Improved side-chain torsion potentials for the Amber ff99SB protein force field

Supporting Information

Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L. Klepeis, Ron O. Dror, and David E. Shaw

Torsion energy profiles for Ile, Leu, Asp and Asn. Four files, one for each amino acid, (e_torsion_ile.txt, e_torsion_leu.txt, e_torsion_asp.txt and e_torsion_asn.txt) are provided. In these files, energies (in units of kcal mol⁻¹) are reported as a function of the χ_1 and χ_2 angles. These energies were calculated *ab initio* at the LMP2 level of theory, as well as using the Amber ff99SB force field and the force field containing the improved torsion potentials derived in this study (amber99SB-ILDN). Differences between *ab initio* and force field energies are also reported.

NMR ³J scalar couplings used for the validation of the amber99SB-ILDN torsion potentials. Four files (gb3_3j.txt, ubq_3j.txt, bpti_3j.txt, hewl_3j.txt) are provided containing the side-chain ³J scalar couplings used for the validation of the amber99SB-ILDN torsion potentials. Each file contains the experimentally-measured couplings for one of the four proteins used for the validation (GB3, Ubiquitin, BPTI and hen egg white lysozyme) and is reported together with the values calculated in MD simulations using the amber99SB and amber99SB-ILDN force fields. Rotamer distributions in the PDB and MD simulations of helical peptides. The file

rotamers.txt contain the rotamer distribution (for the χ_1 dihedral) observed for residues in helices in the PDB as well as in simulations of the poly-alanine-based peptides described in this manuscript.

CAPPED ISOLEUCINE PEPTIDE Calculated energies (kcal/mol) as a function of chi1 and chi2 angles # # # NOTE: chi1 is defined as N-CA-CB-CG2 # # Eqm is the ab initio LMP2 energy Emm is the Amber99SB energy # # Emod is the modified Amber99SB energy # # chi1 Emod Eqm-Emod chi2 Eqm Emm Eqm-Emm -60.0 67.0 4.483 3.636 0.847 4.578 -0.096 81.0 -60.0 4.588 3.340 1.247 4.454 0.134 97.0 -60.0 5.033 3.667 1.366 4.743 0.290 114.0 -60.0 5.370 4.369 1.001 5.134 0.236 131.0 -60.0 5.086 4.671 0.415 4.940 0.146 147.0 -60.0 3.394 3.375 0.020 3.145 0.249 162.0 -60.0 -0.283 0.308 1.262 1.545 0.954 176.0 -60.0 0.475 -0.667 0.087 1.141 0.388 -60.0 -170.0 1.756 2.563 -0.807 -0.099 1.854 -156.0 -60.0 3.736 4.637 -0.901 4.172 -0.435 -142.0 -60.0 6.137 6.656 -0.519 6.576 -0.439 -127.0 -60.0 7.242 7.258 -0.016 7.652 -0.410 -111.0 -60.0 6.703 -0.305 7.236 0.533 7.541 -95.0 -60.0 6.414 5.071 1.343 6.166 0.248 -80.0 -60.0 4.660 3.121 1.540 4.228 0.432 -67.0 -60.0 3.168 1.517 1.652 2.459 0.709 -54.0 -60.0 2.443 1.363 1.080 2.018 0.426 -39.0 -60.0 3.818 3.337 0.480 3.592 0.226 -24.0 -60.0 6.750 6.918 -0.168 6.808 -0.059 10.083 -8.0 -60.0 -0.567 9.516 9.742 -0.226 -60.0 10.317 9.0 10.016 -0.301 9.984 0.033 26.0 -60.0 8.056 8.608 -0.553 8.541 -0.486 41.0 -60.0 5.922 6.550 -0.628 6.858 -0.936 52.0 -60.0 5.314 5.149 0.165 5.752 -0.438 71.0 60.0 1.170 0.106 1.065 1.114 0.056 84.0 60.0 2.726 1.672 1.054 2.798 -0.073 100.0 0.770 60.0 4.233 3.463 4.503 -0.270 116.0 60.0 4.714 0.650 5.428 -0.064 5.364 -0.570 134.0 60.0 5.415 5.812 -0.397 5.985 150.0 60.0 4.301 -1.381 5.369 -1.067 5.682 164.0 60.0 3.110 4.966 -1.856 4.339 -1.230 178.0 60.0 3.223 4.547 -1.325 3.787 -0.564 -169.0 60.0 3.621 4.900 -1.279 4.203 -0.581 -154.0 4.744 5.412 -0.668 4.995 -0.251 60.0 -140.0 60.0 5.851 5.740 0.111 5.722 0.129 -124.0 60.0 5.823 5.458 0.365 5.944 -0.121 -108.0 60.0 5.102 3.416 1.686 4.318 0.783 -92.0 4.077 1.195 60.0 1.766 2.311 2.882 -78.0 60.0 4.365 1.228 3.137 2.320 2.045 -65.0 60.0 4.508 3.469 1.039 4.373 0.135

-52.0	60.0	5.130	5.211	-0.081	5.814	-0.684
-39.0	60.0	5.786	6.846	-1.060	7.100	-1.315
-24.0	60.0	6.764	8.259	-1.495	8.150	-1.385
-8.0	60.0	8.482	9.226	-0.744	8.885	-0.403
11.0	60.0	8.157	9.071	-0.913	8.756	-0.599
28.0	60.0	5.435	5.695	-0.260	5.673	-0.238
43.0	60.0	2.808	1.859	0.949	2.221	0.587
55.0	60.0	1.252	-0.005	1.257	0.674	0.577
70.0	178.0	1.117	0.619	0.498	1.612	-0.496
84.0	178.0	2.167	1.660	0.507	2.786	-0.619
99.0	178.0	3.957	3.317	0.640	4.370	-0.413
115.0	178.0	5.021	4.584	0.437	5.324	-0.303
133.0	178.0	4.786	4.519	0.267	4.724	0.063
149.0	178.0	3.110	3.142	-0.032	2.856	0.253
164.0	178.0	1.302	1.631	-0.329	1.005	0.297
178.0	178.0	0.000	0.864	-0.864	0.104	-0.104
-168.0	178.0	0.557	1.208	-0.651	0.523	0.034
-154.0	178.0	1.791	2.274	-0.483	1.856	-0.065
-140.0	178.0	3.446	3.483	-0.037	3.465	-0.019
-125.0	178.0	4.362	4.141	0.221	4.597	-0.235
-108.0	178.0	4.198	3.466	0.732	4.368	-0.170
-93.0	178.0	2.970	1.808	1.162	2.918	0.052
-78.0	178.0	1.669	0.363	1.306	1.455	0.214
-65.0	178.0	1.211	0.028	1.183	0.932	0.278
-51.0	178.0	1.839	1.139	0.700	1.716	0.123
-39.0	178.0	3.179	2.894	0.285	3.149	0.031
-24.0	178.0	4.776	5.197	-0.421	5.088	-0.311
-7.0	178.0	6.089	6.854	-0.765	6.506	-0.417
11.0	178.0	6.068	6.864	-0.796	6.550	-0.482
28.0	178.0	4.331	5.066	-0.736	5.044	-0.713
43.0	178.0	2.342	2.669	-0.327	3.032	-0.689
55.0	178.0	1.275	1.135	0.140	1.815	-0.540

CAPPED LEUCINE PEPTIDE # Calculated energies (kcal/mol) as a function of chi1 and chi2 angles # NOTE: chi1 is defined as C-CA-CB-CG # Eqm is the ab initio LMP2 energy # Emm is the Amber99SB energy # Emod is the modified Amber99SB energy # # chi1 Eqm Emod Eqm-Emod chi2 Eqm-Emm Emm 76.0 -60.0 3.004 3.151 -0.147 3.459 -0.455 91.0 -60.0 3.320 2.848 0.471 3.148 0.172 104.0 -60.0 3.687 2.884 0.804 3.096 0.591 118.0 -60.0 3.770 3.326 0.444 3.336 0.433

110.0	00.0	5.770	5.520	0.111	5.550	0.400
133.0	-60.0	3.214	3.221	-0.007	2.905	0.309
150.0	-60.0	1.801	2.137	-0.337	1.408	0.393
165.0	-60.0	0.226	0.855	-0.630	-0.158	0.384
180.0	-60.0	0.000	1.050	-1.050	-0.070	0.070
-165.0	-60.0	1.413	3.087	-1.673	2.074	-0.660
-151.0	-60.0	3.603	5.964	-2.360	5.212	-1.608
-135.0	-60.0	5.751	8.537	-2.786	8.173	-2.422
-121.0	-60.0	6.765	9.488	-2.723	9.441	-2.676
-106.0	-60.0	6.937	8.779	-1.842	8.970	-2.033
-91.0	-60.0	5.683	7.190	-1.507	7.490	-1.806
-77.0	-60.0	4.496	5.140	-0.643	5.450	-0.953
-63.0	-60.0	2.889	3.064	-0.175	3.346	-0.457
-51.0	-60.0	2.456	1.946	0.510	2.205	0.251
-40.0	-60.0	3.508	3.048	0.460	3.300	0.208
-28.0	-60.0	6.037	5.966	0.071	6.229	-0.191
-11.0	-60.0	8.316	8.617	-0.301	8.903	-0.587
10.0	-60.0	8.361	8.628	-0.267	8.915	-0.554
29.0	-60.0	6.133	6.874	-0.742	7.136	-1.003
45.0	-60.0	3.845	5.063	-1.218	5.316	-1.471
59.0	-60.0	3.489	3.256	0.232	3.529	-0.040
75.0	60.0	2.801	2.509	0.292	2.816	-0.015
90.0	60.0	3.861	2.817	1.044	3.119	0.742
104.0	60.0	4.130	3.206	0.924	3.418	0.711
119.0	60.0	4.200	3.604	0.596	3.595	0.605
136.0	60.0	3.769	4.345	-0.576	3.956	-0.187
152.0	60.0	2.940	4.236	-1.296	3.462	-0.522
166.0	60.0	2.369	4.034	-1.665	3.007	-0.638
180.0	60.0	2.798	4.425	-1.627	3.305	-0.507
-166.0	60.0	4.119	5.973	-1.853	4.946	-0.827
-152.0	60.0	5.607	7.794	-2.188	7.020	-1.413
-137.0	60.0	7.209	9.083	-1.874	8.669	-1.461
-121.0	60.0	7.578	9.314	-1.736	9.267	-1.689
-107.0	60.0	7.130	8.153	-1.023	8.332	-1.202
-94.0	60.0	6.487	6.495	-0.008	6.783	-0.296
-82.0	60.0	6.037	5.619	0.418	5.933	0.104
-69.0	60.0	5.650	5.279	0.371	5.575	0.076
-53.0	60.0	5.768	5.672	0.096	5.933	-0.165
-37.0	60.0	6.026	5.957	0.069	6.211	-0.185
-23.0	60.0	7.252	7.292	-0.040	7.561	-0.310
-7.0	60.0	9.041	8.787	0.254	9.077	-0.036
13.0	60.0	8.866	8.577	0.289	8.861	0.005

32.0	60.0	6.450	6.279	0.171	6.537	-0.087
46.0	60.0	3.699	3.859	-0.161	4.113	-0.414
58.0	60.0	3.056	2.073	0.983	2.343	0.713
72.0	178.0	0.759	0.670	0.089	0.972	-0.213
87.0	178.0	2.402	2.104	0.297	2.414	-0.012
102.0	178.0	3.674	3.475	0.199	3.707	-0.033
119.0	178.0	4.208	4.120	0.088	4.112	0.096
136.0	178.0	3.858	4.465	-0.607	4.076	-0.218
152.0	178.0	3.060	4.473	-1.413	3.699	-0.639
166.0	178.0	2.728	4.624	-1.896	3.597	-0.870
180.0	178.0	3.352	5.366	-2.014	4.246	-0.894
-167.0	178.0	4.516	6.585	-2.069	5.545	-1.029
-154.0	178.0	5.762	7.735	-1.973	6.917	-1.155
-139.0	178.0	6.700	8.513	-1.814	8.050	-1.350
-122.0	178.0	6.862	8.123	-1.261	8.056	-1.194
-108.0	178.0	5.574	5.941	-0.367	6.108	-0.534
-95.0	178.0	4.700	4.091	0.610	4.373	0.327
-83.0	178.0	4.458	3.790	0.667	4.103	0.354
-70.0	178.0	4.816	4.647	0.169	4.945	-0.129
-54.0	178.0	5.465	5.778	-0.312	6.040	-0.575
-36.0	178.0	6.160	6.749	-0.589	7.004	-0.843
-19.0	178.0	6.940	7.328	-0.388	7.604	-0.664
-2.0	178.0	7.828	7.669	0.159	7.961	-0.133
17.0	178.0	6.600	6.683	-0.083	6.961	-0.361
34.0	178.0	3.966	4.038	-0.071	4.293	-0.327
47.0	178.0	1.518	1.380	0.138	1.635	-0.117
58.0	178.0	0.491	-0.001	0.492	0.269	0.222

CAPPED ASPARTATE PEPTIDE # Calculated energies (kcal/mol) as a function of chi1 and chi2 angles # # NOTE: chi1 is defined as N-CA-CB-CG # # Eqm is the ab initio LMP2 energy # Emm is the Amber99SB energy # Emod is the modified Amber99SB energy # # chi1 Eqm-Emm chi2 Eqm Emod Eqm-Emod Emm -150.0 -120.0 8.534 2.796 5.738 6.807 1.727 -120.0 -120.0 14.990 11.938 3.052 12.484 2.506 -90.0 -120.0 12.540 12.056 0.485 13.061 -0.521 -60.0 -120.0 8.339 10.295 -1.956 -0.112 8.451 -30.0 -120.0 7.710 11.367 -3.657 7.471 0.240 -0.0 -120.0 9.559 13.003 -3.444 8.792 0.767 30.0 -120.0 12.704 -0.929 13.632 9.736 2.968 60.0 -120.0 14.472 13.698 0.775 11.853 2.619 90.0 -120.0 12.132 12.795 -0.663 13.800 -1.668 10.966 120.0 -120.0 10.540 -0.426 11.511 -0.971 150.0 -120.0 5.238 5.076 0.162 6.145 -0.907 178.0 -120.0 1.769 1.052 0.717 1.667 0.102 -150.0 -30.0 1.230 1.595 -0.365 1.830 -0.600 -120.0 -30.0 7.969 8.218 -0.249 7.930 0.039 -90.0 -30.0 11.940 11.691 0.249 11.863 0.077 -60.0 -30.0 9.877 13.356 10.678 -0.801 -3.479 -30.0 -30.0 11.209 15.879 -4.670 11.149 0.061 0.0 -30.0 12.290 17.035 -4.74411.990 0.300 30.0 -30.0 7.481 12.473 -4.992 7.743 -0.262 60.0 -30.0 7.997 10.470 -2.473 7.793 0.204 90.0 -30.0 15.868 15.334 0.534 15.506 0.362 120.0 -30.0 15.573 17.985 -2.411 17.697 -2.124 -4.987 150.0 -30.0 7.671 12.423 -4.752 12.658 -1.540 178.0 -30.0 3.264 4.804 4.586 -1.321 -150.0 178.0 1.187 1.504 -0.318 0.836 0.350 178.0 -120.0 10.348 10.315 0.033 9.124 1.224 -90.0 178.0 12.686 13.936 13.205 -1.250 -0.519 178.0 -60.0 9.659 14.455 -4.796 10.874 -1.215 -30.0 178.0 11.247 16.762 -5.515 11.128 0.119 0.0 178.0 10.253 16.763 -6.511 10.816 -0.563 30.0 178.0 7.160 13.036 -5.876 7.402 -0.242 60.0 13.088 9.507 178.0 10.678 -2.410 1.171 90.0 178.0 16.914 17.911 -0.997 17.179 -0.265 11.715 -6.769 120.0 178.0 18.483 17.292 -5.578 150.0 178.0 6.888 10.371 9.703 -3.483 -2.815 178.0 178.0 0.799 1.965 -1.166 0.843 -0.044 -150.0 0.0 1.392 1.717 -0.325 1.043 0.348 -120.0 0.0 10.886 10.740 0.146 9.543 1.343 -90.0 0.0 12.771 14.087 -1.315 13.350 -0.579 -60.0 0.0 9.651 14.472 -4.821 10.886 -1.234 -30.0 0.0 11.225 -5.531 16.756 11.117 0.108 0.0 0.0 10.157 16.714 -6.557 10.760 -0.603 12.999 30.0 0.0 7.284 -5.716 7.360 -0.077

60.0	0.0	11.298	13.656	-2.358	10.070	1.228
90.0	0.0	16.897	17.943	-1.045	17.206	-0.309
120.0	0.0	11.737	18.450	-6.714	17.254	-5.517
150.0	0.0	6.821	10.594	-3.773	9.921	-3.100
178.0	0.0	0.748	2.223	-1.475	1.096	-0.348
-150.0	-150.0	4.831	3.815	1.016	4.051	0.780
-120.0	-150.0	13.845	12.546	1.299	12.258	1.587
-90.0	-150.0	12.888	14.182	-1.294	14.354	-1.467
-60.0	-150.0	9.406	13.250	-3.844	10.573	-1.167
-30.0	-150.0	9.344	14.539	-5.194	9.809	-0.464
0.0	-150.0	8.741	14.004	-5.263	8.959	-0.219
30.0	-150.0	9.541	13.308	-3.767	8.578	0.963
60.0	-150.0	14.552	15.424	-0.872	12.746	1.806
90.0	-150.0	14.048	16.773	-2.725	16.945	-2.897
120.0	-150.0	10.164	14.246	-4.082	13.959	-3.794
150.0	-150.0	5.095	6.169	-1.074	6.405	-1.309
178.0	-150.0	0.000	-0.001	0.001	-0.219	0.219
-150.0	-60.0	4.064	3.259	0.805	4.328	-0.264
-120.0	-60.0	8.694	7.170	1.524	7.715	0.978
-90.0	-60.0	11.422	9.401	2.021	10.407	1.016
-60.0	-60.0	9.088	10.767	-1.679	8.923	0.166
-30.0	-60.0	9.949	13.491	-3.542	9.594	0.355
0.0	-60.0	12.955	15.346	-2.391	11.135	1.820
30.0	-60.0	10.300	12.138	-1.838	8.241	2.059
60.0	-60.0	7.230	9.158	-1.928	7.314	-0.084
90.0	-60.0	13.626	11.995	1.631	13.000	0.626
120.0	-60.0	16.341	14.731	1.610	15.277	1.065
150.0	-60.0	8.934	10.622	-1.689	11.691	-2.757
178.0	-60.0	4.692	5.098	-0.406	5.713	-1.021
-150.0	-90.0	7.845	5.252	2.593	6.404	1.441
-120.0	-90.0	13.024	9.696	3.328	10.325	2.699
-90.0	-90.0	11.905	10.008	1.898	11.096	0.809
-60.0	-90.0	7.830	9.061	-1.230	7.300	0.530
-30.0	-90.0	8.010	11.338	-3.328	7.524	0.485
-0.0	-90.0	11.147	13.904	-2.757	9.776	1.371
30.0	-90.0	13.238	12.853	0.385	9.040	4.199
60.0	-90.0	11.122	10.633	0.489	8.872	2.249
90.0	-90.0	12.265	10.802	1.463	11.890	0.374
120.0	-90.0	13.262	11.444	1.817	12.074	1.188
150.0	-90.0	7.268	7.327	-0.059	8.479	-1.211
178.0	-90.0	4.265	3.583	0.681	4.282	-0.017

CAPPED ASPARAGINE PEPTIDE # Calculated energies (kcal/mol) as a function of chi1 and chi2 angles # # NOTE: chi1 is defined as C-CA-CB-CG # chi2 is defined as CA-CB-CG-ND # # Eqm is the ab initio LMP2 energy # Emm is the Amber99SB energy # Emod is the modified Amber99SB energy # # chi1 chi2 Eqm Emm Eqm-Emm Emod Eqm-Emod 85.0 -120.0 5.993 -1.809 4.361 -0.177 4.184 117.0 -120.0 -2.744 8.839 11.583 9.774 -0.936 151.0 -120.0 7.547 11.215 -3.668 8.786 -1.239 178.0 -120.0 4.440 8.660 -4.220 4.787 -0.347 -155.0 -120.0 5.090 9.592 -4.502 6.904 -1.814 -124.0 -120.0 6.658 11.317 -4.658 9.550 -2.892 -95.0 -120.0 7.039 10.076 -3.037 8.318 -1.279 -66.0 -120.0 6.330 9.263 -2.932 7.857 -1.526 -34.0 -120.0 9.028 -3.475 7.566 5.552 -2.013 -1.0 -120.0 5.637 8.367 -2.730 6.072 -0.435 31.0 -120.0 2.960 4.247 -1.287 2.713 0.247 55.0 -120.0 0.397 1.757 -1.360 0.438 -0.041 87.0 -30.0 5.509 11.512 8.371 -6.003 -2.862 119.0 -30.0 9.096 14.382 -5.286 11.102 -2.006 150.0 -30.0 4.034 10.434 -6.400 6.582 -2.547179.0 -30.0 0.000 5.437 -5.437 0.073 -0.073 -154.0 8.744 -5.091 -30.0 3.653 4.640 -0.987 -3.096 -127.0 -30.0 9.532 15.869 -6.337 12.629 -93.0 -30.0 7.606 15.235 -7.628 12.016 -4.410 -64.0 -30.0 6.017 10.832 -4.815 7.962 -1.945 -37.0 -30.0 -2.918 5.146 8.064 5.178 -0.032 -7.0 -30.0 7.827 9.647 -1.821 5.929 1.898 10.088 27.0 -30.0 7.399 -2.689 6.956 0.443 58.0 -30.0 5.659 9.353 -3.693 6.532 -0.873 83.0 178.0 0.825 0.913 -0.088 0.317 0.508 115.0 178.0 5.674 7.087 6.276 -0.603 -1.414 151.0 178.0 6.851 10.052 -3.201 8.633 -1.7816.185 -179.0 178.0 10.523 -4.338 7.651 -1.466 -152.0 178.0 8.556 12.737 -4.181 11.255 -2.699 -123.0 178.0 10.551 13.625 -3.074 12.862 -2.312 -92.0 178.0 6.874 9.863 -2.989 9.150 -2.276 -1.470 -68.0 178.0 6.480 7.950 7.532 -1.052 -41.0 178.0 10.568 12.465 -1.897 12.128 -1.560 -4.0 178.0 9.355 -3.922 12.010 13.277 -2.655 32.0 178.0 5.150 7.265 -2.114 6.765 -1.615 59.0 178.0 0.611 1.320 -0.709 0.985 -0.374 88.0 0.0 6.647 13.077 -6.429 9.309 -2.662 118.0 13.048 9.149 0.0 5.686 -7.361 -3.463 151.0 0.0 1.152 5.756 -4.604 1.231 -0.079 0.0 -5.629 180.0 0.930 6.559 0.579 0.350 -155.0 0.0 7.349 14.737 -7.388 9.953 -2.605 -124.0 0.0 10.125 20.363 -10.238 16.501 -6.376

-91.0	0.0	9.346	16.818	-7.472	13.012	-3.666
-65.0	0.0	2.554	7.207	-4.654	3.715	-1.162
-40.0	0.0	5.769	8.802	-3.033	5.349	0.420
-9.0	0.0	9.715	13.842	-4.126	9.549	0.166
31.0	0.0	8.815	14.864	-6.049	11.234	-2.419
59.0	0.0	5.526	12.540	-7.014	9.100	-3.574
82.0	-150.0	2.362	4.019	-1.656	3.326	-0.964
117.0	-150.0	7.722	10.415	-2.694	9.506	-1.785
151.0	-150.0	7.925	11.469	-3.544	9,940	-2.015
179.0	-150.0	5.890	10.337	-4.447	7.356	-1.466
-154 0	-150 0	7 178	11 630	-4 451	9 909	-2 731
-123 0	-150 0	8 594	12 103	-3 509	11 232	-2 637
-94 0	-150.0	6 912	9 867	-2 954	9 020	-2 108
-69 0	-150.0	7 821	10 062	-2 241	9 525	-1 704
-37 0	-150.0	8 108	11 703	-3 595	11 201	-3 093
-2 0	-150.0	6 876	10 477	-3 601	9 085	-2 209
32 0	-150.0	3 5 9 1	5 004	_1 423	1 395	_0 915
52.0	-150.0	0.038	-0 002	-1.423	-0 433	-0.813
57.0 0E 0	120.0	1 752		0.040	-0.452	1 000
112 0	120.0	2.755	Z.Z93 E E10	1 002		1.090
140 0	120.0	3.616	5.519	-1.903	2.009	-0.073
170 0	120.0	4 222	7.005	-3.414	4.02/	-1.138
1 1 9.0	120.0	4.323	0.052	-4.329	4.771	-0.448
-151.0	120.0	6.230	12.625	-5.396	9.196	-2.967
-120.0	120.0	7.552	12.346	-4.795	10.557	-3.005
-90.0	120.0	5.066	8.806	-3.741	7.109	-2.043
-64.0	120.0	2.909	5.789	-2.880	4.402	-1.493
-38.0	120.0	7.734	9.411	-1.677	8.025	-0.291
-7.0	120.0	11.033	13.089	-2.056	10.853	0.179
29.0	120.0	6.263	9.433	-3.170	7.844	-1.581
58.0	120.0	2.353	3.738	-1.384	2.401	-0.048
87.0	-60.0	5.159	7.316	-2.158	5.412	-0.254
117.0	-60.0	7.929	11.586	-3.658	9.532	-1.603
150.0	-60.0	6.835	9.895	-3.060	7.280	-0.445
179.0	-60.0	2.465	6.504	-4.039	2.378	0.088
-154.0	-60.0	2.273	6.499	-4.226	3.632	-1.359
-126.0	-60.0	6.357	9.804	-3.447	7.799	-1.442
-92.0	-60.0	6.959	10.841	-3.882	8.873	-1.914
-63.0	-60.0	3.923	7.954	-4.031	6.330	-2.407
-36.0	-60.0	5.770	7.392	-1.621	5.725	0.045
-4.0	-60.0	6.871	7.162	-0.291	4.639	2.231
29.0	-60.0	4.627	4.582	0.046	2.747	1.881
56.0	-60.0	4.028	4.407	-0.379	2.837	1.191
84.0	90.0	2.266	2.327	-0.061	1.139	1.128
113.0	90.0	3.502	4.572	-1.070	3.172	0.330
149.0	90.0	3.475	6.054	-2.579	4.173	-0.697
178.0	90.0	3.353	6.749	-3.396	3.306	0.047
-152.0	90.0	6.289	10.642	-4.353	8.581	-2.291
-119.0	90.0	5.553	10.433	-4.881	9.067	-3.515
-90.0	90.0	3.676	6.040	-2.364	4.773	-1.097
-65.0	90.0	3.935	5.063	-1.128	4.097	-0.162
-36.0	90.0	6.463	8.182	-1.718	7.191	-0.728
-4.0	90.0	10.174	11.333	-1.160	9.487	0.687
29.0	90.0	6.059	8.244	-2.186	7.086	-1.027
56.0	90.0	2.261	3.717	-1.456	2.823	-0.562

85.0	60.0	2.224	3.778	-1.554	1.900	0.324
115.0	60.0	2.062	2.758	-0.696	0.692	1.370
148.0	60.0	3.110	4.532	-1.422	2.031	1.079
179 0	60 0	3 556	8 769	-5 213	4 642	-1 086
-155 0	60.0	6 864	12 332	-5 468	9 3 9 8	-2 534
_119 0	60.0	6 975	12.352	-5 234	10 067	_3 192
-119.0	60.0	0.075	12.109	2 010	10.007	-3.192
-91.0	60.0	2.034	4.004	-2.010	2.109	-0.034
-68.0	60.0	3.695	3.945	-0.250	2.273	1.422
-37.0	60.0	8.601	9.628	-1.02/	7.980	0.621
-3.0	60.0	8.997	12.061	-3.064	9.530	-0.533
31.0	60.0	7.290	9.225	-1.935	7.445	-0.155
56.0	60.0	2.178	4.667	-2.489	3.097	-0.920
85.0	150.0	0.534	1.681	-1.147	0.949	-0.415
113.0	150.0	3.744	6.122	-2.378	5.192	-1.448
150.0	150.0	5.011	8.322	-3.311	6.853	-1.842
-179.0	150.0	5.377	10.021	-4.645	7.040	-1.664
-152.0	150.0	7.664	12.454	-4.789	10.862	-3.198
-122.0	150.0	9.308	13.709	-4.402	12.832	-3.525
-91.0	150.0	6.715	9.696	-2.981	8.886	-2.171
-66.0	150.0	4.395	6.720	-2.325	6.214	-1.819
-41.0	150.0	9.675	11.271	-1.596	10.825	-1.150
-7.0	150.0	11.198	14.160	-2.962	12.825	-1.627
30.0	150.0	5.620	9.290	-3.670	8.629	-3.009
59.0	150.0	2.110	2.662	-0.552	2.218	-0.108
85.0	-90.0	5.273	6.249	-0.976	5.047	0.226
117.0	-90.0	8.381	10.944	-2.563	9.565	-1.184
149 0	-90 0	6 659	9 665	-3 006	7 784	-1 125
178.0	-90.0	3.322	6.744	-3.422	3.301	0.021
-155 0	-90 0	3 597	7 721	-4 124	5 463	-1 866
-126 0	-90.0	5 832	8 960	-3 127	7 631	-1 799
-94 0	-90.0	6 607	9 173	-2 565	7.856	-1 249
-64 0	-90.0	A 742	6 335	_1 593	5 378	-0 637
24.0	- 90.0	4.742	6 000	-1.393 2 107	5.570	-0.037
-34.0	- 90.0	4.395	7 100	-2.407	5.850	-1.455
-3.0	-90.0	0.107	7.100	-0.913	2.245	0.942
50.0	-90.0	3.145	3.744	-0.599	2.013	0.532
55.0	-90.0	1.558	2.194	-0.636	1.306	0.252
86.0	30.0	3.511	8.362	-4.851	5.233	-1./23
117.0	30.0	2.279	6.617	-4.338	3.325	-1.046
150.0	30.0	0.923	4.026	-3.103	0.173	0.750
179.0	30.0	4.144	8.512	-4.368	3.148	0.997
-154.0	30.0	7.651	16.086	-8.435	11.982	-4.331
-124.0	30.0	9.993	18.084	-8.092	14.834	-4.841
-89.0	30.0	3.376	8.739	-5.363	5.571	-2.195
-68.0	30.0	2.493	4.407	-1.915	1.497	0.995
-41.0	30.0	7.133	9.582	-2.449	6.753	0.380
-4.0	30.0	11.096	15.607	-4.511	11.847	-0.751
31.0	30.0	7.934	13.429	-5.495	10.411	-2.477
60.0	30.0	5.002	9.277	-4.275	6.442	-1.440

Scalar coupling data for GB3 # # HA-CA-CB-HB couplings # Column 1: Residue number # Column 2: Four atoms that define the dihedral, each labelled by atom name # Column 3: Experimental scalar coupling # Column 4: Calculated scalar coupling from ff99SB simulation # Column 5: Calculated scalar coupling from ff99SB-ILDN simulation # 3 HA CA CB HB2 11.81 10.82 10.82 3 HA CA CB HB3 1.95 3.42 3.43 8 HA CA CB HB2 6.09 3.26 7.36 8 HA_CA_CB HB3 7.07 10.59 6.62 22 HA CA CB HB2 3.99 4.04 3.25 22 HA CA CB HB3 2.13 8.91 5.06 30 HA_CA_CB_HB2 11.33 10.58 10.56 30 HA CA CB HB3 0.75 2.68 2.67 35 HA CA CB HB2 7.92 3.76 5.06 35 HA CA CB HB3 7.15 10.49 9.05 37 HA CA CB HB2 12.27 8.48 10.40 37 HA CA CB HB3 1.94 4.73 3.18 40 HA CA CB HB2 3.64 3.30 4.15 10.18 10.57 9.16 40 HA_CA_CB_HB3 11.13 10.59 10.60 43 HA CA CB HB2 1.78 2.75 2.75 4.41 3.68 3.66 11.18 10.80 10.80 3.41 3.90 3.86 43 HA CA CB HB3 45 HA CA CB HB2 45 HA CA CB_HB3 46 HA CA CB HB2 3.41 3.90 3.86 46 HA_CA_CB_HB3 11.81 10.74 10.70 3.58 2.96 3.02 47 HA_CA_CB_HB2 47 HA CA CB HB3 11.10 10.45 10.35 # # # N/C'-CA-CB-CG couplings, for residues where CG is a methyl # Column 1: Residue number # Column 2: Residue-name and first & last atom for dihedral (e.g. VAL CCG1 means C'-CA-CG-CG1 in a Valine) # Column 3: Experimental scalar coupling # Column 4: Calculated scalar coupling from ff99SB simulation # Column 5: Calculated scalar coupling from ff99SB-ILDN simulation # 6 VAL CCG1 0.77 0.90 0.92 3.68 3.74 3.75 6 VAL CCG2 1.99 1.92 1.93 6 VAL NCG1 0.53 0.92 0.92 6 VAL NCG2 7 ILE CCG2 0.58 0.96 0.63

 7
 ILE_CCG2
 0.58
 0.96
 0.63

 7
 ILE_NCG2
 1.97
 1.61
 1.97

 11
 THR_CCG2
 2.11
 2.65
 2.63

 11
 THR_NCG2
 0.90
 0.79
 0.78

 16
 THR_CCG2
 1.78
 1.43
 1.41

 16
 THR_NCG2
 0.21
 0.29
 0.27

 17
 THR_CCG2
 2.80
 3.02
 3.00

 17
 THR_NCG2
 0.56
 0.67
 0.67

 18
 THR_NCG2
 0.00
 0.10
 0.08

 21
 VAL_CCG1
 2.52
 3.47
 3.11

21	VAL CCG2	1.09	1.02	1.14
21	VAL_NCG1	0.69	0.84	0.81
21	VAL_NCG2	1.08	0.48	0.68
25	THR_CCG2	2.60	1.41	1.18
25	THR_NCG2	1.75	1.21	1.19
39	VAL_CCG1	0.86	1.63	1.35
39	VAL_CCG2	3.27	2.93	3.28
39	VAL_NCG1	1.86	1.58	1.73
39	VAL_NCG2	0.58	0.85	0.87
42	VAL_CCG1	1.27	2.43	2.75
42	VAL_CCG2	3.04	1.98	1.76
42	VAL_NCG1	1.73	1.15	1.07
42	VAL_NCG2	0.74	0.74	0.67
44	THR_CCG2	2.88	2.62	2.51
44	THR_NCG2	0.47	0.59	0.59
49	THR_CCG2	3.05	3.50	3.48
49	THR_NCG2	0.77	0.68	0.70
51	THR_CCG2	0.52	0.26	0.26
51	THR_NCG2	1.61	1.60	1.60
53	THR_CCG2	0.45	0.46	0.40
53	THR_NCG2	1.57	1.44	1.47
54	VAL_CCG1	0.70	0.80	0.91
54	VAL_CCG2	1.01	1.68	0.89
54	VAL_NCG1	0.83	0.82	0.41
54	VAL_NCG2	1.85	1.67	1.85
55	THR_CCG2	0.00	0.71	0.58
55	THR_NCG2	1.51	1.32	1.40

```
# Scalar coupling data for Ubg
#
# HA-CA-CB-HB couplings
# Column 1: Residue number
# Column 2: Four atoms that define the dihedral, each labelled by residue
number and atom name
# Column 3: Experimental scalar coupling
# Column 4: Calculated scalar coupling from ff99SB simulation
# Column 5: Calculated scalar coupling from ff99SB-ILDN simulation
#
1
                            4.30 4.08 4.19
   1 HA 1 CA 1 CB 1 1HB
3
   3 HA 3 CA 3 CB 3 HB
                            4.70 2.84 3.03
4
   4 HA 4 CA 4 CB 4 1HB
                            11.90 10.57 10.54
4
   4_HA_4_CA_4_CB_4_2HB
                            3.60 3.99 4.09
5
   5 HA 5 CA 5 CB 5 HB
                            9.60 9.42 8.94
6
   6_HA_6_CA_6_CB_6_1HB
                            6.20 6.80 7.41
6
   6 HA 6 CA 6 CB 6 2HB
                             7.00 6.62 6.00
8
                           8.70 5.87 9.35
   8 HA 8 CA 8 CB 8 1HB
8
   8 HA 8 CA 8 CB 8 2HB
                           4.10 7.59 4.50
11 11 HA 11 CA 11 CB 11 1HB 5.70 7.15 6.93
11 11 HA 11 CA 11 CB 11 2HB 6.70 5.21 5.50
13 13_HA_13_CA_13_CB_13_HB
                            7.70 3.09 4.61
15 15_HA_15_CA_15_CB_15_1HB 8.40 7.32 10.18
15 15 HA 15 CA 15 CB 15 2HB 1.40 5.41 3.68
16 16_HA_16_CA_16 CB 16 1HB 5.50 6.46 6.36
16 16 HA 16 CA 16 CB 16 2HB 8.20 7.18 7.28
17 17 HA 17 CA 17 CB_17_HB
                            2.70 2.87 2.81
18 18 HA 18 CA 18 CB 18 1HB 9.30 6.86 8.83
18 18_HA_18_CA_18_CB_18_2HB 2.50 6.50 4.40
19 19_HA_19_CA_19_CB_19_1HB 6.80 7.07 8.00
19 19_HA_19_CA_19_CB_19_2HB 7.30 6.78 6.71
20 20 HA 20 CA 20 CB 20 1HB 9.40 6.69 5.51
20 20 HA 20 CA 20 CB 20 2HB 3.00 3.15 3.27
23 23 HA 23 CA 23 CB 23 HB
                            10.20 7.24 9.93
25 25 HA 25 CA 25 CB 25 1HB
                           8.40 3.39 4.71
                            5.30 10.33 9.39
25 25 HA 25 CA 25 CB 25 2HB
26 26_HA_26_CA_26_CB_26_HB
                            9.90 10.04 10.02
27 27 HA 27 CA 27 CB 27 1HB 10.60 10.68 10.64
                           2.40 2.93 2.85
27 27 HA 27 CA 27 CB 27 2HB
29 29 HA 29 CA 29 CB 29 1HB
                           9.20 10.24 10.34
29 29 HA 29 CA 29 CB 29 2HB
                           1.90 3.07 2.96
30 30 HA 30 CA 30 CB 30 HB
                            10.50 9.99 10.03
31 31_HA_31_CA_31_CB_31_1HB
                           3.80 3.29 3.22
31 31_HA_31_CA_31_CB_31_2HB 11.30 10.68 10.65
32 32_HA_32_CA_32_CB_32_1HB
                           7.40 3.36 4.42
                           5.30 10.60 9.51
32 32 HA 32 CA 32 CB 32 2HB
33 33 HA 33 CA 33 CB 33 1HB
                           9.00 8.61 8.54
33 33 HA 33 CA 33 CB 33 2HB
                           4.00 4.83 4.98
   34 HA 34 CA 34 CB 34 1HB
                           10.20 9.69 10.02
34
                           4.40 3.61 3.39
34
   34_HA_34_CA_34_CB_34_2HB
36 36 HA 36 CA 36 CB 36 HB
                            8.80 4.19 7.02
37 37 HA 37 CA 37 CB 37 1HB
                           6.50 5.65 6.81
37 37 HA 37 CA 37 CB 37 2HB
                           7.00 6.85 6.83
38 38 HA 38 CA 38 CB 38 1HB 7.80 9.11 7.68
38 38 HA 38 CA 38 CB 38 2HB
                             5.40 6.23 6.46
                             4.70 3.60 4.01
39 39 HA 39 CA 39 CB 39 1HB
```

39	39 HA 39 CA 39 CB 39 2HB	4.40	10.33	6.08	
40	40 HA 40 CA 40 CB 40 1HB	12.20	9.50	9.17	
40	40 HA 40 CA 40 CB 40 2HB	2.00	4.26	4.70	
42	42 HA 42 CA 42 CB 42 1HB	8.30	5.57	4.55	
42	42 HA 42 CA 42 CB 42 2HB	4 30	7 82	8 95	
42	42 IIA 42 CA 42 CD 42 IIB		7.02	10.25	
43	$43_{\text{HA}} 43_{\text{CA}} 43_{\text{CB}} 43_{\text{IIB}}$	9.90	1.91	10.35	
43	43_HA_43_CA_43_CB_43_2HB	1.50	5.4/	2.93	
44	44_HA_44_CA_44_CB_44_HB	8.00	7.81	9.89	
45	45_HA_45_CA_45_CB_45_1HB	3.50	3.46	3.34	
45	45_HA_45_CA_45_CB_45_2HB	9.80	10.68	10.75	
50	50_HA_50_CA_50_CB_50_1HB	11.40	10.23	10.73	
50	50_HA_50_CA_50_CB_50_2HB	3.90	3.87	3.71	
51	51_HA_51_CA_51_CB_51_1HB	9.20	9.31	6.61	
51	51 HA 51 CA 51 CB 51 2HB	3.20	4.41	7.22	
52	52 HA 52 CA 52 CB 52 1HB	10.00	7.05	10.14	
52	52 HA 52 CA 52 CB 52 2HB	1.30	5.60	4.69	
54	54 HA 54 CA 54 CB 54 1HB	11 30	9 93	10 28	
54	54 HA 54 CA 54 CB 54 2HB	1 40	3 69	3 44	
55	55 HA 55 CA 55 CB 55 HB	2 40	2 06	2.17	
55	$55_{IIK}_{55}_{CK}_{55}_{CD}_{55}_{IIB}$	2.40	2.00	10 11	
50	56_HA_56_CA_56_CB_56_1HB	9.90	0.30	10.41	
56	56_HA_56_CA_56_CB_56_2HB	2.10	4.85	2.90	
58	58_HA_58_CA_58_CB_58_1HB	11.40	3.26	6.26	
58	58_HA_58_CA_58_CB_58_2HB	2.40	10.41	7.90	
59	59_HA_59_CA_59_CB_59_1HB	10.00	10.34	10.52	
59	59_HA_59_CA_59_CB_59_2HB	1.80	2.81	2.93	
60	60_HA_60_CA_60_CB_60_1HB	6.70	3.08	7.34	
60	60 HA 60 CA 60 CB 60 2HB	5.50	10.44	6.62	
61	61 HA 61 CA 61 CB 61 HB	9.80	9.73	10.08	
62	62 HA 62 CA 62 CB 62 1HB	11.10	9.80	9.48	
62	62 HA 62 CA 62 CB 62 2HB	3.10	3.69	3.55	
63	63 HA 63 CA 63 CB 63 1HB	3.50	4.33	4.38	
63	63 HA 63 CA 63 CB 63 2HB	4 4 0	4 91	4 50	
61		a an	10 33	10 30	
64		1 50	2 12	2 27	
64	$64_{MA}_{04}_{CA}_{CA}_{04}_{CB}_{CB}_{04}_{2HB}$	1.50	J.4J 7 F2	0 1 0	
65	65_HA_65_CA_65_CB_65_IHB	8.90	7.53	8.16	
65	65_HA_65_CA_65_CB_65_2HB	4.20	2.84	2.87	
66	66_HA_66_CA_66_CB_66_HB	10.60	9.10	9.03	
68	68_HA_68_CA_68_CB_68_1HB	10.10	8.00	8.45	
68	68_HA_68_CA_68_CB_68_2HB	2.00	5.28	4.69	
69	69_HA_69_CA_69_CB_69_1HB	4.70	3.83	3.96	
69	69_HA_69_CA_69_CB_69_2HB	9.50	10.56	10.43	
70	70 HA 70 CA 70 CB 70 HB	7.30	4.65	3.23	
72	72 HA 72 CA 72 CB 72 1HB	6.40	3.95	3.71	
72	72 HA 72 CA 72 CB 72 2HB	6.60	8.44	9.04	
73	73 HA 73 CA 73 CB 73 1HB	8.60	6.91	10.08	
73	73 HA 73 CA 73 CB 73 2HB	4 50	6 61	3 89	
, <u>)</u> #		1.50	0.01	5.05	
т 4					
# # NT	(a) an an ac sound in a fo				
# N	C'-CA-CB-CG Couplings, Io	r resi	aues wi	lere CG	, is a methyl
# C	blumn 1: Residue number				
# C	olumn 2: Residue-name and	first	& last	atom i	for dihedral (e.g. ILE_CCG2
mea	ns C'-CA-CG-CG2 in an Isol	eucine)		
# C	olumn 3: Experimental scal	ar cou	pling		
# C	olumn 4: Calculated scalar	coupl	ing fro	om ff99	SB simulation
# C	olumn 5: Calculated scalar	coupl	ing fro	om ff99	SB-ILDN simulation
#					
3	ILE_CCG2 3.68	4.08	4.10		

3	ILE_NCG2	0.39	0.58	0.69
5	VAL CCG1	0.00	0.61	0.64
5		3 66	2 70	2 47
5	VAL_CCG2	5.00	1 05	1.62
5	VAL_NCGI	1.83	1.85	1.73
5	VAL NCG2	0.46	1.21	1.24
7	THR CCG2	2.67	3.25	3.29
7		1 0 9	0 90	0 90
,		1.08	0.90	0.89
9	THR_CCG2	3.00	3.39	3.40
9	THR NCG2	0.81	0.60	0.61
12	THR CCG2	0 39	0 35	0 35
10		1 (1	1 4 2	1 40
ΤZ	THR_NCG2	1.61	1.43	1.42
13	ILE_CCG2	1.71	3.96	3.28
13	ILE NCG2	1.44	0.70	1.05
14	THR CCG2	0 76	0 82	0 55
14		1 50	1 00	1.36
14	THR_NCG2	1.50	1.28	1.36
17	VAL_CCG1	3.93	4.04	4.02
17	VAL CCG2	0.96	0.77	0.75
17	VAL NCC1	0 25	0 68	0 63
1/	VAL_NCG1	0.25	0.00	0.05
17	VAL_NCG2	0.68	0.40	0.46
22	THR CCG2	3.39	2.99	3.46
22	THR NCG2	0 75	0 74	0 59
22		0.04	1 17	1 17
23		0.94	1.1/	
23	ILE_NCG2	2.11	1.33	2.08
26	VAL CCG1	0.82	0.66	0.86
26		4 18	4 03	4 05
20		4.10	1.0J	4:05
26	VAL_NCGI	2.16	2.01	2.05
26	VAL_NCG2	0.62	1.05	0.83
30	ILE CCG2	0.96	1.20	1.16
30		2 10	2 11	
50		2.10	2.11	2.12
36	ILE_CCG2	0.71	1.78	0.65
36	ILE NCG2	2.08	0.76	1.36
44	TLE CCG2	0.80	1.71	0.85
11		1 60	1 6 2	2.04
44		1.02	1.05	2.04
55	THR_CCG2	3.02	3.36	3.39
55	THR NCG2	0.82	0.72	0.83
61		0 98	1 00	0 90
C1		0.50	1.00	0.90
6 I	ILE_NCG2	2.15	2.02	2.10
70	VAL_CCG2	2.43	1.57	0.93
70	VAL NCG2	0.50	0.56	0.44
#				
#				
#				
# C	'-CA-CB-CG couplings	, for	all re	esidues
# Co	olumn 1: Residue num	ber		
щ с.			- -	the dihedual each labelled by weathing
# CC	Siumi 2: Four aloms	that d	erine	the dinedral, each labelled by residue
numb	per and atom name			
# Co	olumn 3: Experimenta	l scal	ar cou	upling
# Co	Jump 4. Calculated	gcalar	counl	ling from ff99SB simulation
π cc		JCarar	coupi	
# Co	Slumn 5: Calculated	scalar	coupi	ling from f1995B-ILDN simulation
#				
2	2 C 2 CA 2 CB 2 CG		2	2.40 1.79 2.18
З			1	1 00 0 50 0 54
2			1	1.00 0.00 0.04
3	3_C_3_CA_3_CB_3_CG2		3	3.80 3.45 3.48
4	4_C_4_CA 4 CB 4 CG		4	4.00 3.58 3.58
5	5 C 5 CA 5 CB 5 CG2		3	3.50 3.29 3.09
6			- -	2 00 2 09 2 22
0			2	
7	7_C_7_CA_7_CB_7_CG2		2	2.50 3.24 3.27
8	8_C_8_CA_8_CB 8 CG		2	2.60 1.67 3.04

9	9 C 9 CA 9 CB 9 CG2	2.80	3.08	3.10
13	13 C 13 CA 13 CB 13 CG1	2.30	0.59	1.20
13	13 C 13 CA 13 CB 13 CG2	1.50	3.35	2.80
14	14 C 14 CA 14 CB 14 CG2	0.70	0.79	0.55
15	15 C 15 CA 15 CB 15 CG	2.20	2.27	3.41
16	16 C 16 CA 16 CB 16 CG	1.80	1.93	1.89
17	17 C 17 CA 17 CB 17 CG1	3.60	3.47	3.45
17	17 C 17 CA 17 CB 17 CG2	0.90	0.54	0.54
19	19 C 19 CA 19 CB 19 CG	2.20	2.31	2.65
21	21 C 21 CA 21 CB 21 CG	5.50	1.30	3.91
22	22 C 22 CA 22 CB 22 CG2	3.10	2.78	3.18
24	24 C 24 CA 24 CB 24 CG	1.50	1.92	0.88
25	25 C 25 CA 25 CB 25 CG	3.40	1.54	2.07
26	26 C 26 CA 26 CB 26 CG1	0.80	0.67	0.79
26	26 C 26 CA 26 CB 26 CG2	4.00	3.53	3.50
29	29 C 29 CA 29 CB 29 CG	4.00	3.35	3.39
31	31 C 31 CA 31 CB 31 CG	0.60	0.72	0.70
32	32 C 32 CA 32 CB 32 CG	3.30	1.24	1.66
33	33 C 33 CA 33 CB 33 CG	2.80	2.74	2.72
34	34 C 34 CA 34 CB 34 CG	2.90	3.13	3.27
38	38_C_38_CA_38_CB_38_CG	2.70	3.04	2.53
39	39_C_39_CA_39_CB_39_CG	1.80	1.29	1.42
40	40_C_40_CA_40_CB_40_CG	3.40	3.14	3.03
41	41_C_41_CA_41_CB_41_CG	3.50	3.62	3.44
42	42_C_42_CA_42_CB_42_CG	2.40	1.53	1.17
43	43_C_43_CA_43_CB_43_CG	3.00	2.47	3.34
44	44_C_44_CA_44_CB_44_CG1	3.10	2.56	3.42
44	44_C_44_CA_44_CB_44_CG2	0.70	1.48	0.75
48	48_C_48_CA_48_CB_48_CG	2.50	2.82	2.69
49	49_C_49_CA_49_CB_49_CG	1.40	1.64	2.12
50	50_C_50_CA_50_CB_50_CG	2.40	3.43	3.65
51	51_C_51_CA_51_CB_51_CG	2.90	3.05	2.00
54	54_C_54_CA_54_CB_54_CG	3.50	3.30	3.45
55	55_C_55_CA_55_CB_55_CG2	2.80	3.18	3.27
56	56_C_56_CA_56_CB_56_CG	2.80	2.62	3.42
58	58_C_58_CA_58_CB_58_CG	5.60	1.21	2.40
59	59_C_59_CA_59_CB_59_CG	3.60	3.26	3.35
60	60_C_60_CA_60_CB_60_CG	2.00	1.49	3.14
61	61_C_61_CA_61_CB_61_CG1	3.30	3.35	3.50
61	61_C_61_CA_61_CB_61_CG2	0.80	0.86	0.77
63	63_C_63_CA_63_CB_63_CG	1.20	0.87	0.88
64	64_C_64_CA_64_CB_64_CG	3.40	3.41	3.43
66	66_C_66_CA_66_CB_66_CG2	0.50	0.38	0.38
67	67_C_67_CA_67_CB_67_CG	3.40	3.37	3.49
68	68_C_68_CA_68_CB_68_CG	0.80	2.95	3.12
69	69_C_69_CA_69_CB_69_CG	0.80	0.84	0.89
72	72_C_72_CA_72_CB_72_CG	1.60	0.93	0.92
73	73_C_73_CA_73_CB_73_CG	2.80	2.07	3.34
74	74_C_74_CA_74_CB_74_CG	2.20	2.62	2.54

```
# Scalar coupling data for BPTI
#
# HA-CA-CB-HB couplings
# Column 1: Residue number
# Column 2: Four atoms that define the dihedral, each labelled by residue
number and atom name
# Column 3: Experimental scalar coupling
# Column 4: Calculated scalar coupling from ff99SB simulation
# Column 5: Calculated scalar coupling from ff99SB-ILDN simulation
#
4
                            4.50 3.69 3.90
   4 HA 4 CA 4 CB 4 2HB
4
   4 HA 4 CA 4 CB 4 HB3
                             4.50 4.34
                                       4.11
5
   5 HA 5 CA 5 CB 5 HB3
                            3.00 2.79 2.71
5
   5 HA 5 CA 5 CB 5 2HB
                            12.00 10.08 10.07
  11 HA 11 CA 11 CB 11 HB
                            8.20 7.73 8.23
11
14 14_HA_14_CA_14_CB_14_HB3
                            3.00 2.16 2.26
14 14 HA 14 CA 14 CB 14 2HB 12.00 9.84 9.94
15 15 HA_15_CA_15_CB_15_HB3
                           3.50 4.13 4.18
15 15 HA 15 CA 15 CB 15 2HB 11.00 8.94 8.85
18 18 HA 18 CA 18 CB 18 HB 10.50 3.25 7.56
19 19 HA 19 CA 19 CB 19 HB
                          11.00 7.44 9.91
20 20 HA 20 CA 20 CB 20 HB3
                           2.50 2.71 2.77
20 20_HA_20_CA_20_CB_20_2HB 12.50 10.56 10.63
22 22 HA 22 CA 22 CB 22 HB3 3.50 2.61 2.61
22 22 HA 22 CA 22 CB 22 2HB 4.40 5.74 5.72
23 23 HA 23 CA 23 CB 23 HB3 12.50 10.82 10.83
                           3.80 3.21 3.23
23 23 HA 23 CA 23 CB 23 2HB
24 24 HA 24 CA 24 CB 24 HB3 12.00 10.80 10.80
24
   24 HA 24 CA 24 CB 24 2HB
                           3.50 3.54 3.44
30 30_HA_30_CA_30_CB_30_2HB 12.00 9.87 9.82
30 30_HA_30_CA_30_CB_30_HB3 2.50 2.14 2.10
31 31 HA 31 CA 31 CB 31 HB3
                           3.50 3.41 3.28
31 31 HA 31 CA 31 CB 31 2HB 11.00 9.77 10.07
32 32 HA 32 CA 32 CB 32 HB
                            2.50 2.55 2.58
33 33 HA 33 CA 33 CB 33 HB3
                           3.00 2.61 2.62
                           4.50 5.78 5.75
33 33 HA 33 CA 33 CB 33 2HB
34 34_HA_34_CA_34_CB_34_HB 10.50 8.02 7.98
35 35 HA 35 CA 35 CB 35 HB3 11.50 10.42 10.41
35 35 HA 35 CA 35 CB 35 2HB 6.50 4.40 4.40
38 38 HA 38 CA 38 CB 38 2HB
                           6.50 3.96 4.04
38 38 HA 38 CA 38 CB 38 HB3
                           1.50 2.45 2.40
41 41 HA 41_CA_41_CB_41_HB3
                           2.50 3.15 3.17
41 41_HA_41_CA_41_CB_41_2HB 12.50 10.67 10.66
43 43_HA_43_CA_43_CB_43_2HB
                           3.00 2.76 2.71
43 43 HA 43 CA 43 CB 43 HB3 12.00 10.48 10.37
44 44 HA_44_CA_44_CB_44_2HB
                           4.00 3.39 3.28
44 44 HA 44 CA 44 CB 44 HB3 11.00 10.79 10.77
45 45 HA 45 CA 45 CB 45 HB3
                           4.00 3.93 3.92
45 45 HA 45 CA 45 CB 45 2HB 11.80 10.68 10.68
46 46 HA 46 CA 46 CB 46 HB3
                            4.00 4.46
                                       4.63
                                       8.04
46 46 HA 46 CA 46 CB 46 2HB
                            9.50 8.07
47 47 HA 47 CA 47 CB 47 2HB
                           3.00 3.36 3.54
47 47 HA 47 CA 47 CB 47 HB3
                           2.80 2.72 2.70
51 51 HA 51 CA 51 CB 51 HB3 11.50 9.94 9.93
51 51 HA 51 CA 51 CB 51 2HB 5.50 3.29 3.32
52 52_HA_52_CA_52_CB_52_2HB
                             3.00 6.15 6.42
```

52	52_HA	52	CA	52	CB	52	HB3	10.20	7.19	6.91
54	54 HA	54	CA	54	CB	54	HB	10.00	8.38	8.77
55	55 HA	55	CA	55	CB	55	2HB	11.00	9.93	9.91
55	55_HA	55	CA	55	CB	55	HB3	1.50	2.28	2.33

```
# Scalar coupling data for HEWL
#
# HA-CA-CB-HB couplings
# Column 1: Residue number
# Column 2: Four atoms that define the dihedral, each labelled by residue
number and atom name
# Column 3: Experimental scalar coupling
# Column 4: Calculated scalar coupling from ff99SB simulation
# Column 5: Calculated scalar coupling from ff99SB-ILDN simulation
#
2
                             9.80 7.51 7.29
   2 HA 2 CA 2 CB 2 HB
3
   3 HA 3 CA 3 CB 3 1HB
                            7.70 8.52 9.90
3
   3 HA 3 CA 3 CB 3 2HB
                            1.00 4.15 2.88
6
   6 HA 6 CA 6 CB 6 1HB
                            12.60 10.09 10.07
   6_HA_6_CA 6 CB 6_2HB
                            0.90 2.62 2.68
6
8
   8_HA_8_CA_8_CB_8_1HB
                             1.20 3.35 3.35
12 12 HA 12 CA 12 CB 12 1HB 12.60 10.43 10.46
12 12 HA 12 CA 12 CB 12 2HB 1.00 2.70 2.73
15 15 HA 15 CA 15 CB 15 1HB 9.00 10.46 10.51
15 15 HA 15 CA 15 CB 15 2HB 0.60 3.05 2.99
17 17 HA 17 CA 17 CB 17 1HB 9.50 5.23 5.77
17 17 HA 17 CA 17 CB 17 2HB 1.00 7.98 7.55
18 18_HA_18_CA_18_CB_18_1HB
                           1.70 3.62 3.21
18 18 HA 18 CA 18 CB 18 2HB 13.20 10.33 9.72
20 20 HA 20 CA 20 CB 20 1HB 1.40 3.39 3.47
20 20 HA 20 CA 20 CB 20 2HB 12.00 10.76 10.76
23 23 HA 23 CA 23 CB 23 1HB
                           8.30 10.06 8.33
23 23_HA_23_CA_23_CB_23_2HB
                           0.20 3.82 5.43
24
                           1.00 5.21 5.98
   24_HA_24_CA_24_CB_24_1HB
27
   27_HA_27_CA_27_CB_27_1HB 12.10 4.02 10.82
27
   27_HA_27_CA_27_CB_27_2HB 0.50 8.62 3.18
30 30 HA 30 CA 30 CB 30 1HB 0.20 2.44 2.97
30 30 HA 30 CA 30 CB 30 2HB 6.80 10.06 10.07
33 33 HA 33 CA 33 CB 33 1HB 2.10 3.49 3.50
33 33 HA 33 CA 33 CB 33 2HB 7.90 10.73 10.70
34 34 HA 34 CA 34 CB 34 1HB 12.10 10.74 9.12
34 34_HA_34_CA_34_CB_34_2HB
                           1.60 3.10 4.88
38 38 HA 38 CA 38 CB 38 1HB 11.90 10.58 10.55
39 39 HA 39 CA 39 CB 39 1HB
                           2.20 3.40 4.23
39 39 HA 39 CA 39 CB 39 2HB 12.70 10.78 9.76
41 41 HA 41 CA 41 CB 41 1HB 10.00 9.06 8.51
41 41 HA 41_CA_41_CB_41_2HB
                           1.20 4.40 4.30
43 43<sup>HA</sup>43_CA_43_CB_43_HB
                             3.90 2.56 2.98
47 47_HA_47_CA_47_CB_47_HB
                             2.40 2.87 3.13
48 48 HA 48 CA 48 CB 48 1HB
                           0.20 4.72 3.49
48 48 HA_48_CA_48_CB_48_2HB
                           1.20 5.43 4.09
51 51 HA 51 CA 51 CB 51 HB 13.30 8.99 9.17
52 52 HA 52 CA 52 CB 52 1HB 10.30 10.52 10.08
52 52 HA 52 CA 52 CB 52 2HB
                            0.30 4.11 4.86
53 53_HA_53_CA_53_CB_53_1HB 12.50 10.66 10.74
53 53 HA 53 CA 53 CB 53 2HB
                           0.80 2.85 2.96
55 55 HA 55 CA 55 CB 55 HB
                            3.60 2.33 2.40
59 59 HA 59 CA 59 CB 59 1HB 1.90 3.36 3.61
59 59 HA 59 CA 59 CB 59 2HB 8.10 10.79 10.79
64 64 HA 64 CA 64 CB 64 1HB
                             0.90 3.55 3.63
64 64_HA_64_CA_64_CB_64_2HB
                             0.50 2.68 2.62
```

65 65 HA 65 CA 65 CB 65 1HB 2.10 3.73 3.87 65 65 HA 65 CA 65 CB 65 2HB 13.40 10.68 10.57 66 66 HA 66 CA 66 CB 66 1HB 0.10 4.40 3.64 66 66 HA 66 CA 66 CB 66 2HB 2.20 3.75 3.99 69 69 HA 69 CA 69 CB 69 HB 11.40 9.06 8.85 74 74 HA 74 CA 74 CB 74 1HB 1.70 3.30 3.22 74 74 HA 74 CA 74 CB 74 2HB 12.60 10.78 10.76 80 80 HA 80 CA 80 CB 80 1HB 13.80 10.10 10.10 80 80 HA 80 CA 80 CB 80 2HB 1.00 2.73 2.73 84 84_HA_84_CA_84_CB_84_1HB 12.00 6.57 8.83 84 84 HA 84 CA 84 CB 84 2HB 0.50 6.69 4.98 87 87 HA 87 CA 87 CB 87 2HB 12.20 10.66 10.36 88 88 HA 88 CA 88 CB 88 HB 2.00 3.17 3.27 89 89 HA 89 CA 89 CB 89 HB 10.80 8.30 8.89 93 93 HA 93 CA 93 CB 93 1HB 13.50 4.05 8.30 93 93 HA 93 CA 93 CB 93 2HB 1.90 9.83 5.42 94 94 HA_94 CA_94 CB_94 1HB 2.10 2.64 2.70 94 94 HA 94 CA 94 CB 94 2HB 15.00 10.12 9.96 98 98 HA 98 CA 98 CB 98 HB 15.30 6.63 9.90 105 105 HA 105 CA 105 CB 105 1HB 13.00 9.49 8.11 105 105 HA 105 CA 105 CB 105 2HB 2.60 4.34 5.60 106 106 HA 106 CA 106 CB 106 1HB 13.20 3.19 6.81 106 106_HA_106_CA_106_CB_106_2HB 3.10 10.43 7.01 111 111_HA_111_CA_111_CB_111_1HB 1.70 3.44 3.98 114 114 HA 114 CA 114 CB 114 2HB 1.80 3.65 6.09 116 116 HA 116 CA 116 CB 116 1HB 3.40 3.52 3.64 116 116 HA 116 CA 116 CB 116 2HB 9.80 10.34 10.33 118 118 HA 118 CA 118 CB 118 HB 4.90 2.44 2.67 119 119 HA 119 CA 119 CB 119 1HB 4.50 3.56 3.46 119 119_HA_119_CA_119_CB_119_2HB 13.30 10.77 10.78 120 120_HA_120_CA_120_CB_120_HB 4.50 2.62 2.69 123 123_HA_123_CA_123_CB_123_1HB 8.60 10.69 10.60 123 123 HA 123 CA 123 CB 123 2HB 0.30 3.71 3.99 124 124 HA 124 CA 124 CB 124 HB 4.20 3.19 7.66 127 127 HA 127 CA 127 CB 127 2HB 2.60 2.78 2.85 # # # C'-CA-CB-HB couplings # Column 1: Residue number # Column 2: Four atoms that define the dihedral, each labelled by residue number and atom name # Column 3: Experimental scalar coupling # Column 4: Calculated scalar coupling from ff99SB simulation # Column 5: Calculated scalar coupling from ff99SB-ILDN simulation # 2 2 C 2 CA 2 CB 2 HB 2.60 1.48 1.65 3 3 C 3 CA 3 CB 3 1HB 1.40 1.70 1.23 3 3 C 3 CA 3 CB 3 2HB 3.60 1.98 1.99 6 C 6 CA 6 CB 6 1HB 6 3.70 1.07 1.08 2.60 1.33 1.31 6 6 C 6 CA 6 CB 6 2HB 8_C_8_CA_8_CB 8 1HB 8 8.50 4.11 4.09 8 8 C 8 CA 8 CB 8 2HB 3.10 1.34 1.35 12 12 C 12 CA 12 CB_12_1HB 1.80 1.13 1.13 12 12 C 12 CA 12 CB 12 2HB 2.20 1.84 1.83 15 15 C 15 CA 15 CB 15 1HB 2.20 1.21 1.18 1.80 3.07 2.90 17 17 C 17 CA 17 CB 17 1HB 2.20 1.68 1.67 17 17 C 17 CA 17 CB 17 2HB

18	18_C_18_CA_18_CB_18_1HB	8.30	3.95	3.68
20	20 C 20 CA 20 CB 20 1HB	8.10	4.11	4.11
20	20 C 20 CA 20 CB 20 2HB	4.40	1.34	1.32
23	23 C 23 CA 23 CB 23 1HB	3.00	1.51	2.10
23	23 C 23 CA 23 CB 23 2HB	2.60	1.58	1.58
24	24 C 24 CA 24 CB 24 1HB	1.30	1.10	1.22
24	24 C 24 CA 24 CB 24 2HB	7.40	2.84	2.39
27	27 C 27 CA 27 CB 27 1HB	0.30	3.34	1.24
27	27 C 27 CA 27 CB 27 2HB	1.10	1.84	1.56
30	30 C 30 CA 30 CB 30 1HB	7 70	3 88	3 89
30	30 C 30 CA 30 CB 30 2HB	2 30	1 18	1 04
22	33 C 33 CA 33 CB 33 1HB	1 10	4 10	4 09
22	33 C 33 CA 33 CB 33 2HB	12 50	1 30	1 31
34	34 C	1 10	1 18	1 87
24	34_C_34_CA_34_CB_34_111B	2 20	1 70	1 50
24	$34_C_{34}CA_{34}CB_{34}_{2BB}$	2.20	1 11	1 41
30	38_C_38_CA_38_CB_38_IHB	0.70	1 42	1.41
38	38_C_38_CA_38_CB_38_2HB	3.00	1.43	1.45
39	39_C_39_CA_39_CB_39_1HB	8.10	4.11	3./3
39	39_C_39_CA_39_CB_39_2HB	2.20	1.34	1.42
40	40_C_40_CA_40_CB_40_HB	0.40	1.09	1.07
41	41_C_41_CA_41_CB_41_1HB	1.90	1.70	1.65
43	43_C_43_CA_43_CB_43_HB	1.80	1.69	1.36
47	47_C_47_CA_47_CB_47_HB	1.70	1.22	1.20
48	48_C_48_CA_48_CB_48_1HB	0.70	2.13	1.50
48	48_C_48_CA_48_CB_48_2HB	9.60	3.12	4.05
51	51_C_51_CA_51_CB_51_HB	1.70	0.83	0.80
52	52_C_52_CA_52_CB_52_2HB	1.10	1.31	1.20
53	53_C_53_CA_53_CB_53_1HB	2.60	1.17	1.21
53	53_C_53_CA_53_CB_53_2HB	1.90	1.77	1.69
55	55 C 55 CA 55 CB 55 HB	7.00	3.90	3.88
59	59 C 59 CA 59 CB 59 1HB	8.50	4.12	4.10
64	64 C 64 CA 64 CB 64 1HB	2.10	1.05	1.03
64	64 C 64 CA 64 CB 64 2HB	8.00	3.91	3.91
65	65 C 65 CA 65 CB 65 1HB	8.10	4.07	4.03
65	65 C 65 CA 65 CB 65 2HB	1.00	1.29	1.29
66	66 C 66 CA 66 CB 66 1HB	1.40	1.48	1.49
66	66 C 66 CA 66 CB 66 2HB	10.90	3.93	4.05
74	74 C 74 CA 74 CB 74 1HB	6.60	4.12	4.10
74	74 C 74 CA 74 CB 74 2HB	0 10	1 37	1 41
80	80 C 80 CA 80 CB 80 1HB	2 80	1 09	1 09
80	80 C 80 C 80 C 80 C 80 2 HB	0 90	1 29	1 29
81	84 C 84 C 84 C 84 C 84 1 HB	2 60	2 55	1 99
01		1 50	1 70	1 61
01		2.20	1.70	1.01
09	89_C_89_CA_89_CB_89_HB	1 20	1 14	1 11
92	92_C_92_CA_92_CB_92_HB	1.30	1.14	1.11
94	94_C_94_CA_94_CB_94_IHB	9.80	3.90	3.83
94	94_C_94_CA_94_CB_94_2HB	3.10	1.10	1.13
98	98_C_98_CA_98_CB_98_HB	1.80	1.11	1.00
105	105_C_105_CA_105_CB_105_1HB	1.10	1.64	2.14
105	105_C_105_CA_105_CB_105_2HB	1.40	1.63	1.62
T06	106_C_106_CA_106_CB_106_1HB	3.00	4.00	2.68
106	106_C_106_CA_106_CB_106_2HB	3.00	1.49	1.55
116	116_C_116_CA_116_CB_116_1HB	8.50	3.94	3.94
116	116_C_116_CA_116_CB_116_2HB	2.20	1.46	1.46
118	118_C_118_CA_118_CB_118_HB	1.80	1.18	1.09
120	120_C_120_CA_120_CB_120_HB	3.00	1.44	1.41
123	123_C_123_CA_123_CB_123_1HB	1.10	1.36	1.44

123	123	C	123	CA	123	CB	123	2HB	1.80	1.46	1.38
124	124	С	124	CA	124	CB	124	HB	0.80	1.38	1.26
127	127	C	127	CA	127	CB	127	2HB	0.80	1.58	1.75

Rotamer distributions in the PDB and MD simulations. # # m, p, and t refer to the 'minus', 'plus' and 'trans' rotamers # as defined by Lovell et al. # The values listed under PDB are the rotamets for residues in # helices as taken from Lovell et al # The values listed under ff99SB and ff99SB-ILDN, respectively, $\ensuremath{\texttt{\#}}$ are the rotamer distributions observed in simulations of # poly-alanine based helices as described in the manuscript # PDB ff99SB ff99SB-ILDN m p t m p t 0.54 0.04 0.43 0.56 0.01 0.43 m p t ARG -ASN 0.80 0.01 0.19 0.04 0.00 0.96 0.27 0.00 0.73

ASP	0.79	0.02	0.19	0.00	0.00	1.00	0.09	0.00	0.91
CYS	0.75	0.05	0.20	0.73	0.04	0.23	-	-	-
GLN	0.61	0.04	0.35	0.57	0.01	0.42	-	-	-
GLU	0.61	0.01	0.38	0.24	0.02	0.74	-	-	-
HIS	0.52	0.00	0.48	0.14	0.00	0.86	-	-	-
ILE	0.92	0.05	0.03	0.33	0.44	0.23	0.85	0.12	0.03
LEU	0.66	0.01	0.33	0.13	0.00	0.87	0.61	0.00	0.39
LYS	0.54	0.00	0.46	0.46	0.01	0.52	-	-	-
MET	0.72	0.02	0.26	0.42	0.02	0.56	-	-	-
PHE	0.41	0.01	0.58	0.18	0.00	0.82	-	-	-
SER	0.44	0.33	0.22	0.79	0.16	0.06	-	-	-
THR	0.75	0.25	0.00	0.75	0.25	0.00	-	-	-
TRP	0.39	0.03	0.58	0.29	0.02	0.70	-	-	-
TYR	0.42	0.01	0.57	0.15	0.00	0.85	-	-	-
VAL	0.07	0.02	0.91	0.30	0.07	0.63	-	-	-