{EM} which are stable or into transitional T_{EM} that have the capacity to convert to T_{CM} or (b) low precursor frequency where following naïve T cell activation primary effectors are produced which differentiate into stable T_{CM} and T_{EM} lineages.