Supporting Information

Stadinski et al. 10.1073/pnas.1006545107

IA⁹⁷ Insu Leader PGTEGQ	Ilin B:11–20(19 Peptide LREALYLV <u>A</u> E	A) Register #1 Linker QAGGGSLVPRGSGGGGS	IA ^{g7} β-chain ERHFVHQFK
IA⁹⁷ Insu Leader PGTEGQ	Ilin B:12–21(19 Peptide VRALYLV <u>A</u> GE	A) Register #2 Linker QAGGGSLVPRGSGGGGS	IA ^{g7} β-chain ERHFVHQFK
IA⁹⁷ Insu Leader PGTEGQ	Ilin B:13–22(19 Peptide ERLYLV <u>A</u> GEE	A) Register #3 Linker QAGGGSLVPRGSGGGGS	IA ^{g7} β-chain ERHFVHQFK
IA⁹⁷ Insu Leader PGTEGQ	ı lin B:14–23(19 Peptide ARYLVAGERE	A) Register #4 Linker QAGGGSLVPRGSGGGGS	IA ^{g7} β-chain ERHFVHQFK

Fig. S1. Baculovirus constructions for optimizing registers 1–4. Amino acid sequences (bold letters) of insulin B-chain analog minimal peptides are shown in the context of the baculovirus constructions. The sequence (nonbolded letters) of the linker attaching the peptide to the N-terminal end the $IA^{g7}\beta$ -chain is also shown as well as the C-terminal end of the leader peptide. The substitutions of p1R/p9E are shown in red. The change of B19Cys to Ala is underlined. In all four constructs, a Gln was added to the end of the leader peptide to ensure proper signal peptidase cleavage at the preceding Gly.

Fig. S2. Optimal amino acids for the p1 and p9 pockets of IA^{9^7} . (A) Details of the p1 pocket of IA^{9^7} with a bound HEL11-25 peptide (PDB ID code 1FJ3). The side chain of an Arg at p1 of the HEL peptide is shown filling the pocket with its guanidinium group forming a slat bridge to β 86Glu of IA^{9^7} . (B) Details of the p9 pocket of IA^{9^7} with a bound GAD207-220 peptide (PDB ID code 1ES0). The side chain of glutamic acid at p9 of the GAD peptide is shown filling the pocket making a salt bridge α 76Arg, which is unique to IA^{9^7} .

Fig. S3. Four B:9–23 reactive T cells tolerate a Cys-to-Ala substitution at insulin B19. Four anti-insulin (B:9–23) reactive T-cell hybridomas respond to soluble insulin B:9–23(C19A). The BDC 12-4.1, AS91, AS150, and I.29 T-cell hybridomas were stimulated with the insulin B:9–23 or the insulin B:9–23(C19A) peptide (50 μ g/mL) along with NOD spleen cells (1 × 106/well). Stimulation was assessed by the production of IL-2 determined by an HT-2 bioassay. Results are the average from duplicate wells from one experiment.

A - IA97 w/ Insulin B:12-23 "Register Trapped" Minimal Epitopes

B - IA97 w/ Insulin B:10-23 "Register Trapped" Peptides

Fig. S4. All of the IA⁹⁷ complexes containing various versions of insulin peptides express well on the surface of infected insect cells. Sf9 insect cells expressing the various IA⁹⁷-linked peptide complexes were stained with anti-IA⁹⁷ Ab (OX6-PE). Surface expression was evaluated by flow cytometry comparing infected insect cells (red) to uninfected insect cells (blue). (*A*) Minimum (B:12–23) epitopes for the 12-4.1 T cell. (*B*) Extended (B:10–23) epitopes. (*C*) Extended epitopes with engineered disulfides.

Taall	TCR Chain	TCR V Region		TCR J Region CDR		R3		
I cen			Arden	IMGT	IMGT	v	Junctio	n J
BDC 12-4.1	β	Va13 Vβ2	AV13S1 BV2S1	TRAV5D-4 TRBV1	TRAJ53*01 TRBJ2-7*01	CAAS CTCS	SGA PGLGK	NSGGSNYKLTFG EQYFG
AS91	α β	Va13 Vβ1	- BV6S1A1	TRAV5-1 TRBV5	TRAJ31*01 TRBJ2-5*01	CS CASS	RGN QLGGL	NNRIFFG DTQYFG
AS150	α β	Va10 Vβ2	AV10S8 BV2S1	TRAV13-1 TRBV1	TRAJ22*01 TRBJ1-6*01	CAI CTCS	ADQ	SSGSWQLIFG NSYNSPLYFA
I.29	α β	Va15 Vβ2	AV15S1 BV2S1	TRAV10 TRBV1	TRAJ53*01 TRBJ2-7*01	CAAS CTCS	PS AGLG	NSGGSNYKLTFG YEQYFG

Fig. S5. The TCRs expressed by four independent anti-insulin B:9–23-specific T cells. cDNA was prepared from four independent insulin B-chain-responsive T-cell hybridomas and used as template in a PCR with V α - and V β -specific 5' primers and either a C α or C β 3' primer. The PCR fragment was sequenced to determine the V α /J α or V β /J β gene segments used as well as the sequence of the V α and V β CDR3 loops. Shown are the common V α and V β names as well as the genes used as defined by both the Arden et al. (1) and ImMunoGeneTics (IMGT) (2) nomenclatures. The TCR J region segments are shown using the IMGT nomenclature.

1. Arden B, Clark SP, Kabelitz D, Mak TW (1995) Mouse T-cell receptor variable gene segment families. Immunogenetics 42:501-530.

2. Giudicelli V, et al. (2006) IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 34(Database issue): D781–D784.

IA ⁹⁷ HE	L 11–22								
Leader	Peptide	Linker	IA ⁹⁷ β-chain						
PGTEG	MKRHGLDNYRGY	GGGGSLVPRGSGGGGS	ERHFVHQFK						
-									
IA ⁹⁷ Insulin B:10-23									
Leader	Peptide	Linker	IA ^{g/} β-chain						
PGTEG	HLVEALYLVCGERG	AGGGGSLVPRGSGGGGS	ERHFVHQFK						
_									
IA ⁹⁷ Insulin B:10–23 Register #1									
Leader	Peptide	Linker	IA ⁹⁷ β-chain						
PGTEG	HLREALYLVCEERG	AGGGGSLVPRGSGGGGS	ERHFVHQFK						
IA ⁹⁷ Insulin B:10–23 Register #2									
Leader	Peptide	Linker	IA ^g / β-chain						
PGTEG	HLVRALYLVCGERG	AGGGGSLVPRGSGGGGS	ERHFVHQFK						
TAGT Inculin B.10, 32 Docistor #2									
IA ⁹ IIIS	Dentide	linker	TANZ O shain						
Leader	Рерше	LINKER	IA ⁹ p-chain						
PGIEG	HLVERLYLVCGEEG	AGGGGSLVPRGSGGGGS	ERHEVHQEK						
TA ⁹⁷ Insulin B:10–23 19A Register #3 P11 Cvs									
Leader	Pentide	Linker	ΙΔ ⁹⁷ β-chain						
DCTEC			EDHEVHOEK						

Fig. S6. Amino acid sequences (bold letters) of the hen egg lysozyme (HEL) 11–22 peptide and N-terminally extended insulin B-chain peptides are shown in the context of the baculovirus constructions. The sequences of the C-terminal end of the signal peptide and the linker attaching the peptide to the N-terminal end the IA⁹⁷ β -chain are also shown. The substitutions to create p1R/p9E are shown in red. In the last construct a change of B19Cys (position p6) to Ala is underlined, and the Cys replacing the Ala at the first position of the linker (equivalent to peptide p11, orange).

PNAS PNAS