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S1. Data Transformation
The original data consist of the number of cases per month per
thana divided by the population of that thana. The population
of each thana is estimated monthly by fitting exponential growth
to the three relevant decadal censuses (1981, 1991, 2001).Asmen-
tioned in the main text, the primary analyses were conducted
on the 14 y (1995–2008) of data for which only the El Tor biotype
of cholera in Dhaka was present. Several of the thanas have
split during this time so for continuity we use the thana bound-
aries as they were in 1992 and aggregate cases and population
appropriately.
To use a finite-state Markov chain model, the data need to be

categorized into a set of discrete variables. To form the most
natural discretization possible, we binned all 0s together and
denoted this state as group “0” (48.86% of the data fall into this
category). We then evenly split the remaining 54.14% into two
groups: a “low” group where the rate of cases per 10,000 was
between 0 and 1.85 (which we denote as group “1”), and a “high”
group where the rate of cases per 10,000 was >1.85 (which we
denote as group “2”).
Although <3% of all data were >9 per 10,000, there were four

data points >20 per 10,000 (with the maximum being 40.7 per
10,000), most of them during the extreme epidemic of Fall 1998.
Thus, the discretization causes the elimination of the events in
the tail of the distribution of epidemic size and merges these
events with less pronounced ones.
Although the transformation does remove the tail events, it

does maintain the ordering of the data as can be seen in Fig. S1.
The red line is the number of cases per 10,000 averaged across all
of Dhaka, and the blue line is the average of the 21 thanas after
the transformation, when each thana is represented by the av-
erage of its corresponding group (4.58 cases per 10,000 for the
high state, and 1.11 cases per 10,000 for the low state). If we
consider the ranks of each month (i.e., which month had the
highest rate of cases, which had the second highest, etc.), we can
see that the rankings are almost identical for the true data (Fig.
S2, red line) and the transformed data (Fig. S2, blue line). The
months that constitute the highest 10% of the true data corre-
spond almost perfectly to the months that constitute the highest
10% of the transformed data, and the same can be said for the top
15%, 20%, and so on. It can also be seen by inspection that
interannual variability of the two time series exhibits a strong
correspondence in the timing and frequency of its cycles. Because
we are interested in understanding this variability and predicting
whether there will or will not be an outbreak (and not the exact
number of cases for a given month), the transformed data give us
essentially the same information as the true data.

S2. Model Description
The model assumes that the cholera state of each thana will
change stochastically from one month to the next according to
transition probabilities that depend on the current cholera state
of the thana, the cholera states of its neighbors, the season, and
the value of the climate covariates [El Niño southern oscillation
(ENSO) and/or flooding]. Here, we give a full mathematical
specification of the model via precise definitions of the transition
probabilities. In the following, the state 0 corresponds to no
cholera; 1, to low cholera; and 2, to high cholera.

Climate-Independent Model. We first define a model that is not
influenced by ENSO or flooding. Let Xm,t be the cholera state of
thana m at time t and N (k) be the set of thanas neighboring

thana k. Let pi,j,k,t be the probability that thana k goes from state i
at time t − 1 to state j at time t. We postulate that

pi;0;k;t ¼ ℙi;0;DðkÞ ×Neighði; 0;Vðk; t− 1Þ;DðkÞÞ
× Seasði; 0; t− 1;DðkÞÞ [S1]

pi;2;k;t ¼ ℙi;2;DðkÞ ×Neighði; 2;Vðk; t− 1Þ;DðkÞÞ
× Seasði; 2; t− 1;DðkÞÞ [S2]

pi;1;k;t ¼ 1− pi;0;k;t − pi;2;k;t; [S3]

where V(k, t) = maxm∈N (k)Xm,t is the worst cholera state among
the thanas neighboring thana k at time t, D(k) indicates whether
thana k is in the core or the periphery, and the 12 constant pa-
rameters ℙi,j,d represent baseline transition probabilities of
moving from state i to state j for any thana in region d.
The neighborhood function is multiplicative in its effect and has

the following form:

Neighði; j; v; dÞ ¼ �
1þ αi;j;d

�v
; j ¼ 0; 2: [S4]

The 12 coefficients αi,j,d are parameters to be estimated.
The seasonality function also enters multiplicatively. It takes

the form

Seasði; j; t; dÞ ¼
�
1þ βi;j;d

�Seðt;dÞ
; j ¼ 0; 2; [S5]

where Se(t, d) is periodic in t with a period of 12 mo. We impose
the constraints Se(2, d) = 0 and Se(5, d) = 1. There are thus 32
parameters associated with seasonality (Seas). The 20 seasonality
parameters Se(t, d) are constrained only to be positive. However,
it so happened that all estimated values were also <1. This result
confirms that the month of May (t = 5) has the largest seasonal
effect and February (t = 2) the smallest. The fitted values are
shown in Fig. S3.

Climate-Dependent Model. In the climate-dependent model, the
climate driver is assumed to increase the probability of transition
to state 2 (high cholera). Let p′i;j;k;t be the i → j transition prob-
ability for thana k at time t. We postulate that

p′i;2;k;t ¼ f
�
pi;2;k;t ×Ninoðt− 1;DðkÞÞ

�
; [S6]

where the El Niño function has the sigmoidal form

Ninoðt; dÞ ¼ 1þ Ad

tan
�
hd
2
·
ENSOðt− 10Þ

Md

�

tan
�
hd
2

� [S7]

and ENSO(t) is the value of the ENSO anomalies index at time t.
There are thus six parameters associated with Nino. Fig. S4 il-
lustrates the flexibility of this function. Because the ENSO index
is standardized, only ENSO anomalies affect the transition
probabilities. The cutoff function f(x) = min(1, max(0, x)) en-
sures that p′i;2;k;t lies between 0 and 1.
To enforce the total-probability constraint, we adjust the

remaining two transition probabilities proportionate to their
values:
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p′i;0;k;t ¼
�
1− p′i;2;k;t

� pi;0;k;t
pi;0;k;t þ pi;1;k;t

p′i;1;k;t ¼
�
1− p′i;2;k;t

� pi;1;k;t
pi;0;k;t þ pi;1;k;t

:
[S8]

Alternative Parameterization. To investigate the robustness of
our statistical results to parameterization assumptions, we re-
peated all analyses using a different parameterization. Spe-
cifically, in the climate-independent model, we exchanged
Eqs. S1 and S2. That is, neighbor and seasonal effects en-
tered directly into the expressions for the probabilities of
transition to states 1 and 2; the expression for the remaining
probability was taken to be the complement. Because the ex-
pressions pi,j,k,t enter into the climate-dependent Eqs. S7 and
S8, this method effectively reparameterizes the climate-de-
pendent model as well.
The results of this reparameterization were much the same,

indicating that the results we found are robust to our choice of
parameterization. In particular, exactly the same effects were
statistically significant. Perhaps interestingly, under the alterna-
tive parameterization, the P value for the spatially specific effect
of ENSO decreased from 0.0202 to 0.0025 and the overall log-
likelihood increased slightly but not significantly (from −3,156.6
to −3,154.69). The results of these hypothesis tests are summa-
rized in Table S2.

S3. Model Fitting
We fit the models by maximizing the likelihood. In the full model,
we must therefore solve an optimization problem over 62 pa-
rameters. Under the Markovian assumption of our model, the
transition from one month to the next is independent of all
other transitions. Therefore, our likelihood is just the product of
the likelihoods of each month’s transition. As an optimization
problem, we could use more complex techniques such as MCMC
to identify the maxima. Continued advancements in this field
(ref. 1 for example) make MCMC procedures a reasonable al-
ternative, especially if a model with many more parameters were
fit. However, implementation of MCMC approaches requires
considerable knowledge of statistical computing, whereas the
older, more straightforward Nelder–Mead simplex algorithm for
maximizing the likelihood (2) works well for our purposes. More
specifically, we use the Nelder–Mead simplex algorithm instead of
more complicated algorithms for two reasons: first, because we are
dealing with transition probabilities, the parameter space has nu-
merous linear constraints. As such, the likelihood function has
numerous discontinuities (and is thus not everywhere differentia-
ble). Second, and more importantly, the Nelder–Mead algorithm
has the property that if every point on the initial simplex satisfies
a linear constraint, then every proposed point will as well. Thus,
the algorithm enforces the linear constraints on the ℙs automati-
cally. Because this algorithm can ensure the identification only of
local maxima, the algorithm is run several hundred times from
different initial starting points to identify the global maxima.
We enforce the constraint that each probability must be be-

tween 0 and 1 by the “barrier method”: If ever any probability
is <0 or >1, the likelihood is taken to be negative infinity. We
assume that each thana’s transition is conditionally independent
of each other thana’s transition (conditioned on the maximum
state of the nearest neighbors of the thana) and as such the
likelihood of a month’s transition is the product of each thanas’
transition’s likelihood.
For the statistical analysis, we use all 14 y of data to identify

the “best” model as well as to conduct statistical tests to com-
pare models. Because in every comparison of models that ad-
dresses a specific hypothesis, we considered nested models
(i.e., one of the models can be rewritten as the other model

with several of the parameters set at particular values, either
equal to each other or equal to some constant), we are able to
use straightforward likelihood-ratio tests. In many cases, the
likelihood-ratio test statistic was extremely high and correspond-
ingly, the associated P value was extremely low (e.g., in the case
of testing the significance of the two regions, the P value was
1.09 × 10−26).
To evaluate the model’s forecasting ability we used cross-val-

idation so that the actual observed values for a given month did
not inform the model that would be used to predict that month.
In particular, we fit 14 different models, leaving a different year
of data out for each one. To predict any given year, we used the
model fit to data exclusive of that year.

S4. Statistical Analysis
Each of the effects that have been presented in the model were
statistically significant at a 5% level. For each main effect, we
tested its significance in the presence of all other main effects as
well as all interaction effects that did not contain it. For example,
when testing the significance of ENSO, we evaluate how much its
addition reduces the log-likelihood when added to a model that
has all effects except both ENSO and the interaction between
ENSO and space.When testing the effect of space at a large scale,
because this effect is part of every interaction effect, we evaluated
the increase in the log-likelihood between a model with only
all other main effects and one with the transition probabilities
split into core and periphery. For interaction effects, we evaluated
their significance with respect to amodel that had all other effects,
both main and interaction. In particular, below we state, for each
effect, the corresponding hypotheses. Any parameter not men-
tioned in any hypothesis is assumed to vary freely in both the null
and the alternative models (except those of an interaction effect
when testing a main effect as explained above).

Space (large scale):
H0: For each (i, j) ∈ {0, 1, 2}2, ℙi,j,D(k) = ℙi,j,D(l) for all

thanas k, l.
Ha: For at least one (i, j) ∈ {0, 1, 2}2, ℙi,j,D(k) is different for

thanas in different regions.
ENSO:
H0: A = 0.
Ha: A ≠ 0.

Seasonality:
H0: βi,j = 0 for all i, j.
Ha: At least one βi,j ≠ 0.

Space (small scale):
H0: αi,j = 0 for all i, j.
Ha: At least one αi,j ≠ 0.

Space (large scale) × ENSO:
H0: AD(k) = AD(l), hD(k) = hD(l) and MD(k) = MD(l) for all

thanas k, l.
Ha: At least one of A, k, or M is different for thanas in

different regions.
Space (large scale) × seasonality:
H0: For each (i, j) ∈ {0, 1, 2}2, βi,j,D(k) = βi,j,D(l) for all thanas

k, l and Se(t, D(k)) = Se(t, D(l)) for all thanas k, l.
Ha: For at least one (i, j) ∈ {0, 1, 2}2, βi,j,D(k) is different for

thanas in different regions or for at least one t ∈ {0, 1, . . . ,
11}, Se(t, D(k)) is different for thanas in different regions.

Space (large scale) × space (small scale):
H0: For each (i, j) ∈ {0, 1, 2}2, αi,j,D(k) = αi,j,D(l) for all

thanas k, l.
Ha: For at least one (i, j) ∈ {0, 1, 2}2, αi,j,D(k) is different for

thanas in different regions.

The results of these hypothesis tests are summarized in Tables
S1 and S2.
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Below we present the 62 parameter values of our final model
(with log-likelihood −3,156.6). Recall that there are 62 param-
eters and not 68 because in each transition matrix, due to the
linear constraint, one column is determined on the basis
of knowledge of the other two. Although our above statistical
analysis is not based on each parameter being significant but on
the effect governed by many parameters, we can see from the
fitted values in the transition matrices that the base model cap-
tures the fact that the core thanas are more likely to experience
high levels of cholera.

Core Thanas and Periphery Thanas.

ℙ ¼
0
@ 0:826611405 0:115724566 0:057664029

0:567880090 0:325126091 0:106993819
0:577071169 0:211427120 0:211501711

1
A

α ¼
0
@− 0:057805277 0:24113984
0:073239230 0:05441645
0:001489096 − 0:01785350

1
A

β ¼
0
@− 0:09970336 0:3232735
− 0:19332893 0:3378519
− 0:23792711 0:2901183

1
A

for ENSO

A ¼ 0:7423721

h ¼ 2:70762

M ¼ 2:620335

and

Seð1Þ ¼ 0:0929788 Seð5Þ ¼ 1 Seð9Þ ¼ 0:9157895
Seð2Þ ¼ 0   Seð6Þ ¼ 0:7704870  Seð10Þ ¼ 0:9631579
Seð3Þ ¼ 0:3123720 Seð7Þ ¼ 0:5872501  Seð11Þ ¼ 0:5468458
Seð4Þ ¼ 0:992745 Seð8Þ ¼ 0:6910358  Seð12Þ ¼ 0:366960:

Periphery Thanas.

ℙ ¼
0
@ 0:9087930 0:058051858 0:03315510

0:8440190 0:114040903 0:04194010
0:8498659 0:001530536 0:14860353

1
A

α ¼
0
@− 0:058722122 0:06863430
− 0:165737926 0:08092761
− 0:117189265 0:07731697

1
A

β ¼
0
@− 0:10504627 0:2821137
− 0:09191232 0:1951380
− 0:14225600 0:1427373

1
A

for ENSO

A ¼ 0:9964250

h ¼ 0:06254895

M ¼ 2:634224

and

Seð1Þ ¼ 0:3113539 Seð5Þ ¼ 1 Seð9Þ ¼ 0:5845409
Seð2Þ ¼ 0 Seð6Þ ¼ 0:3790798 Seð10Þ ¼ 0:6583411
Seð3Þ ¼ 0:3447757 Seð7Þ ¼ 0:0978109 Seð11Þ ¼ 0:6023155
Seð4Þ ¼ 0:8887331 Seð8Þ ¼ 0:2068688 Seð12Þ ¼ 0:9285714:

Because we also fit an alternative model to investigate the ro-
bustness of our conclusions, we can compare the resulting
transition probabilities from the two different models. For the
purposes of illustration, we chose to evaluate the third transition
probability (the probability of moving from the current state to
the high cholera state) for the two different models for the month
of September. As we can see from Fig. S5, although there are
some differences between the two models’ fitted probabilities,
there is considerable agreement both for the core and for the
periphery thanas, agreement depending on the cholera level in
the neighbors of the thana, and similar relationships with ENSO.

S5. Model Simulation
A nice consequence of using a Markov chain model is the ease at
which simulations can be conducted. For a givenmonth, the states
of each thana can be found, as well as the maximum level of the
neighbors of each thana. With the ENSO value provided as well,
the transition probabilities can be computed for each thana (pi,0,
pi,1, pi,2) (where the current state of the thana is i). A uniform
random variable is drawn and if this is less than pi,0 we say that
the thana has transitioned to state 0. If the uniform random
variable is instead between pi,0 and pi,0 + pi,1, then we say the
thana transitioned to state 1, and otherwise we say the thana
transitioned to state 2. Repeating this for each thana gives us our
1-mo predictions. We then use these simulated data to simulate
the next month, and so on. Because the ENSO values used in
a given month correspond to 11 mo in the past, predictions 11
mo into the future can be obtained without using any in-
formation other than that in the initial month (in other words,
we do not update the states with the “truth” throughout the 11-
mo simulation). We repeated this procedure for each month to
compute a set of 11-mo predictions. For the final results we
averaged the predicted values for all of the thanas for a given
month to compare that to the true transformed average.
Typically in matrix models, the multiple-step transition prob-

abilities can be computed by iterative matrix multiplication.
However, in our model, each thana’s transition matrix depends
on the states of the other thanas, so that this is impractical.
Therefore, we use a Monte Carlo approach and simulate paths
10,000 times. Simulations were implemented in R (3).

S6. Forecast Probabilities
Because we are using a probabilistic model, in addition to being
able to make predictions about the rate of cholera in the city, we
can make predictions about the distribution of these rates. For
a given month, by simulating 10,000 paths we have 10,000 11-mo
predictions. The empirical distribution of these predictions
estimates the true distribution of possible outcomes. In addition
to examining whether the average outcome is above a certain
level, we can see how many of the predictions are above this level
and thus have an empirical estimate of the probability that the
true outcome will cross a critical threshold. We can define an
outbreak, for example, to be a month whose average cholera rate
is in the top 25% of all of the data (as is done in Fig. 4 in the main
text) and calculate the associated predicted probability that there
will be an outbreak in any given month. Fig. S6 compares these
probabilities to the actual data and shows that for months when
there actually was an outbreak (indicated on the y axis as 1), the
estimated probabilities are higher than in the months when there
was not one (indicated on the y axis as 0).
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As mentioned above, our transformation procedure removes
the extreme events from the data. This procedure also causes the
model to be biased away from extreme events. Fig. 4 in the main
text illustrates this tendency: Although the predictions capture
the interannual variability of the data, they also tend to un-
derestimate the size of the outbreaks. Specifically, when we
consider the months where we observed cases in the top 25%, we
overpredict 4.5% of the time and underpredict 95.5% of the
time. In the absence of such bias, we would expect that if we used
our probabilities as a cutoff to indicate whether there was an
outbreak, any probability >50% would indicate an outbreak and
any probability <50% would indicate no outbreak (the 50%
cutoff is indicated by the shaded dashed line in Fig. S6). Whereas
probabilities >50% almost always correspond to outbreaks, be-
cause our model is biased low, we need to correct for this bias
and find the appropriate cutoff to evaluate the risk of outbreaks.
More technically, our predicted probabilities, considered as
classifier scores, are not properly calibrated (4), and therefore
a probability of around ≥90%, as computed for the El Niño years
of 1998 and 2003 (see Fig. 4 in the main text), would actually
reflect a higher risk than these actual numbers indicate. If we
consider our probabilities as a measure of the likelihood of an
outbreak (and not as the actual probability of an outbreak itself),
then we can use decision theory to best classify a month.
Mathematically, using the predicted probability of an outbreak

to decide whether there actually will be an outbreak is a binary
classification problem. We are trying to place months into two
groups on the basis of the predictions of the model, corresponding
to “outbreak” and “no outbreak,” and as such there are two
different types of errors we can make. If we consider a positive
event to be one where there is an outbreak, then we have the
classical question of trying to define a hypothesis test that ap-
propriately balances the false positives (months that we say will
be outbreaks but are not) and the false negatives (months that
we say will not be outbreaks but in fact are). To determine the
appropriate location of the cutoff probability threshold to be
used to classify months as predicted outbreaks or not on the basis
of these predicted probabilities, we use the Kolmogorov–Smir-
nov test. The Kolmogorov–Smirnov test computes the empirical
cumulative distribution function of the predicted probabilities
for months where outbreaks occurred and compares it to the
empirical cumulative distribution function of the predicted
probabilities for months where there were not in fact outbreaks.
We can use the location of the greatest distance between the two
curves as our cutoff (5) (Fig. S7). For the predicted probability of
an event in the upper 25% of all predicted months, we found that
the best location of the threshold was 26.46% (the black dashed
line in Fig. S6). The distance between 26.4% and 50%, where the
cutoff would be if our probabilities were not biased low, is es-
sentially the correction of that bias. We see in this case that our
false negative rate and false positive rate are both ∼25%. Most
importantly, if we look among all months for which no outbreak
was predicted, only 10.1% (10/99) of these predictions were
wrong. These errors would correspond to our model saying there
would not be an outbreak, when in fact there was one. Because
this error is potentially the most serious one from a public health
perspective, the models appears to perform quite well with a low
fraction of months misclassified.

In addition to the above cutoff probability that is essential to
interpret the prediction probabilities for each month, we can also
examine the particular choice of the threshold level used for
computing the probabilities themselves. We specifically used for
this procedure a threshold value set at 25% of the observed data.
Note that this value is equal to the threshold value used to
classify the empirical data into observed or nonobserved out-
breaks. This is therefore a sensible choice for the predictions
themselves. However, it is possible to examine systematically
whether there is a better choice by relying on receiver operating
curves (ROCs) (6). ROCs are are useful when the cost functions
associated with the different types of errors (false positives and
false negatives) are unclear (4) and they compare the sensitivity
(true positive rate) and specificity (true negative rate) across all
possible definitions of predicted outbreaks. We found that our
results (the “scores” or probabilities assigned to the different
months) are not significantly affected by the choice of a different
threshold value within broad ranges between 0.2 and 0.8.

S7. Flooding
As discussed in the main text, there is a considerably different
correlation between flooding and cholera rate in the early summer
(June and July) between the two regions. There is, however,
a large correlation for both regions between the late-monsoon
cholera cases (August and September) and flooding. When the
entire monsoon season (June through September) is considered
as a whole throughout the entire city, we see a very high corre-
lation between cases and flooding (r = 0.91; Fig. S8). The
flooding index used here was the percentage of the country that
was flooded at one point during the year. For example, in 1998,
when the index was 68, this number means that at one point or
another 68% of the country was flooded (although not neces-
sarily all at the same time). This index, the only one we could
find, is compiled at the end of a year and as such is inappropriate
for a forecasting model. Clearly one would want to use only an
index of localized flooding in advance of the target month for
prediction. In Bangladesh, however, much of the flooding occurs
during the monsoon season, so the observed correlations are in
this case indicative of a strong effect. In particular, as we remark
in the main text, higher levels of summer cholera appear to
correlate with flooding (and high levels of ENSO).

S8. Spatial Heterogeneity
There are numerous levels of heterogeneity between thanas
throughout the city, and these differences contribute to the ob-
served difference between the two identified regions. No one
socioeconomic index alone can be identified as the reason for the
underlying difference in cholera dynamics, but there are several
that correlate well with the differentiation of regions identified in
the analysis. In Fig. S9, we show three such indexes collected
during the 2001 census. In Fig. S9, Left, the density by thana is
plotted, and it is clear that the core thanas are denser (the
densest thana, shown in deep red, averages 131,000 people per
square kilometer). The core thanas have more households that
use tap water than do the periphery thanas (Fig. S9, Center) that
rely primarily on well water. The fraction of houses in each thana
that are classified as jhupri (small, temporary shanty houses,
typically with roofs <4 feet from the ground and not able to
withstand heavy weather), is shown in Fig. S9, Right.
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Fig. S5. Predicted p′i;2;k;t probabilities (transition to “high cholera” state) for both the original model (solid lines) and the alternative model (dashed lines) for
the month of September for different values of ENSO. (Left) Core thanas; (Right) the probabilities for the periphery thanas. (Top) When the current state is “no
cholera”; (Middle) when the current state is “low cholera”; (Bottom) when the current state is high cholera. Green, blue, and red lines correspond to when
there is no cholera in the neighboring states, when the highest state of the neighbors is low cholera, and when at least one neighboring state has high cholera,
respectively.
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Fig. S6. Predicted probabilities of outbreaks for months when an outbreak occurred (y axis = 1) vs. months when an outbreak did not occur (y axis = 0). The
shaded dashed line represents where the cutoff for classification would be if the probabilities were perfectly calibrated (i.e., at 50%). The solid dashed line is
the location of the cutoff as determined through the classification analysis to calibrate the probabilities (located at 26.4%) (see text for details). We classify any
month whose probability of an outbreak is to the right of this line to be one where we expect an outbreak.
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Fig. S7. Kolmogorov–Smirnov test, with cumulative mass function for predicted probabilities corresponding to months where no outbreak occurred in red,
and months where an outbreak occurred in blue.
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Fig. S8. Scatterplot of flooding index vs. total cases of cholera during monsoon season (per 10,000 people).
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Table S1. Summary of statistical analysis for initial parameterization

Effect //0 //a Δ in //s Δ df χ2 P value

Space (large scale) −3,289.1 −3,191.7 97.4 6 194.74 2.20 × 10−39

ENSO −3,181.0 −3,161.5 19.5 3 39.00 1.74 × 10−8

Seasonality −3,315.7 −3,188.9 126.7 16 253.48 1.25 × 10−44

Space (small scale) −3,169.9 −3,163.2 6.8 6 13.54 0.0352
Space × ENSO −3,161.5 −3,156.6 4.9 3 9.82 0.0202
Space × season −3,188.9 −3,156.6 32.3 16 64.62 8.58 × 10−8

Space × space −3,163.2 −3,156.6 6.6 6 13.10 0.0415

Table S2. Summary of statistical analysis for alternative parameterization

Effect //0 //a Δ in //s Δ df χ2 P value

Space (large scale) −3,291.9 −3,198.5 93.4 6 186.76 2.94 × 10−37

ENSO −3,184.0 −3,161.9 22.1 3 44.17 1.39 × 10−9

Seasonality −3,316.7 −3,192.7 124.0 16 248.03 1.33 × 10−43

Space (small scale) −3,168.4 −3,162.0 6.4 6 12.85 0.0456
Space × ENSO −3,161.9 −3,154.7 7.1 3 14.34 0.0025
Space × season −3,192.7 −3,154.7 38.0 16 75.91 8.99 × 10−10

Space × space −3,162.0 −3,154.7 7.3 6 14.60 0.0236
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Fig. S9. Demographic maps. (Left) Density of thana per square kilometer (plotted in log scale). (Center) Percentage of households per thana whose primary
drinking source is tap water. (Right) Percentage of households per thana whose housing is Jhupri (small temporary structure with ceiling height <4 feet).
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Movie S1. Animation of cholera rate monthly for 21 thanas from 1995 through 2008. Thick black line indicates border for core region.

Movie S1
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Movie S2. Animation of transformed data monthly for 21 thanas from 1995 through 2008. White represents no cholera, yellow represents being categorized
into “low cholera” bin, and orange represents being categorized into “high cholera” bin. Thick black line indicates border for core region.

Movie S2
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