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Part A – Natural selection versus kin selection

Kin selection theory based on the concept of inclusive fitness is often presented as a general approach
that can deal with many aspects of evolutionary dynamics. Here we show that this is not the case.
Instead, inclusive fitness considerations rest on fragile assumptions, which do not hold in general.
The quantitative analysis of kin selection relies completely on inclusive fitness theory. No other
theory has been proposed to discuss kin selection. We show the limitations of inclusive fitness
theory. We do not discuss implications of kin selection that might exist independent of inclusive
fitness theory.

We set up a general calculation for analyzing mutation and selection of two strategies, A and
B, and then derive the fundamental condition for one strategy to be favored over the other. This
condition holds for any mutation rate and any intensity of selection. Subsequently, we limit our
investigation to weak selection, because this is the only ground that can be covered by inclusive
fitness theory. For weak selection, we show that the natural selection interpretation is appropriate
for all cases, whereas the kin selection interpretation, although possible in several cases, cannot
be generalized to cover all situations without stretching the concept of “relatedness” to the point
where it becomes meaningless.

Therefore we have a general theory, based on natural selection and direct fitness, and a specific
theory based on kin selection and inclusive fitness. The general theory is simple and covers all cases,
while the specific theory is complicated and works only for a small subset of cases. Whenever both
theories work, inclusive fitness does not provide any additional insights. Criticisms of inclusive
fitness theory have already been raised by population geneticists and mathematicians (Cavalli-
Sforza and Feldman 1978 and Karlin and Matessi 1983). The present criticism is based on a game
theoretic perspective in structured populations which has been developed recently.

The extra complication of inclusive fitness theories arises from the attempt to bring into the
discussion increasingly abstract notions of ‘relatedness’ when it is not natural to do so. This
situation is not particular to theory. Hunt (2007) citing Mehdiabadi et al (2003) points out that
“increasingly complex scenarios are required to keep recent empirical data within the theoretical
construct of haplodiploidy-based maximization of inclusive fitness.”

The fact that inclusive fitness calculations are more complicated than direct fitness calculations
has been accepted by theoreticians such as Rousset and Billiard (2000) and Taylor et al (2006). As
complicated as inclusive fitness is to calculate, it is even more complicated to measure empirically.
Only very few studies have attempted to do this (Queller and Strassman 1989, Gadagkar 2001)
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and their results have been mixed. Despite the difficulty of measuring inclusive fitness, it is often
possible to measure genetic relatedness, which has acted as an endorsement for inclusive fitness
theoreticians. However, measuring relatedness (instead of inclusive fitness) can lead to misleading
results: after getting recognition from proposing that haplodiploidy is the reason for insect sociality,
Hamilton’s rule has lost steam when many studies have shown that there is in fact no apparent link
between the two (Anderson 1984, Gadagkar 1991, Crozier and Pamilo 1996, Queller and Strassmann
1998, Linksvayer and Wade 2005, Hunt 2007, Boomsma 2009). In Section 6, we also give a simple
example to show that relatedness measurements, in the absence of a model, can be very misleading.

Those who have attempted thorough assessments of inclusive fitness have come to the similar
conclusion that “ecological, physiological, and demographic factors can be more important in pro-
moting the evolution of eusociality than the genetic relatedness asymetries” (Gadagkar 2001). In
other words, a thorough understanding of the many factors at play is much more important than the
isolated measurement of relatedness. We aim to show that the understanding of such factors would
lead to the design of solid models. When such models are proposed and analyzed using natural
selection, then measurements of genetic relatedness could receive meaningful interpretations.

We fail to see the point in insisting to assign explanatory power to a theory which from a
modeling perspective fails to cover the majority of cases (and where it does, it makes the same
predictions as natural selection) and which moreover has limited support in the empirical world.

We recognize that inclusive fitness theory has led to important findings such as the elegant
framework proposed by Rousset & Billiard (2000) and Roze & Rousset (2004), the results of Taylor
(1989) regarding evolutionary stability in one-parameter models (with some improvements proposed
by van Veelen 2005) and the results of Taylor et al (2007a) for homogeneous graphs . But on the
other hand many recent contributions of inclusive fitness theory consist of either rederiving special
cases of known results (Lehmann et al 2007ab, Taylor and Grafen 2010) or of making incorrect
universality claims (Lehmann and Keller 2006, West et al 2007, Gardner 2009, West and Gardner
2010).

In light of what we show here, inclusive fitness theory is simply a method of calculation, but
one that works only in a very limited domain. Endorsing it as a mechanism for the evolution
of cooperation would lead to a constraining view of the world (also pointed out in Nowak et al
2010). Hunt (2007) says that Hamilton’s rule, proposed as a general rule with broad explanatory
power, “has blunted inquiry into mechanisms that foster and maintain sociality in the diverse
lineages where sociality has evolved.” Similarly, from a theoretical perspective, the narrow focus
on relatedness has prevented kin selectionists from contributing to the discovery of mechanisms for
the evolution of cooperation. Such mechanisms lead to an assortment between cooperators and
defectors, but assortment itself is not a mechanism; it is the consequence of a mechanism. The
crucial question is always how assortment is achieved (Nowak et al 2006).

1 Mutation-selection analysis

We consider stochastic evolutionary dynamics (with mutation and selection) in an asexual popula-
tion of finite size, N . We do not specify yet the underlying stochastic process because our results
are general and apply to a large class. Individuals adopt either strategy A or B. They obtain
payoff by interacting with others according to the underlying process. This payoff determines the
reproductive success of an individual. We call this the ‘natural selection approach’.

Reproduction is subject to mutation. With probability u the offspring adopts a random strategy
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(which is either A or B). With probability 1− u the offspring adopts the parent’s strategy. Thus,
mutation is symmetric and occurs during reproduction.

As a consequence of the underlying dynamics, the process goes through many states. Each
state, S, is a snapshot of the process and is described by the strategies of all individuals (A or B)
as well as by their ‘locations’ (in space, phenotype space, on islands, on sets, etc). A description
of a state must include all information that is necessary to obtain the payoffs of individuals in
that state. For our discussion, we assume a finite state space, but the analysis can be extended to
infinite state spaces. We study a Markov process on this state space.

One could ask many questions about such a system. Does selection lead to dominance, bistabil-
ity or coexistence? What are the trajectories of the system? What is the stationary distribution?
And so on. These are all questions concerning the dynamics. The stochastic element of evolution,
which leads to a distribution of possible outcomes rather than a single optimum, is not a part of
inclusive fitness theory, while it is essential to evolutionary genetic theory. Inclusive fitness theory
can only attempt to address two types of questions, both of them insufficient to analyze the whole
dynamics. First, it can determine whether cooperation is favored by looking at the gradient of
selection. However, as it has already been pointed out, this measure only works if selection is not
frequency dependent. In other words, it works only when fitness gradients are determined entirely
by processes that are not affected by the current state of the population (Doebeli and Hauert 2006,
Traulsen 2010). Moreover, Wolf and Wade (2001) have shown that the inclusive fitness approach
of counting offspring viability as a component of maternal fitness can lead to a mistaken under-
standing of the direction of selection. Since the limitations of such a method are clear and have
already been pointed out carefully, we will not deal with this type of question here. The second
question that inclusive fitness can attempt to answer has to do with determining which strategy is
more abundant on average in the stationary distribution.

A natural selection approach is from the beginning broader than the inclusive fitness approach
because it can handle questions about dynamics (Traulsen 2010). But since in this paper we are
aiming to compare the natural selection approach to the inclusive fitness approach, we will only
address the question that can be answered by the latter: when is one strategy more abundant than
another on average?

The system goes through many states, and some states are less visited than others. We follow
the process over many generations; in some states A players do better, in others they do worse. For
the purpose of this analysis, all that matters is how they fare on average. We say that on average
A outperforms B if the average frequency of A is greater than 1/2. Let xS be the frequency of A
in state S. Then A is favored over B on average if

〈x〉 =
∑
S

xSπS >
1
2
. (1)

Here 〈·〉 denotes the average taken over the stationary distribution and πS is the probability to find
the system in state S (or, in other words, the fraction of time spent by the system in state S). In
the limit of low mutation, this condition is equivalent to the comparison of fixation probabilities,
ρA > ρB.

To tackle this problem, given the general process described above, we can write an intuitive
description of how the frequency of A or B changes from one state to another. This type of
argument has been used several times, starting with Price (1970, 1972), who used it for processes
with non-overlapping generations. It has been more carefully revised by Rousset and Billiard (2000)
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for simple deme structures. The same type of analysis has been employed for games in phenotype
space (Antal et al 2009) and for games on sets (Tarnita et al 2009a). None of these accounts deal
with general processes. But in what follows we give a general mutation-selection analysis, which
does not assume a particular process or dynamics. Moreover, we do not specify how selection plays
a role in the process.

To understand how the frequency of A changes between states, we must take into account the
two forces that act: selection and mutation. In the stationary distribution, mutation and selection
balance each other on average. Hence the total change in the frequency of A is zero, when averaged
over the stationary distribution:

0 = 〈∆xtot〉 (2)

From now on, whenever we write the stationary average of a quantity, we use the angular
brackets 〈·〉; however, when we refer to quantities in a state, we omit, for simplicity, the index S.
The indication that we refer to the quantity in a state rather than to its average over the stationary
distribution comes from the fact that we do not use the angular brackets for the former.

Let wi denote the expected fitness of individual i. As mentioned, this quantity is for a given
state, hence the lack of angular brackets. We can decompose wi into two parts. One is the expected
number of offspring, bi, and the other is the expected number of survivors, 1−di, where di represents
the probability that i dies in a selection step. Thus, the expected fitness of individual i is

wi = 1− di + bi (3)

Since the population size is fixed, we have
∑

iwi = N , which implies
∑

i bi =
∑

i di.
In a given state, the total expected change in the frequency of A can be expressed in terms of

birth and death rates as follows. There are two ways to produce more A individuals: the existing
ones give birth and their offspring do not mutate to B or the existing B individuals give birth and
their offspring mutate to A. There is however only one way to lose A, and this is if some existing A
individuals die. Thus, in a given state, the total change in frequency due to selection and mutation
is

∆xtot =
1
N

((
1− u

2

)∑
i

sibi +
u

2

∑
i

(1− si)bi −
∑
i

sidi

)
. (4)

Here si indicates the strategy of individual i: si = 1 if i has strategy A and it is 0 if i has strategy
B.

On the other hand, the change only due to selection is simply the expected number of offspring
of A individuals minus the number of A in this state:

∆xsel =
1
N

∑
i

si(wi − 1) =
1
N

∑
i

si(bi − di). (5)

Using (5) into (4) together with the fact that NxS =
∑

i si we can rewrite the total change in terms
of the change due to selection1

∆xtot = ∆xsel +
u

2N

∑
bi −

u

N
x− u

N

∑
i

si

(
bi −

1
N

)
. (6)

1This way of writing it is in no way unique but any other rewriting will yield the same results.
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This type of accounting analysis is a generalization of Price’s (1970, 1972) method and agrees with
it for a process with non-overlapping generations. However, we keep our result in the form of this
accounting identity and do not use notations like covariance which have been shown to be confusing
if used to make predictions in the absence of a precise model (as explained by van Veelen 2005).

Next we look at average quantities (similar to Billiard and Rousset 2000, Antal et al 2009a,
Tarnita et al 2009a). Since the total change averaged over the stationary distribution is zero, we
have

0 = 〈∆xtot〉 = 〈∆xsel〉+
u

2N

〈∑
bi

〉
− u

N
〈x〉 − u

N

〈∑
i

si

(
bi −

1
N

)〉
. (7)

Thus, we can rewrite the average frequency in terms of the average change due to selection as

〈x〉 =
1
2

〈∑
bi

〉
+
N

u
〈∆xsel〉 −

〈∑
i

si

(
bi −

1
N

)〉
(8)

We want to compare the average frequency of A to 1/2. For simplicity, we make the following
assumption.

Assumption (1). The total birth rate (or, equivalently, the total death rate) is the same in
every state.

In other words, we assume
∑

i bi = α in all states of the system, where α is some constant. This
assumption is not as restrictive as it may seem. It holds for most processes that have been analyzed
so far. It holds for Wright-Fisher type processes. There, all individuals from one generation die,
and the new generation is formed by their offspring. Thus, the death rate of each individual is
di = 1 and so

∑
i di = N =

∑
i bi (here α = N).

Assumption (1) also holds for Moran type processes (Moran 1962) with either Death-Birth (DB)
or Birth-Death (BD) updating (Ohtsuki et al 2006, Ohtsuki & Nowak 2006). DB updating means
that an individual dies at random and others compete for the empty site proportional to their
payoff. We have di = 1/N for all i yielding that

∑
i di = 1 =

∑
i bi. BD updating means that an

individual is chosen for reproduction proportional to payoff and the offspring replaces a randomly
chosen individual. In this case we have bi = fi/F where F is the total payoff in the population and
therefore

∑
i bi =

∑
i fi/F = 1. For Moran type processes α = 1 .

The derivation works for any constant α but for simplicity of exposition we set α = 1. Then if
for every state

∑
i bi = 1, we have 〈

∑
i bi〉 = 1. Hence (8) becomes

〈x〉 =
1
2

+
N

u
〈∆xsel〉 −

〈∑
i

si

(
bi −

1
N

)〉
(9)

Strategy A is favored over B if 〈x〉 > 1/2. Therefore, we obtain the main result

Theorem 1. For any process satisfying assumption (1) and for any intensity of selection, A is
favored over B in the mutation-selection equilibrium if and only if〈∑

i

si(bi − di)
〉
> u

〈∑
i

si

(
bi −

1
N

)〉
(10)
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If the birth rate is constant, since
∑

i bi = 1, we must have bi = 1/N and then condition (10)
reduces to 〈∆xsel〉 > 0. It is easily shown that the same is true if the death rate is constant. This
result is valid for any mutation rate. If however we consider the limit of low mutation in (10), for
any process, we recover the same condition 〈∆xsel〉 > 0. We can then formulate the following

Corollary 1. If we consider either constant birth or constant death rates or if we consider the
limit of low mutation, A is favored over B if

〈∆xsel〉 > 0

This result is intuitive, because in the limit of low mutation, only selection determines whether
a strategy is favored or not. However, in general, the condition for a strategy to be favored has
to take into account both selection and mutation. If selection favors a strategy, then it might
reproduce more often which makes it subject to mutation. Thus, in this case, it is not enough to
ask for selection to favor a strategy. One must require that selection favors the strategy enough
to offset the counter effect of mutation. This argument explains (10); the right hand side of (10)
involves only the birth rate multiplied by the mutation probability.2

So far we have derived a general condition for one strategy to be favored over another in a
mutation selection process. We did not need to specify the process in detail. Moreover, our result
holds for any intensity of selection. Next we focus on the limit of weak selection because this is the
only ground covered by inclusive fitness theory.

2 The limit of weak selection

Inclusive fitness theory works only for the limit of weak selection (Michod and Hamilton 1980,
Grafen 1984). In this limit the selective difference between the two strategies converges to zero.
Therefore both strategies have frequency of about 1/2 with an epsilon difference determining the
winner. The weak selection limit is a useful, simplified scenario for gaining some insights into
evolutionary dynamics, but it is obviously not the general case. Therefore, if a theory, such as
inclusive fitness theory, can only be formulated for weak selection, it cannot possibly represent a
general principle of evolutionary biology.

2.1 Two types of weak selection

The limit of weak selection can be achieved in different ways. Here we discuss two possibilities. For
the approach proposed by Nowak et al (2004), the intensity of selection scales the contribution of
the game relative to the baseline payoff. Thus, the effective payoff of an individual is 1 +wPayoff.
The limit of weak selection is obtained for w → 0.

In inclusive fitness theory, weak selection is obtained by assuming that mutation renders strate-
gies which are very close to the wild type in phenotype space (Taylor 1989, Rousset and Billiard
2000). These two papers deal with a continuous strategy space, but it seems to be very common in
inclusive fitness theory to assume that the strategy space is the space of mixed strategies, which is
a special case (Grafen 1979, Wild and Traulsen 2007, Traulsen 2010). In this case, weak selection

2If instead of assuming
P
i bi = 1 we would assume

P
i bi = α then (10) would become

DP
i si(bi − di)

E
>

u
DP

i si
“
bi − α

N

”E
. This is easily verified and the entire analysis carries out similarly.
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corresponds to small deviations in the probability to play a certain strategy. More explicitly, in
this special case, weak selection is obtained as follows. If a game is given by two pure strategies,
X and Y , then one considers the set of all mixed strategies given by the probability p to play X
(the probability to play Y is 1− p). Then one studies selection between the two strategies, p and
p + δ. The limit of weak selection is given by δ → 0. The payoff matrix for the game between
these two strategies, p and p + δ, in the limit of weak selection, has the property of “equal gains
from switching”, which means that the sum of the entries on the first diagonal equals the sum of
the entries on the second diagonal (Nowak and Sigmund 1990). Thus, this limit of weak selection
leads to the necessary constraint that the games have equal gains from switching. For more details
on these two types of weak selection we refer to Rousset and Billiard (2000), Wild and Traulsen
(2007) and Traulsen (2010).

In what follows, we use δ to denote the intensity of selection, but our theory holds for both
approaches to weak selection.

2.2 Weak selection of strategies

As mentioned, (10) holds for any intensity of selection. It holds for both selection approaches
described above, as well as for any other suggestions of how selection should play a role in the
model. In this section we consider that the intensity of selection is specified by a parameter δ but
we do not yet specify how the parameter δ plays a role. Hence the derivation below is for weak
selection in the most general form and it holds provided that there is no discontinuity between
neutrality and selection; thus we assume that all quantities that depend on δ are differentiable at
δ = 0.

In a selection based approach, the birth and death rates of individuals depend on the parameter
δ. For the limit of weak selection, δ → 0, we can take the Taylor expansion at δ = 0. From (10)
we obtain〈∑

i

si(bi−di)
〉

0
+δ

∂

∂δ

〈∑
i

si(bi − di)
〉∣∣∣∣∣
δ=0

> u
(〈∑

i

si

(
bi−

1
N

)〉
0
+δ

∂

∂δ

〈∑
i

si

(
bi −

1
N

)〉∣∣∣∣∣
δ=0

)
(11)

Here 〈·〉0 =
∑

S ·πS |δ=0 denotes the average over the stationary distribution taken at neutrality
and |δ=0 means the quantity is evaluated at δ = 0. This can be expanded further as

〈∑
i

si(bi − di)
〉

0
+ δ
(∑

S

∑
i

si(bi − di) |δ=0
∂

∂δ
πS

∣∣∣∣
δ=0

+
∑
S

∂

∂δ

∑
i

si(bi − di)

∣∣∣∣∣
δ=0

πS |δ=0

)
> u

(〈∑
i

si

(
bi −

1
N

)〉
0

+ δ
(∑

S

∑
i

si

(
bi −

1
N

)
|δ=0

∂

∂δ
πS

∣∣∣∣
δ=0

+
∑
S

∑
i

∂

∂δ
si

(
bi −

1
N

)∣∣∣∣
δ=0

πS |δ=0

))
(12)

Computationally it is easy to deal with averages over the neutral stationary distribution, because
they allow us to calculate population structure at neutrality. Thus, in the above expression the
first and last terms can be calculated. The problem arises with the middle terms of the form∑

S

si(bi − di) |δ=0
∂

∂δ
πS

∣∣∣∣
δ=0

(13)
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In such terms, the quantities are still evaluated at neutrality, but we have to calculate the first
derivative of the actual stationary distribution for any intensity of selection, and then evaluate that
at δ = 0. It is usually very hard to find the stationary distribution for any δ (if that could be done,
there would be no need to take the limit of weak selection). Hence terms like (13) would be hard
to handle unless they are zero. One way to make such terms zero is via the following assumption.

Assumption (2). At neutrality (δ = 0), all birth rates and all death rates are equal in every
state.

By this we mean that bi = di = 1/N for al i, in every state3.4 If this is the case, then
(bi − 1/N) |δ=0= (bi − di) |δ=0= 0. Moreover, we implicitly get that 〈∆xsel〉0 = 0 and 〈

∑
i si(bi −

1/N)〉0 = 0. Then, (12) simplifies giving the equivalent of our main result (10) for weak selection:

Theorem 2. For any process satisfying assumptions (1) and (2), in the limit of weak selection,
strategy A is favored over strategy B in the mutation-selection equilibrium if and only if〈∑

i

si
∂(bi − di)

∂δ

∣∣∣∣
δ=0

〉
0

> u

〈∑
i

si
∂bi
∂δ

∣∣∣∣
δ=0

〉
0

(14)

Corollary 2. In particular, if we also consider either constant birth or constant death rates or if
we consider the limit of low mutation, (14) becomes〈∑

i

si
∂(bi − di)

∂δ

∣∣∣∣
δ=0

〉
0

> 0 (15)

3 Comparing natural selection and kin selection

Our main result (Theorem 1) was derived for any intensity of selection. Subsequently we took the
limit of weak selection to derive the more convenient condition (Theorem 2). But the standard
approach of natural selection is, of course, not limited to weak selection. We recognize that many
interesting and important phenomena of evolutionary dynamics can only be observed if we move
away from the limit of weak selection (since for weak selection all available strategies are equally
abundant on average).

The whole theory of inclusive fitness, however, is only applicable in the limit of weak selection
(Michod and Hamilton 1980, Grafen 1984). The fundamental idea of inclusive fitness is that the
consequence of an action can be evaluated as the sum of the following terms: the fitness effect that
this action has on the actor plus the fitness effect that this action has on any recipient multiplied
by the relatedness between actor and recipient. This is a somewhat artificial and tricky construct
that has confused people. According to Grafen (1984) many erroneous definitions are given in

3Or in the more general case, bi = di = α/N .
4One immediate example for which bi 6= di is the star. The star is a graph with a hub and N − 1 leaves. Consider

DB updating on the star – if a leaf dies then the hub will replace it; if the hub dies, then the leaves compete for the
empty spot. At neutrality, each individual has payoff 1. Then di = 1/N for all i; bi = 1/N(N − 1) for the leaves and
for the hub bhub = (N − 1)/N . So clearly bi 6= di for all i. Thus, for the star, the analysis even for weak selection is
more complicated. Results are possible using our natural selection based approach but only for low mutation (Tarnita
et al 2009b).
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textbooks and then used for subsequent theoretical or empirical studies. The important point is
that inclusive fitness does not count the offspring of an individual that come from others’ actions
on him; so it does not include the whole classical fitness of an individual (see Figure 1). The
suggestion of inclusive fitness theory is that this (somewhat artificial) construct can be used to
evaluate evolutionary dynamics. In the following, we show that the concept of inclusive fitness only
makes sense if several very restrictive assumptions hold (in addition to the already very restrictive
assumption of weak selection).

A B 

      Fitness: 

A B 

Inclusive fitness: 

Figure 1: Inclusive fitness is simply a different accounting method that works in some
cases, but when it works it never has an advantage over the standard fitness concept
of natural selection. For calculating the fitness of an individual we consider all interactions and
then calculate how the payoff is translated into reproductive success. Inclusive fitness is the sum
of how the action of an individual affects his own fitness plus how this action affects the fitness of
another individual multiplied by the relatedness between the two. Inclusive fitness does not take
into account the fitness contribution that arises from the action of others on the focal individual.

For instance, for inclusive fitness to work, one has to assume that the effects of one’s behavior
on others are linear, additive and independent. In other words, for calculating inclusive fitness, it
must be sufficient to look at pairwise interactions independently, and such interactions can then
be added up. If stronger selection or synergistic effects are at work, an expression of the form (16)
(shown below) cannot be written anymore. We will show these and other failures of the inclusive
fitness concept in Section 7.

For non-vanishing intensity of selection, it matters how selection is incorporated into the model,
whether it affects the payoff entries, whether it reflects distance in phenotype space and so on.
However, we will show below that in the limit of weak selection and under certain additional
assumptions, (10) will yield the same result for at least the above two types of selection. This
is where the debate arises – under certain assumptions and for weak selection, both the inclusive
fitness and the natural selection approaches are identical. However, as one moves away from weak
selection or if these simplifying assumptions are not fulfilled, the inclusive fitness approach cannot be
generalized further without making it so contrived that it loses its meaning. In these circumstances,
the natural selection approach is the natural approach to be employed. And hence one may argue
that if you have a theory that works for all cases (natural selection) and a theory that works for
only some cases (kin selection) and where it works, it agrees with the general theory, why not
simply use the general theory everywhere?
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Hamilton’s (1964) paper provides the framework for the inclusive fitness approach. For a recent
and thorough discussion of Hamilton’s central results, see van Veelen (2007). The formulation
of inclusive fitness that we use below is the one that is currently used in inclusive fitness theory
(Taylor and Frank 1996, Taylor et al 2007b). A focal A-individual (the actor) is chosen, which
is representative of the average. Its strategy is s• and its fitness is w• = 1 − d• + b•. Then the
effects of its A-behavior on all individuals in the population (the recipients) are added, each effect
weighted by the “relatedness” R of the actor to the recipient. The inclusive fitness effect of the
focal individual is then written in the limit of weak selection and low mutation as5

WIF =
∑
j

∂

∂δ

∂wj
∂s•

∣∣∣∣
δ=0

Rj . (16)

Here Rj is the relatedness of the focal individual to recipient j. For the asexual model that we are
interested in, it is defined as

Rj =
Qj −Q
1−Q

(17)

where Qj = Pr(s• = sj) = 2〈s•sj〉0/N is the probability that the focal individual and individual j
are identical by descent (IBD), at neutrality, and Q is the average identity by descent. Note that
this definition is not given in a state; it is given on average. If we were to give the definition in a
state, the average 〈s•sj〉0 would have to be replaced by s•sj calculated in that particular state. This
latter quantity is determined by the labels of the two players in the given state and has nothing
to do with identity by descent or with relatedness. Hence, in order to have an inclusive fitness
definition that has relatedness in it, one needs to define inclusive fitness as an average. This is then
inherently different from usual fitness, which is defined in a state.

Note moreover that what is called “relatedness” by theoreticians is not a measure of genetic
identity (that would be Qj) but a measure of relative genetic identity. Due to this normalization,
the relatedness of any individual to oneself is one and the relatedness to the population is zero. A
consequence of the latter is that the actor also has negative “relatedness” to some fraction of the
population. Inclusive fitness theory focuses on low mutation, hence the only interesting effect is
that due to selection.

Inclusive fitness theory then says that strategy A is favored over strategy B if

WIF > 0 (18)

Our main result for weak selection and low mutation (15) does not make any assumptions about
the role ‘relatedness’ plays in the model. It is a general condition and below we show under which
assumptions (15) can be reduced to WIF > 0.

First, we point out that in the kin selection literature, it has already been shown that calculating
inclusive fitness is more cumbersome than calculating direct fitness. Taylor et al (2006) write
“direct fitness can be mathematically easier to work with and has recently emerged as the preferred
approach of theoreticians.” By direct fitness, kin selection theoreticians mean looking at the effects

5Without trying to be pedantic, we would like to point out that this notation is very unfortunate. The symbol ∂
denotes differentiation but phenotypes might be discrete and not continuous variables, so differentiation with respect
to them (as in ∂wj/∂s•) does not make sense. We only reproduce it here for historical purposes, as this is the way
it has been used in the inclusive fitness literature for decades.
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of everyone in the population on a given recipient6, and weighing those effects by the relatedness
between each actor and the recipient

Wdir =
∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣
δ=0

Rj (19)

This is simply a reformulation of inclusive fitness (18) in terms of direct fitness. It is easily shown
that WIF > 0 is equivalent to Wdir > 0 (Rousset 2004, Taylor et al 2006).

We are advocates of direct fitness as well (albeit in a more general form than Wdir) and appre-
ciate the fact that kin selection theoreticians start to employ direct fitness methods. However, our
direct fitness method based on our main result (15) is more general than (19) simply because we
do not constrain ourselves to a method that must weigh effects by relatedness – we let the model
guide us as to how the direct effects play a role. Below we aim to show under what assumptions
our weak selection condition (15) is equivalent to (19) and implictly to (18).

3.1 Additional assumptions needed for inclusive fitness theory

The following assumptions are necessary for inclusive fitness theory to be defined and to work.

Assumption (i). The game is additive.

This means that all interactions between individuals occur pairwise and the effects of all such
pairwise interactions can be added up to determine an individual’s overall payoff. In Section 7
we discuss what happens if this assumption fails. For now we focus on what happens when this
assumption holds.

If the game is additive, we can express (15) as〈∑
i

si
∑
j

∂

∂δ

∂wi
∂sj

∣∣∣∣∣∣
δ=0

sj

〉
0

=

〈∑
i

∑
j

∂

∂δ

∂wi
∂sj

∣∣∣∣∣∣
δ=0

sisj

〉
0

> 0 (20)

Although summing over all individuals is the more accurate way to do it, one could also, given a
symmetry of the individuals7, choose a focal individual • representative of the average and rewrite
the above condition as 〈∑

j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

s•sj

〉
0

> 0 (21)

This is closer but still quite different from (19). Here the average is still taken over all elements of
the sum, rather than simply over the strategies. Condition (21) is more general than (19), because
it assumes (correctly) that the fitness of individuals depends on the interaction structure which
can vary between states. In that case, one cannot separate the effect of the structure from that
of “relatedness” as we will show in Section 7. One can only rewrite (21) as (19) if the following
assumption also holds

6As opposed to an inclusive fitness approach where one would trace the effects of an actor on everyone else in the
population.

7This assumption can also easily fail, but here we will not address this issue because it is too technical.
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Assumption (ii). The population structure is ‘special’ (non-generic).

A ‘special’ population structure satisfies one of the following two criteria:

(iia) The population structure is static.

(iib) The population structure is dynamic, but in the restricted way that two individuals either
interact or they do not interact (which means interaction is all or nothing) and the updating
is global (which means everyone competes globally with everyone else for reproduction).

Examples of population structures that fulfill (iia) are evolutionary graph theory (Lieberman et
al 2005, Ohtsuki et al 2006), islands of equal size (Rousset and Billiard 2000) and certain models
of group selection (Traulsen and Nowak 2006, Lehmann et al 2007b). Of course, the well-mixed
population also fulfills (iia). Examples of population structures that fulfill (iib) are islands of
variable size with global updating (Antal et al 2009, Taylor and Grafen 2010).

If (iia) holds, then ∂w•/∂sj is independent of the state for all j and (21) becomes

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

〈s•sj〉0 > 0 (22)

This is not yet in the form of (19) because in (22) we have identity by descent, Qj , instead of the
relatedness, Rj . However, if assumption (i) is fulfilled, the above condition is equivalent to (18) as
follows

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

Rj =
∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

Qj −Q
1−Q

=
1

1−Q

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

Qj −Q
∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0


=

1
1−Q

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

Qj

(23)

The last equality holds because in an additive game (where assumption (i) is fulfilled)
∑

j
∂
∂δ

∂w•
∂sj

∣∣∣
δ=0

=

0. This is the sum of all the effects of everyone in the population (including himself) on the actor,
given that everyone is a cooperator. But if everyone is a cooperator the fitness of any individual is
precisely wi = 1, and hence its derivative with respect to δ is zero.

If (iib) holds (and again we stress the importance of global updating) then (21) becomes

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

〈s•sj | i and j interact 〉0 > 0 (24)

13



What we obtain is a local type of relatedness as also pointed out in the case of islands by Rousset
and Billiard (2000). Thus (19) is generalized as

∑
j

∂

∂δ

∂w•
∂sj

∣∣∣∣∣∣
δ=0

R̃j > 0. (25)

Here R̃j is the probability that the actor and individual j are identical by descent provided that
they interact (they are on the same island, share the same tag, etc).

We have shown that the weak selection and low mutation limit of our general approach can
also be calculated in terms of inclusive fitness if assumptions (i) and (ii) hold. Remember that as
specified before, inclusive fitness theory cannot even be defined for non-vanishing selection; thus
the assumption of weak selection is automatic. However, our weak selection result (14) holds for
any mutation rate. Therefore, when assumptions (i) and (ii) are fulfilled, we can easily generalize
the inclusive fitness condition (18) to any mutation and obtain

WIF > uBIF . (26)

This can be interpreted as: the inclusive fitness effect has to be greater than the inclusive birth
effect lost by mutation. We will expand on this in a forthcoming paper.

4 Example: a one dimensional spatial model

In this section we give a simple example of a model that satisfies assumptions (i) and (ii) and can
thus be interpreted from both the natural selection and the inclusive fitness theory perspectives.
We consider a population of N individuals on a one dimensional spatial structure. Each individual
has two neighbors. To avoid boundary effects we connect the two end points to form a cycle. So
far we have done the derivation for two general strategies A and B. Here however, we only need to
consider the simplified Prisoner’s Dilemma to make our point. Individuals are either cooperators, C
or defectors, D. Cooperators pay a cost, c, for their neighbor to receive a benefit, b. Defectors pay
no cost and distribute no benefit. We use death-birth (DB) updating: each time step an individual
is picked at random to die; then the two neighbors compete proportional to their payoff to fill the
empty spot with an offspring (Ohtsuki and Nowak 2006, Grafen 2007a).

Since death occurs at random, the death rate is di = 1/N for all i. The birth rate is proportional
to payoff. Individual i reproduces if one of his neighbors is picked to die and if he wins the
competition for reproduction. We can write the birth rate of individual i as

bi =
1
N

(
fi

fi + fi−2
+

fi
fi + fi+2

)
(27)

As before, the expected number of offspring of individual i is wi = 1 − di + bi. Let us now write
the effective payoff of individual i

fi = 1 + δ(−2csi + bsi−1 + bsi+1) (28)

This effective payoff is the same for both approaches to the limit of weak selection discussed in
Section 2. In the limit of weak selection, we can write the fitness of individual i as

wi = 1 +
δ

4N
(−4csi − bsi−3 + 2csi−2 + bsi−1 + bsi+1 + 2csi+2 − bsi+3) (29)
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Since this is a process with constant death rate which moreover at neutrality has bi = di = 1/N ,
we know from (15) that the condition that cooperation is favored on average, for weak selection, is
equivalent to〈∑

i

si
∂wi
∂δ

∣∣∣∣∣
δ=0

〉
0

=
〈∑

i

si(−4csi − bsi−3 + 2csi−2 + bsi−1 + bsi+1 + 2csi+2 − bsi+3)
〉

0
> 0 (30)

This can be rewritten as

−4c
〈∑

i

s2i

〉
0
− b
〈∑

i

sisi−3

〉
0

+ 2c
〈∑

i

sisi−2

〉
0

+ b
〈∑

i

sisi−1

〉
0

− b
〈∑

i

sisi+3

〉
0

+ 2c
〈∑

i

sisi+2

〉
0

+ b
〈∑

i

sisi+1

〉
0
> 0

(31)

These averages can be reinterpreted as probabilities as follows〈∑
i

s2i

〉
0

=
N

2〈∑
i

sisj

〉
0

=
N

2
Pr(si = sj)

(32)

The first identity holds because at neutrality the average number of cooperators equals the average
number of defectors. The second identity consists of expressing the average in terms of a probability.
Hence (31) becomes (after simplifying an N/2)

−4c− bPr(si = si−3) + 2cPr(si = si−2) + bPr(si = si−1)−
− bPr(si = si+3) + 2cPr(si = si+2) + bPr(si = si+1) > 0

(33)

Notice that so far this result holds for any mutation rate. This is what we would calculate on the
cycle. What we are left to calculate are probabilities that individuals on the cycle have the same
strategy. Notice that although this is an evolutionary process and two individuals in the stationary
distribution share a common ancestor with probability 1, because of mutation, their strategies could
have changed several times since they shared the common ancestor.

If mutation is very small (u → 0) then the probability that two individuals have the same
strategy in the stationary distribution is the same as the probability Qij that they are identical
by descent (i.e. that they came from a common ancestor and have not mutated since). Hence the
above probabilities, in the limit of low mutation, can be replaced by the respective Qij . However,
as we explained before, for additive games, the Qij in (33) can be replaced by relatedness Rij =

(Qij −Q)/(1−Q) because
∑

j
∂
∂δ

∂wi
∂sj

∣∣∣
δ=0

= 0. It is easy to test this for our particular cycle model,

using (29): ∑
j

∂

∂δ

∂wi
∂sj

∣∣∣∣∣∣
δ=0

= −4c− b+ 2c+ b− b+ 2c+ b = 0 (34)

Thus, in the limit of low mutation, we can rewrite (33) as

−4c− bRi−3 + 2cRi−2 + bRi−1 − bRi+3 + 2cRi+2 + bRi+1 > 0 (35)

15



Here i is chosen at random to be the focal individual and Rj = Rij . This is precisely Wdir =
WIF > 0 obtained by applying (19) to (29). We have discussed this example to show how when
assumptions (i) and (ii) are satisfied, in the limit of weak selection, the two approaches give the
same result.

A action action 

-c b/4 c/2 -b/4 b/4 c/2 -b/4 

i-3 i-2 i-1 i i+1 i+2 i+3 

Figure 2: Inclusive fitness is not easy to measure. An empirical measurement of inclusive
fitness has to contain every individual whose fitness is affected by the action (and not only those
individuals whose payoffs are affected). Individual i is the actor A; individuals i− 1 and i+ 1 are
the direct recipients; individuals i± 2 and i± 3 do not interact with i but their fitness is affected
by i’s action due to indirect competition. For instance, i decreases his own fitness by −c; when it
comes to compete for reproduction under DB updating, i competes with either i − 2 or i + 2 to
fill the spot of i ± 1 and hence a decrease in the fitness of i is an implicit benefit for both i ± 2.
Similarly, i− 1 is the recipient of a benefit from i and he competes with i− 3 for reproduction to
fill the spot of i−2; hence, its benefit from i is detrimental to i−3 due to this competition. Taking
into account all these effects one obtains the inclusive fitness expression (35).

Next we can express the condition (35) that cooperation is favored over defection as

b

c
>

4− 2Ri−2 − 2Ri+2

Ri−1 +Ri+1 −Ri−3 −Ri+3
(36)

For symmetry reasons we have Ri−1 = Ri+1, Ri−2 = Ri+2 and Ri−3 = Ri+3. Thus, we obtain

b

c
> 2

1−Ri−2

Ri−1 −Ri−3
=

2N − 4
N − 4

(37)

To obtain the final result we used the relatedness values as calculated by Grafen (2007a):

Ri±3 =
N2 − 18N + 53

N2 − 1
Ri±2 =

N2 − 12N + 23
N2 − 1

Ri±1 =
N − 5
N + 1

(38)

Thus we conclude that for DB updating on a cycle, cooperation can be favored provided that the
benefit-to-cost ratio exceeds the threshold given by (37).

The same type of analysis can be performed for a Birth-Death (BD) updating on the cycle. In
this case, an individual is picked to reproduce proportional to fitness and its offspring replaces one
of the two neighbors at random. For this update rule however, there is no evolution of cooperation,
despite the fact that the relatedness values are the same as before. This fact is also pointed out by
Grafen (2007a).

The original analysis of Ohtsuki and Nowak (2006) is much simpler than both our analyses
above. However, it is particular to low mutation on the cycle and not generalizable to more
complex structures. Since the purpose of this paper is to discuss general approaches, we omit it
here.
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5 Hamilton’s rule almost never holds

Below we use the same one dimensional spatial model to exemplify the fact that Hamilton’s rule in
the classical form, bR > c, almost never holds. Some inclusive fitness theoreticians seem to agree
with this point and now propose that instead WIF > 0 should be called Hamilton’s rule (West
and Gardner 2010). This section is not directed at theoreticians who now embrace WIF > 0 as
Hamilton’s rule. Instead it is directed at empiricists that still try to test classical Hamilton’s rule
and at theoreticians who try to artifically reinterpret every result as classical Hamilton’s rule.

Let us stay with our one dimensional spatial model. We find that both kin selection and natural
selection give the same final result, because we have weak selection, an additive game and a ‘special’
population structure. For DB updating the condition that cooperators are favored over defectors
can be written as (37)

b

c
> 2

1−Ri−2

Ri−1 −Ri−3

This condition is not as simple as Hamilton’s rule, bR > c, but it is of the form b×(something) > c.
The only problem is that ‘something’ is not genetic relatedness, but a complicated function of
relatedness. When these relatedness terms are calculated, the final result is, in the limit of large
population size, b/c > 2. It is wrong, however, to think that relatedness on the cycle is 1/2. That
this is not the case can be seen by looking at the terms Rj in (38). The factor 1/2 comes from
evaluating the complicated function of relatedness given by (37).

If however we would not analyze the model of interactions on a one-dimensional structure,
but instead we would wrongly think that Hamilton’s rule holds, we would proceed as follows.
We would calculate relatedness as is usually done: pick two individuals that interact and then
compare their relatedness to the average relatedness in the population. This is precisely R =
Ri−1 = (N − 5)/(N + 1). Then we would conclude that the condition that needs to be fulfilled for
cooperation to prevail is bR > c which leads to b

c > (N + 1)/(N − 5). This however is wrong; the
correct result is given by (37).

This situation is not particular to the cycle. In fact there are only very few, especially simple
models, that have the property that the final result has the form bR > c, where R is relatedness
(Rousset and Billiard 2000, Taylor and Grafen 2010). But for most other models (Ohtsuki et al
2006, Grafen 2007a, Taylor et al 2007a, Tarnita et al 2009a, Traulsen and Nowak 2008, Lehmann
et al 2007a,b), all that can be obtained is a condition of the form

b× (something) > c (39)

This latter condition is not Hamilton’s rule. As shown in Tarnita et al (2009b), the reason for
a condition of this form is that for the limit of weak selection the final condition must be linear
in the payoff values. For spatial processes the ‘something’ in (39) reflects the positive assortment
created by a given model between individuals with the same strategy (Fletcher and Doebeli 2009,
Nathanson et al 2009, Nowak et al 2010). Moving away from the limit of weak selection typically
leads to conditions that are nonlinear in the payoff values.

Inclusive fitness theoreticians have also realized that Hamilton’s rule does not hold in general
and they caution against using it “naively”, which would lead to mistakes (Roze and Rousset
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2004). Gardner et al (2007), citing Taylor and Frank (1996) and Frank (1998), suggest that one
should instead “use standard population genetics, game theory, or other methodologies to derive
a condition for when the social trait of interest is favored by selection and then use Hamilton’s
rule as an aid for conceptualizing this result”. We appreciate the proposal to simply use game
theoretic/population genetics models based on natural selection, but we disagree that a forced
reinterpretation of these results in terms of an artificially constructed variant of “Hamilton’s rule”
will help with any conceptualization. By artificially constructed variant we mean the following:
when realizing that the usual bR > c rule does not hold for a given model, Gardner et al (2007)
propose that a modified rule BR > C in fact holds, where R is the usual relatedness but B and
C are the ‘effective’ costs and benefits calculated using statistical methods (which are not only
unnecessary but also out of place in the analysis of a purely mathematical model). This method
does not always work (we have not seen such a proposal for the cycle). Moreover, these effective
costs and benefits unfortunately are very confusing and are typically functions of not only b and
c but also of the relatedness R. Hence Hamilton’s rule becomes B(R)R > C(R), which makes it
very complicated to separate any effects and it generally provides no intuition whatsoever. We
argue that a simple but precise model with a careful natural selection-based analysis will suffice to
provide any necessary conceptualization.

6 Relatedness measurements alone are inconclusive

Empirical biologists often seem to interpret inclusive fitness theory as suggesting that all that needs
to be done is measure genetic relatedness and conclusive insights will emerge. Here we give a simple
thought experiment to show that is not the case. An empirical measurement of relatedness in the
absence of an understanding of the population dynamics can be misleading.

Consider three populations. Population 1 is well-mixed; any two individuals interact equally
likely. Populations 2 and 3 are on a (one dimensional) spatial structure. Population 2 has birth-
death (BD) updating: individuals reproduce proportional to payoff and the offspring replace ran-
domly chosen neighbors. Population 3 has death-birth (DB) updating: random individuals die and
the neighbors compete for the empty site proportional to their payoff. The empiricist measures
relatedness in all three populations, but has no other information about the population dynamics.

The empiricist notes that the average relatedness of interacting individuals in population 1 is
low and concludes that there is no scope there for evolution of cooperation. But for populations 2
and 3 the empiricist measures exactly the same high relative relatedness (Grafen 2007a) and hence
concludes that cooperation is favored over defection in both cases. This is not true.

As we discussed in Section 4, cooperation can evolve in population 3 but not in population 2,
although they generate the same measurements of relatedness (Ohtsuki and Nowak 2006, Grafen
2007a). Hence, the empirical measurement of relatedness without an actual knowledge of the
underlying population dynamics can be very misleading.

7 When inclusive fitness fails

In this section we show that standard relatedness does not appear in general models, which do
not fulfill the restrictive assumptions discussed above. Ultimately we recognize that ingenious
theoreticians working in the area of kin selection might try to redefine ‘relatedness’ in new ways
that allow them to see the cases below as ‘obvious’ inclusive fitness models. However, here we want
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a large well-mixed population 

one-dimensional spatial model 
with BD updating 

R=0                                                    R=1 
no cooperation                                   no cooperation   

R=1                                                      R=1 
no cooperation                                     cooperation if b/c>2   

one-dimensional spatial model 
with BD updating 

one-dimensional spatial model 
with DB updating 

a 

b 

Figure 3: Relatedness does not measure the ability of a population to support evolution
of cooperation. (a) A large well-mixed population has very low relatedness, R = 0, while a popu-
lation that occupies a one dimensional spatial grid has maximum relatedness, R = 1. Nevertheless
for birth-death (BD) updating both population structures are equally unable to support evolution
of cooperation. (b) Now we compare two populations that are both arranged on a one dimensional
spatial grid, and hence both populations have maximum relatedness, R = 1. But the first one
uses birth-death (BD) updating and does not support evolution of cooperation, while the second
one used death-birth (DB) updating and does support evolution of cooperation provided b/c > 2.
BD updating means that individuals reproduce proportional to payoff and the offspring replace
randomly chosen neighbors. DB updating means that individuals die at random and then the
neighbors compete for the empty site proportional to payoff. Relatedness is R = (Q− Q̄)/(1− Q̄),
where Q is the average relatedness of two individuals who interact and Q̄ is the average relatedness
in the population. These mathematical examples are chosen to be as simple as possible, but they
make the more general point that relatedness data in the absence of a precise understanding of
population dynamics are not very useful.
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to show that there are clear limitations to inclusive fitness theory, if the Rj in (18) should still
resemble a meaningful relatedness. If one allows for a definition of Rj that is not even remotely
close to a relatedness that could be measured, then we do not see what is gained from a kin selection
perspective. Pushing for such generalizations and extensions of inclusive fitness theory is not only
cumbersome and confusing but ultimately useless for two reasons: theoretically they bring nothing
new or even different from what is obtained with a simple, general, common sense result of the
form (15) and empirically they have no value, because they do not use quantities that an empirical
biologist could measure or call ‘relatedness’.

7.1 Non-vanishing selection

Inclusive fitness theory requires weak selection for two reasons. First of all, even for pairwise in-
teractions, in order to remove synergistic effects, one needs games with equal gains from switching.
The limit of weak selection as described in Section 2.1 ensures that the games have this prop-
erty. However, even if theoreticians restrict themselves to games with equal gains from switching,
in a stochastic process, they still need to take the limit of weak selection. This is because the
stochasticity introduces effects of competition between individuals and these are not independent
of the ‘helping’ events and thus they cannot simply be added or subtracted. To make these events
independent, one needs to be in the limit of weak selection.

Let us exemplify this second problem that arises for strong selection using the same one dimen-
sional spatial model of Section 4. The birth rate of an individual is given by (27). In the limit of
weak selection, the effective payoff (score) of individual i is given by (28). Both approaches agree
with this in the limit of weak selection. However, a stronger selection variant has not yet been
proposed and so we will not explicitly write it here but simply say that the effective payoff (score)
of individual i is a function of his own strategy as well as those of the neighbors fi(si−1, si, si+1).
Let us consider DB updating. In this case the death rate is constant, d = 1/N . Then the average
number of offspring of individual i is given by (29). In this case, even in a given state, one cannot
write additively the effects of an individual on everyone else in the population, simply because
when we take the derivative of wi with respect to sk, for some k, it is not necessarily independent
of sj for j = 1, . . . , N . Let us exemplify this for simplicity, by taking the effects of an individual on
himself

∂wi
∂si

=
1
N

(
∂fi
∂si

(fi + fi−2)− ∂(fi+fi−2)
∂si

fi

(fi + fi−2)2
+

∂fi
∂si

(fi + fi+2)− ∂(fi+fi+2)
∂si

fi

(fi + fi+2)2

)
(40)

Clearly this quantity still depends (in a highly non-trivial way) on some si, si±1 and si±2. Thus
the effects of individuals on fitness are not independent (and certainly not linear) unless we are in
the limit of weak selection. Therefore, non-vanishing selection is not just harder to calculate but
it fails to lend itself to an inclusive fitness interpretation. Not only does the final result look more
complicated than bR > c, but the concept of identity by descent does not arise in the calculation.

Moreover, we point out that very interesting results have already been obtained for any intensity
of selection using the common sense approach based on natural selection (Ohtsuki and Nowak 2006,
Traulsen et al 2008, Antal et al 2009b).
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7.2 Non-additive games

By a non-additive game we mean one where interactions are either synergistic or are not necessarily
pairwise. In an ant colony it is hard to imagine that pairwise interactions are sufficient to specify
all fitness considerations. In fact, we expect that a synchronization of workers of different castes is
necessary for success. This scenario cannot be covered by inclusive fitness theory.

Attention to such synergistic games was drawn by Queller (1985) who looked at 2-player games
that do not have equal gains from switching. This is also discussed by Traulsen (2010). The idea
was however expanded to non-additive, multiple player games by van Veelen (2009) who referred
to them as 3-person stag hunt games. Gokhale and Traulsen (2010) also analyze multiple player
one-shot games and point out the complex situations that can arise when pairwise interactions are
insufficient to describe the dynamics.

The idea behind van Veelen’s proposal is that it does not matter whether one or two of the
players in a rock band rehearse – the band will sound lousy unless all three rehearse. A similar
metaphor can be imagined for ants. Consider the following game. Imagine there are groups of size
3, all trying to accomplish a certain task, which can only be accomplished if all three individuals
cooperate. A member of a group has the option to either cooperate and thus incur a cost c or
defect. If all 3 individuals cooperate, they all incur the cost c but the task is accomplished and
they are all rewarded with a benefit b. Thus the payoff of a CCC group is (b − c, b − c, b − c). If
neither cooperates, then they don’t pay any cost but they also don’t get any benefit. Then the
payoff of a DDD group is (0, 0, 0). However, and here comes the non-additivity of this game, if
only one or two of the members cooperate and the others do not, the group does not accomplish
the goal and so no one gets a benefit. The payoff of a CCD group is (−c,−c, 0) and that of a CDD
group is (−c, 0, 0).8

There are n such groups; hence the total population size is 3n. We label the individuals in a
group by 1, 2 and 3 and we specify individual 1 in group k by sk1. There is no difference between
the 1, 2 or 3 roles. Thus, the effective payoff of individual 1 in triple k is given by

fk1 = 1 + δ(−csk1 + bsk1s
k
2s
k
3) (41)

Therefore a benefit arises only if all three members of the group cooperate. Clearly in such a game
one cannot separate the effects of the action of the second player on the first from the effects of the
action of the first on himself.

To make this point even more clear, let us consider the following dynamics. At each update
step, an individual is picked to change his strategy. The way he changes the strategy is by choosing
someone proportional to payoff and imitating their strategy. Thus, the death rate is constant
d = 1/3n and the birth rate of individual 1 in group k is bk1 = fk1 /F where F =

∑
k(f

k
1 + fk2 + fk3 ).

Then the average number of offspring of individual 1 in pair k is

wk1 = 1− 1
3n

+
fk1
F

(42)

which for weak selection becomes

wk1 = 1 +
δ

3n

(
− csk1 + bsk1s

k
2s
k
3 −

1
3n

n∑
j=1

[
− c(sj1 + sj2 + sj3) + 3bsj1s

j
2s
j
3

])
(43)

8As opposed to (b− 2c, b− 2c, 2b) and respectively (−2c, b, b) which would be the case in an additive game.
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Then, for example, the effect of individual 1 in group j 6= k on individual 1 in group k is

∂

∂δ

∂wk1

∂sj1
∼ c

9n2
− b

3n
sj2s

j
3 (44)

This shows that the effect of individual sj1 on sk1 is not independent of the action of other players; in
particular, it depends on the simultaneous action of the other two individuals from group j. In this
case, one cannot separate the effects of the action of one actor on all recipients and hence the type
of inclusive fitness reasoning cannot be applied anymore. However, the general natural selection
argument can be successfully applied.

Here we want to point out that one could extend the inclusive fitness definition to also include
‘relatedness’ of 3, 4, 5, ... individuals. However, the new definition will be far less intuitive;
moreover, before applying such a definition one will need to know the actual model. Otherwise one
can never know whether they need to consider relatedness of 3 individuals or of 4 or of 5 and so
on. Such an analysis will end up being the same as the game theoretic analysis.

7.3 Generic population structure

If the population structure is not fixed, but dynamical, varying from one state to the other, and
is more complex than islands, then one cannot separate relatedness from the structure. Queller
(1994) already pointed out that for limited dispersal models, the concept of relatedness has to be
local. Later Rousset and Billiard (2000) formalized this idea and showed that when the popula-
tion is subdivided into islands (groups) one needs to compare the relatedness within a group to
the relatedness in the overall population. However, this approach does not completely solve the
problem. If individuals are always just on islands or on unweighted graphs (even if they are dynam-
ical), it suffices to compare the relatedness of two people who interact to the average relatedness
in the population. But if the population is on a dynamical, weighted graph, the situation becomes
increasingly more complicated. Then it is not so easy to pick two individuals who interact and
compare their relatedness to the average relatedness in the population, simply because two indi-
viduals might interact with varying weights (some individuals might have weight 1, others weight
1.5 and yet others weight 10). Since the structure is not fixed and these weights vary dynamically
from one generation to the next, one cannot take a pair that has average weight either (because the
average weight varies from one state to the next). Instead of needing to calculate quantities like

Pr(two individuals who interact are identical by descent) (45)

one now has to calculate quantities like

〈Pr(that they are identical in state)× (their average weight of interaction in that state)〉0 (46)

averaged over all states of the system, at neutrality. Since the average interaction weight of two
random individuals varies with state, the above average cannot be broken down into the product
of the probability that they are identical by descent, times the average weight of interaction.

Let us consider a specific example. Tarnita et al (2009a) propose a model based on set member-
ships. We present here a somewhat simplified version of this model. Let us assume that individuals
have exactly 2 tags 9. There are M possible tags. Two individuals interact depending how many

9If they could only have one tag each, this would be an island model as described by Antal et al (2009a) and
Taylor and Grafen (2010)
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tags they have in common. If they share 0, 1 or 2 tags, they have interaction weight 0, 1, or 2,
respectively. At each time step, a randomly chosen individual updates his strategy and tags. He
imitates someone in the population proportional to payoff to obtain new tags and a new strategy.
Therefore the population structure is dynamical. Depending on the state all individuals could have
the same two tags or they might be spread out over many different tags.

The interactions between individuals are dynamical, in the sense that they change from a state
to another. Individuals who might interact twice this week, might not interact at all next week.
In each state we specify by vij ∈ {0, 1, 2} the interaction weight of i and j. For simplicity, let
us assume that vij = vji. If vij = 0 then i and j do not interact. These interaction weights are
dynamical in the sense that they change as a consequence of evolutionary updating. Then, in a
given state, the effective payoff (score, fecundity) of individual i is given by

fi = 1 + δ
∑
j

vij(−csi + bsj) (47)

Since the death rate is at random, we have di = 1/N . The birth rate is proportional to effective
payoff and all individuals compete for reproduction. Therefore, we have

bi =
fi
F

(48)

Here F is the total payoff in that given state. The average fitness of individual i is given by

wi = 1− 1
N

+
fi
F

(49)

For the limit of weak selection we obtain

wi = 1 +
δ

N

[∑
j

vij(−csi + bsj)−
1
N

∑
j

∑
k

vjk(−csj + bsk)
]

= 1 +
δ

N

[
si

(
− c+

c

N
− b

N

)∑
j

vij +
∑
j 6=i

sj

(
bvij −

b− c
N

∑
k

vjk

)] (50)

Clearly here the action of individual j on individual i depends on the dynamical structure. The
effect of j on i is

∂wi
∂sj

=
{ (
− c+ c

N −
b
N

)∑
k vik if j = i

bvij − b−c
N

∑
k vjk if j 6= i

=
{

(−c(N − 1)− b)vik if j = i
bvij − (b− c)vjk if j 6= i

(51)

The second equality comes from replacing
∑

l vkl = Nvkl; we do this by picking a random individual
instead of summing over all of them. Thus, the effect of the actor on himself is proportional to
how much he interacts with a random individual; the effect of a random individual on the actor
depends on how much he interacts with the actor and on how much he interacts with someone at
random.

Since this is a process with constant death, in the limit of weak selection but for any mutation,
the condition for cooperators to be favored over defectors is given by (15). The individuals are
symmetric so instead of summing over all individuals as in (15), we can pick a random representative
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one, which we denote by •. Using (50) together with (51) we obtain the condition for cooperators
to be favored over defectors:

(−c(N − 1)− b)〈v•ks•〉0 +
∑
j 6=•

〈
(bv•j − (b− c)vjk)s•sj

〉
0
> 0 (52)

This expression does not look like WIF > 0 anymore because what usually is identity by descent
now depends on the structure, containing quantities of the form 〈v•js•sj〉0 which can no longer be
interpreted as local relatedness. This is because v•j changes from each state to the next and to
calculate such quantities, one needs to pick a random individual j in every state and multiply the
number of tags the actor and j have in common with the probability that they are identical in
state. This quantity is then averaged over all possible states.

In some sense, what a dynamical structure captures is the fact that I may be very related to
my sister but if I see her once a year now and maybe 100 times next year, this can make a huge
difference overall. Thus, for such dynamical structures genetic relatedness alone is not important
but it somehow has to be weighted by the varying intensities of interaction.

8 Group selection is not kin selection

Group selection arises whenever there is competition not only between individuals but also between
groups. Group selection is part of the more general concept of multi-level selection. There has
been a long and ongoing debate between scientists who work on group selection and kin selection
(Wynne-Edwards 1962, Wilson 1975, Killingback et al 2006, Grafen 2007, Traulsen and Nowak
2006, Lehmann et al 2007b, Wilson and Wilson 2007, Bijma and Wade 2008, Goodnight et al 2008,
West et al 2008, West et al 2009, Wild et al 2009, van Veelen 2009, Traulsen 2010, Wade et al 2010)
with the kin selection side claiming that group selection and kin selection are identical approaches.
In the light of what we have shown here, we hope to settle this debate. Group selection models,
if correctly formulated, can be useful approaches to studying evolution. Moreover, the claim that
group selection is kin selection is certainly wrong.

Group selection models can be formulated for any intensity of selection (Traulsen et al 2008).
Since, when dealing with stochastic processes, inclusive fitness theory works only for the limit
of weak selection, results for groups with non-vanishing selection cannot be replicated by such a
theory. As we have pointed out weak selection results are interesting, but they do not offer a
complete picture of evolution. Hence, from the start, kin selection cannot possibly cover the same
ground as group selection.10

If however we limit ourselves to weak selection, group selection can be interpreted in terms of
inclusive fitness calculations only if assumptions (i) and (ii) hold. But it is very easy and very natural
to formulate group selection models that violate the assumptions needed for an inclusive fitness
calculation. Group selection models could contain non-additive games or dynamical population
structures, where individuals interact with different intensities. Thus, even for weak selection,

10It is worth noting that for deterministic, replicator equation-type models, van Veelen (2009) shows that group
selection models and inclusive fitness models give the same prediction even for non-vanishing selection, as long as the
inclusive fitness theory restricts itself to the non-generic case of games with equal gains from switching. However,
such a result does not hold for stochastic models, where the inclusive fitness method requires weak selection not
only to obtain equal gains from switching, but also to make the interactions and competitions between individuals
independent and additive (Section 7.1).
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group selection cannot in general be described by inclusive fitness calculations. The claim that
they are identical, which has often been made (Lehmann et al 2007b, West et al 2008, Wild et al
2009), is wrong.

9 Summary

We emphasize the following points:

• Inclusive fitness is just another method of accounting. The fact that an inclusive
fitness calculation works for a particular model does not necessarily imply that ‘kin selection
is at work’. Inclusive fitness theoreticians have been inconsistent about this point. Originally,
they suggested that it is just another method of calculation and stressed that Hamilton’s
1964 paper is ‘devoted to proving that the alternative accounting procedure that underlies
inclusive fitness gives the same answer as the standard and logically prior procedure’ (Grafen
1984). We agree with this perspective but add that, as we have proved in this paper, the
inclusive fitness method cannot be used as widely as the logically prior and more general
procedure based on natural selection.

Of course, theoreticians are free to use any method of calculation as long as they employ
it correctly and do not make unjustified statements claiming a ‘general principle’ for the
evolution of cooperation (Lehman et al 2007a,b, Wild et al 2009, West et al 2008, Gardner
2009, West and Gardner 2010). A method of calculation which is arguably more cumbersome
and confusing is not a general principle, much like the ptolemaic epicycles in the solar system
were not a general principle either and became superfluous under Newtonian mechanics.

We have a similar situation in this debate. The epicycles of inclusive fitness calculations are
not needed, given that we can formulate precise descriptions of how natural selection acts in
structured populations.

• Inclusive fitness is not nearly as general as the game theoretic approach based on
natural selection. As we have pointed out here, the concept of inclusive fitness only leads
to correct results if a number of constraining assumptions hold. These are the limit of weak
selection together with assumptions (i) additive games and (ii) very simplistic population
structures.

• Inclusive fitness is often wrongly defined. Inclusive fitness is NOT the sum of an
individual’s offspring plus the offspring of the relatives. It only includes an individual’s own
offspring that come as a result of his own actions, but not as a result of the help received
from others. Thus my inclusive fitness is:

(my offspring resulting from my own actions but NOT from the help I receive from others)
+R× (my relatives’ offspring resulting from my helping them)

This definition is somewhat artificial and leads to significant confusion in practice. Grafen
(1984) warned empiricists and theoreticians against incorrect usage of the term and advised
empiricists against using inclusive fitness altogether. Instead, they are told to use Hamilton’s
rule. This suggestion, however, brings us to another problem.
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• Hamilton’s rule almost never holds. For the limit of weak selection, we often find that
cooperation is favored over defection provided ‘something’ is greater than the cost to benefit
ratio. This result is not the consequence of inclusive fitness theory, but arises because of the
linearity introduced by weak selection (Wild and Traulsen 2007, Tarnita et al 2009b). As
we have shown here, however, ‘something’ is almost never ‘relatedness’, even if we are in a
special situation where inclusive fitness can be formulated.

The validity of Hamilton’s rule is also challenged by economists. Alger and Weibull (2009)
show that the evolutionarily stable degree of altruism (threshold cost-to-benefit ratio) is lower
than the degree of relationship; moreover, it strongly depends on the environment, which is
not something inclusive fitness theoreticians consider. The analysis of Alger and Weibull
(2009) suggests a reason why weaker family ties may have developed in harsher climates, and
how this may have induced stronger economic growth, according to Macfarlane (1978, 1992).

• Relatedness measurements without a model of population dynamics are incon-
clusive. While relatedness measurements in the field can provide useful information about
population structure, they do not provide immediate information for the evolution of coop-
eration. Relatedness measurements always must be interpreted in the context of a model
of evolutionary dynamics. Otherwise they can lead to meaningless conclusions. Relatedness
measurements alone are not a test for inclusive fitness theory.

• Inadequacy of inclusive fitness. Let us consider a situation where one individual pays a
cost to benefit another individual. If the two individuals are related, then there is a probability
that they might both carry the same gene that affects altruistic behavior, and hence that gene
could have a fitness advantage. We have shown that inclusive fitness theory cannot decide
in general if an allele that makes you help a relative is favored by natural selection or not.
Instead we need a calculation that is based on a precise description of population structure
and dynamics.
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Part B – Empirical tests reexamined

Faith in the central role of kinship in social evolution, defined in one manner or other, has led to
the reversal of the usual order in which biological research is conducted. The proven best way in
evolutionary biology is to define a problem arising during empirical research, then select or devise
the theory that is needed to solve it. Almost all research in inclusive fitness theory has been the
opposite: hypothesize the key roles of kinship and kin selection, then look for evidence to test that
hypothesis.

The most basic flaw in this approach is failure to consider multiple competing hypotheses.
Often the measurement of pedigree kinship becomes a surrogate for an in-depth study of natural
history of the species. When the data do not fit, elaborations of inclusive-fitness theory can be
constructed that make them fit. The results of the elaborations are a ptolemaic theory, constructed
of epicycles to keep relatedness at the center of evolving social systems. With enough of epicycles,
they can even be made to fit the data, but, as in the geocentric theory of the cosmos, at the cost of
using the wrong starting assumption. This misstep in logic is known as ‘Affirming the Consequent.
When biological details of particular cases are examined before inclusive fitness theory is applied,
alternative explanations from standard natural selection theory come quickly to attention. We
have examined an array of the most meticulously analyzed cases presented by various authors
as evidence for the success of kin selection theory. Without exception it has been easy to find
weaknesses in each case, suggesting that analyses of empirical observations based on kin selection
theory alone are typically inconclusive. We know of no case that presents compelling evidence
for the explanatory adequacy of kin selection and inclusive fitness theory. Three representative
examples of the inadequacy are the following.

First, Hughes et al (2008) argue that the origin of eusociality is driven by close kinship, because
in basal clades of eusocial ants, bees and wasps, queens mate only with a single male and therefore
produce a colony of closely related individuals. The authors present their data as correlative
evidence of kin selection promoting the evolution of eusociality. However, comparable data were
not provided for solitary clades, including sister clades of the eusocial examples, hence there were
no controls for the retrodiction of kin selection. In fact, it is logical to suppose that such queens also
mate with one male only, and for a reason unrelated to kin selection: prolonged mating excursions
increase the risk to young females from predators. Thus even at best it is not proved that single
mating and the resulting close relatedness of offspring is an important factor in promoting the
evolution of eusociality. Of equal importance, Hughes et al (2008) point to the origin of multiple-
male matings practiced by queens of many clades with advanced colonial organization. This, they
conclude, indicates the relaxation of kin selection in later stages of evolution. But they overlook the
much simpler explanation that in species with exceptionally large worker populations, queens need
multiple matings in order to store enough sperm. Further, and oddly, many studies have found
that, as a rule, members of social insect colonies cannot recognize their own degree of pedigree
relatedness to their nestmates (Hölldobler & Wilson 2009, Ratnieks et al 2006). For ants at least,
membership in a particular colony is determined by the overall colony odor learned by each adult
during the first several days following her emergence from the pupa as an adult. For this reason
it is possible to experimentally produce colonies whose members differ from one another radically,
even belonging to different species. Such is the basis of slavery practiced by some parasitic ant
species (Hölldobler & Wilson 2009, Ratnieks et al 2006). Is such learning just a proxy for staying
close to genetic kin? Perhaps, but a more likely selection force is communal fidelity and defense of
the nest, as we have documented in the main text.
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In another, very different setting, a meticulous experimental analysis using the periodically
subsocial eresid spider Stegodyphus lineatus, has demonstrated that groups of sibling spiderlings
extract more nutrients from communal prey than do spiderlings of artificially mixed parentage
(Schneider & Bilde 2008). Because injecting digestive enzymes is costly, the authors suggest that
individuals withhold their enzymes to avoid exploitation by strangers. The authors accept the kin
selection hypothesis. The problem is that in their natural habitat these spiderlings (necessarily
coming from the same mother) never find themselves in mixed groups. Hence, we would not
expect any specific adaptation to deal with such a situation. A much simpler explanation for
the observed reduction in communal intake is given by discordance among unrelated individuals
(meaning they are not working together efficiently). Such discordance is a general principle, which
is often overlooked by kin selection based explanations. Genetically diverse groups (especially those
that are generated artificially in an experimental situation) are prone to be less harmonious, because
the individuals are not necessarily adapted to work with each other.

A third process that can lead to seeming kin-based altruism but is more simply and realistically
explained otherwise is the expectation of inheritance. In a small percentage of bird and mammal
species, offspring remain at the nest of their birth and assist their parents in rearing additional
broods. They thereby delay reproduction on their own while increasing reproduction of their
parents. In one interpretation, Griffin and West (2003) attribute the phenomenon to kin selection,
and bolster their argument by demonstrating a positive correlation across species between closeness
of kinship and the amount of help provided to parents by the stay-at-homes. However, more
thorough, previously published studies, covering life history data in a wide range of species, had
already arrived at a simpler explanation of why, under certain conditions unrelated to kin selection,
the persistence of adult young at the natal nest is favored. The conditions include unusual scarcity
either of nest site or territory or both, generally low adult mortality, and relatively unchanging
conditions in a stable environment. After prolonged residence, the helpers inherit the nest or
territory upon the death of the parents (Hatchwell & Komdeur 2000). The positive correlation
across species between kinship and helping reported by Griffin and West, is based on a few widely
scattered data points, but if upheld might well be explained by the common practice of the floater
strategy in some species (Hatchwell & Komdeur 2000), in which individuals move about nests and
spread the amount of help given.
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Part C – A mathematical model for the origin of eusociality

We consider a species of solitary insects (wasps or others) where fertilized females build nests and
raise their offspring by progressive provisioning. Once the larvae hatch, the offspring leave the
nest. We call this the solitary life cycle. As outlined in the main text, we then assume that a
mutant arises, where the offspring do not necessarily leave the nest. Those young that stay at the
nest engage in the task of helping their mother to raise her subsequent offspring. Hence, they do
not reproduce themselves, but sacrifice their reproductive potential to help another individual to
reproduce. We call this the eusocial life cycle. We study the conditions for natural selection to
favor the eusocial strategy over the solitary one.

At first we design a model with asexual reproduction in order to understand the essence of
the problem. Subsequently we develop a model with sexual reproduction, taking into account the
haplodiploid genetics of Hymenoptera. In both cases, we see that very different mathematical
structures arise from those that were considered by kin selection theorists over the last decades.
The kin selectionist’s framing of the problem in terms of cost and benefit of the worker is not
natural, and an inclusive fitness type calculation is not necessary.

Our model differs from previous approaches. Wade (1978) performs an interesting population
genetic analysis of a situation where the broods of several females develop in close proximity and
cooperate with each other to some extent. Craig (1979, 1983) explores parental manipulation
and subfertility, which are potential mechanisms for the evolution of eusociality (Alexander 1974,
Michener & Brothers 1974, West-Eberhard 1975, Charnov 1978) sometimes subsumed under kin
selection (Bourke & Franks 1995). Gadagkar (1990) argues that eusociality could have arisen
via several different mechanisms and what is important is not only its emergence but also its
maintenance. Lehmann et al (2008) study a model where sterile workers migrate between colonies
offering their help to different queens, but this is an unlikely biological scenario for the evolution
of eusociality.

The theory that we develop here represents the simplest possible and most direct approach to
evaluate how natural selection acts on alleles prescribing social behavior. The target of selection is
neither the phenotypic trait of the queen in particular, nor that of the colony, but the collectivity
of traits that modify social behavior at both these levels. The traits can be evaluated separately
and together.

10 Asexual reproduction

10.1 A simple linear model

We consider deterministic evolutionary dynamics described by ordinary differential equations. Let
x0 denote the abundance of solitary females. They reproduce at rate b0 and die at rate d0. Let xi
denote the abundance of eusocial nests (colonies) of size i. Here i = 1, 2, ... represents the number of
individuals working at the colony including the queen. Thus, x1 denotes nests with single eusocial
queens, while x2 denotes nests where a queen has one worker, and so on.

A eusocial queen in a nest of size i has reproductive rate bi and death rate di. We assume that
the presence of workers allows the queen to stay with the nest, which might increase her rate of
oviposition and reduce her death rate. There is less risk of predation both for the queen and for the
eggs, which can be guarded by the queen and other workers. The queen in particular can redirect
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her resources from foraging to laying eggs and protecting them. The offspring of the eusocial queen
stay with the nest with probability q and leave the nest with probability 1 − q. In the latter case
they start their own nest.

Evolutionary dynamics of the two strategies are described by the following system of linear
differential equations

ẋ0 = (b0 − d0)x0

ẋ1 =
∞∑
i=1

bi(1− q)xi − b1qx1 − d1x1

ẋi = bi−1qxi−1 − biqxi − dixi i = 2, 3, ...

(53)

The strategy with the faster growth rate wins eventually. The exponential growth rate of the
solitary strategy is b0− d0, while that of the eusocial strategy is given by the largest eigenvalue, λ,
of the matrix

M =


b1(1− q)− (b1q + d1) b2(1− q) b3(1− q) b4(1− q) . . .

b1q −(b2q + d2) 0 0 . . .
0 b2q −(b3q + d3) 0 . . .
0 0 b3q −(b4q + d4) . . .
...

...
...

...
. . .

 (54)

If λ > b0 − d0 then eusociality wins over solitary. If λ < b0 − d0 then solitary wins. The case
λ = b0 − d0 is ungeneric. Matrix, M , can be seen as a ‘mutation-selection matrix’ as it occurs for
example in quasispecies theory (Eigen & Schuster 1977). Formally speaking the growth of colonies,
described by the parameter q, denotes a ‘mutation term’ between colonies of different size. The
largest eigenvalue of M is the fitness of the ‘quasispecies’.

Whether or not eusociality is selected depends on how the demographic parameters of the queen
change with colony size. One possibility is to consider a simple step function with a critical colony
size, m. For small colonies, i < m, the key parameters of the eusocial queen are the same as those
of solitary females: bi = b0 and di = d0. For large colonies, i ≥ m, the eusocial queen has an
increased fecundity and a reduced death rate: bi = b > b0 and di = d < d0.

A necessary condition for the evolution of eusociality is

b− kmd > km(b0 − d0) (55)

The number km depends on the critical colony size, m, where the advantages of eusociality arise. It
turns out that km grows exponentially with m: we have k2 = 2, k3 = 9, k4 = 28, k5 ≈ 76, k6 ≈ 196
and so on. It is essential that already small colonies increase the reproductive rate, b, of the queen.
Otherwise it is very hard for eusociality to be selected. Despite its obvious and intuitive advantages
it is in fact not easy to evolve eusociality.

Condition (55) is necessary but not sufficient. If (55) holds then there exist values of q that
allow eusociality to win. There is a lower bound, qmin, and an upper bound, qmax. Eusociality
wins if qmin < q < qmax. For m = 2 we find qmin = 0 and qmax = 1− 2(b0 − d0 + d)/b. For m ≥ 3
we have 0 < qmin < qmax < 1. Depending on the value of b we observe that eusociality sometimes
wins only for a narrow range of q values.
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10.2 Adding density limitation

We can add density limitation by multiplying each birth term with a factor φ that represents
declining food resources as the total population size increases. A natural possibility is φ = 1/(1 +
ηX) where η is a parameter that scales the size of the system and X = x0 +

∑
i ixi is the total

population size. The system with density limitation can be written as

ẋ0 = (b0φ− d0)x0

ẋ1 =
∞∑
i=1

biφ(1− q)xi − b1φqx1 − d1x1

ẋi = bi−1φqxi−1 − biφqxi − dixi i = 2, 3, ...

(56)

The mathematical analysis is very similar to that in the previous section. There is no coexistence
between the two strategies. One strategy will exclude the other. We must find the largest eigenvalue,
λ, of the matrix

M =


b1(1− 2q)/d1 b2(1− q)/d1 b3(1− q)/d1 b4(1− q)/d1 . . .

b1q/d2 −b2q/d2 0 0 . . .
0 b2q/d3 −b3q/d3 0 . . .
0 0 b3q/d4 −b4q/d4 . . .
...

...
...

...
. . .

 (57)

As before, eusociality is selected if λ > b0 − d0. Let us consider the same step function as before,
where the advantages of eusociality arise if the colony size is at least m. We find a similar necessary
condition for the evolution of eusociality, b/d > km(b0/d0). The numbers km are the same as before.
The expressions for qmin and qmax are also slightly different. For example, for m = 2 we have
qmin = 0 and qmax = 1 − 2b0d/(bd0). Again, for m ≥ 3 we find that eusociality wins only for a
restricted range of q values, 0 < qmin < q < qmax < 1.

10.3 Adding worker mortality

In the previous models the mortality of workers was somehow folded into the reproduction rate of
the queen, but here we explicitly assume that workers die at rate α. We obtain

ẋ0 = (b0φ− d0)x0

ẋ1 =
∞∑
i=1

biφ(1− q)xi − b1φqx1 − d1x1 + αx2

ẋi = bi−1φqxi−1 − biφqxi − dixi − α(i− 1)xi + αixi+1 i = 2, 3, ...

(58)

As before we use φ = 1/(x0 +η
∑

i ixi). Again there is no coexistence between the solitary strategy
and the eusocial one. There are two equilibria. At the solitary equilibrium x0 is positive and all
xi (with i = 1, 2, ...) are zero. At the eusocial equilibrium x0 is zero and all xi (with i = 1, 2, ...)
are positive. One equilibrium is stable and the other one unstable with respect to invasion by the
opposite strategy. The stable equilibrium is the one that establishes the larger total population
size. This criterium specifies whether or not eusociality is favored by natural selection.
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Figure 4 shows how the winning strategy changes as a function of the parameter q, which denotes
the probability that a eusocial offspring stays with the nest. For small values, 0 < q < 0.36, and for
large values, 0.9 < q < 1, the solitary strategy wins. For the intermediate region, 0.36 < q < 0.9,
the eusocial strategy wins. In this numerical example the solitary female has reproductive rate
b0 = 0.5, which means she lays one (surviving) egg every other day. Her death rate is d0 = 0.1,
which implies an average life time of 10 days. The solitary female has to lay eggs and then go out
to search for food, which exposes both the eggs and herself to risk from predation. The eusocial
queen has the same parameters unless the colony reaches a critical size, here m = 3. Subsequently
her reproductive rate increases 8-fold and her death rate decreases 10-fold. Thus for all i ≥ m
we assume bi = 4 and di = 0.01. She has less risk of predation and can devote her resources to
laying eggs and protecting them. We assume that the workers in the eusocial colony have the same
death rate as solitary individuals, α = 0.1. Finally we assume, if the queen dies then the colony
disappears.

Note that intermediate q values are needed for eusociality to evolve. The intuitive explanation
is as follows. For low q there is only a small probability that the colony reaches the critical size,
m, where the advantage of eusociality begins. On the other hand, if the value of q is too large then
the colonies produce too few new queens. Of course, the disadvantage of eusociality is that some of
the offspring (workers) do not reproduce; they are subject to worker mortality and they die when
the queen dies. Therefore, intermediate values of q allow the evolution of eusociality.

The situation that we observe here is not a standard cooperative dilemma (Hauert et al 2006,
Nowak 2006, Nowak et al 2010). An offspring that stays with the nest could be seen as a ‘coopera-
tor’, an offspring that leaves could be seen as a ‘defector’, but the optimum strategy of eusociality
has an intermediate level of cooperators and defectors. ‘Defectors’ (new queens) are needed for the
reproduction of eusociality.

11 Sexual reproduction and haplodiploid genetics

We now develop a model that takes into account sexual reproduction and the haplodiploid genetics
of Hymenoptera. We study competition between two alleles: the wildtype allele, A, and the mutant
allele a. The mutant allele disrupts the dispersal behavior of females as described in the main text.
It can either act in a dominant or recessive way. Denote by q1, q2, q3 the probabilities that AA, Aa
and aa females stay with the nest. If the mutation is dominant, we have q1 = 0 and q2 = q3 > 0.
If the mutation is recessive, we have q1 = q2 = 0 and q3 > 0.

There are three types of females, AA, Aa, aa, and two types of males, A and a. There are six
types of fertilized females (queens), which we denote by AA-A, AA-a, Aa-A, Aa-a, aa-A and aa-a.
The first two letters specify her own genotype, while the third letter specifies the genotype of the
sperm she has received and stored. For example, AA-a means that an AA female has mated with
an a male. Such an AA-a queen produces Aa females and A males. In contrast an Aa-A queen
produces equal proportions of AA and Aa females and equal proportions of A and a males.

Let us introduce the following notation: XAA-A,i denotes the abundance of colonies of size i
founded by an AA-A queen; similarly XAA-a,i denotes the abundance of colonies of size i founded
by an AA-a queen, and so on. The queen in a colony of size i has birth rate bi and death rate di.
The mortality of workers is given by α. The abundances of virgin queens (females who have left
the nest and try to mate) is given by xAA, xAa and xaa. The abundance of males is given by yA
and ya. The parameter β characterizes the rate of successful mating.
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Figure 4: Eusociality evolves for intermediate values of q, which is the probability that offspring
stay with the nest. Furthermore, the eusocial queen must have a dramatically increased rate of
oviposition, b. The figure shows equilibrium values of the model given by (58). Parameter values
are b0 = 0.5, d0 = 0.1, m = 3, b = 4, d = 0.01 and α = 0.1. Hence, eusocial queens that have at
least two workers have an 8-fold increased rate of laying eggs and a 10-fold reduced death rate. The
upper panel shows the number of individuals, where red indicates solitary, x0, and blue eusocial,∑

i ixi. The lower panel shows the total number of colonies with at least one worker,
∑

i xi, where
i = 2, 3, .... Note that eusociality is selected if approximately 0.36 < q < 0.9 .
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We have the following system (the index i runs from 2, ..∞):

ẊAA-A,1 = βxAAyA − b1q1XAA-A,1 − d1XAA-A,1 + αXAA-A,2
ẊAA-A,i = q1(bi−1XAA-A,i−1 − biXAA-A,i)− diXAA-A,i − α(i− 1)XAA-A,i + αiXAA-A,i+1

ẊAA-a,1 = βxAAya − b1q2XAA-a,1 − d1XAA-a,1 + αXAA-a,2
ẊAA-a,i = q2(bi−1XAA-a,i−1 − biXAA-a,i)− diXAA-a,i − α(i− 1)XAA-a,i + αiXAA-a,i+1

ẊAa-A,1 = βxAayA − b1
q1 + q2

2
XAa-A,1 − d1XAa-A,1 + αXAa-A,2

ẊAa-A,i =
q1 + q2

2
(bi−1XAa-A,i−1 − biXAa-A,i)− diXAa-A,i − α(i− 1)XAa-A,i + αiXAa-A,i+1

ẊAa-a,1 = βxAaya − b1
q2 + q3

2
XAa-a,1 − d1XAa-a,1 + αXAa-a,2

ẊAa-a,i =
q2 + q3

2
(bi−1XAa-a,i−1 − biXAa-a,i)− diXAa-a,i − α(i− 1)XAa-a,i + αiXAa-a,i+1

Ẋaa-A,1 = βxaayA − b1q2Xaa-A,1 − d1Xaa-A,1 + αXaa-A,2
Ẋaa-A,i = q2(bi−1Xaa-A,i−1 − biXaa-A,i)− diXaa-A,i − α(i− 1)Xaa-A,i + αiXaa-A,i+1

Ẋaa-a,1 = βxaaya − b1q3Xaa-a,1 − d1Xaa-a,1 + αXaa-a,2
Ẋaa-a,i = q3(bi−1Xaa-a,i−1 − biXaa-a,i)− diXaa-a,i − α(i− 1)Xaa-a,i + αiXaa-a,i+1

(59)

For virgin queens we have:

ẋAA = (1− q1)
∑
i

bi(XAA-A,i +
1
2
XAa-A,i)− xAA(g + βy)

ẋAa = (1− q2)
∑
i

bi(XAA-a,i +
1
2
XAa-A,i +

1
2
XAa-a,i +Xaa-A,i)− xAa(g + βy)

ẋaa = (1− q3)
∑
i

bi(
1
2
XAa-a,i +Xaa-a,i)− xaa(g + βy)

(60)

For males we have

ẏA =
∑
i

bi(XAA-A,i +XAA-a,i +
1
2
XAa-A,i +

1
2
XAa-a,i)− hyA

ẏa =
∑
i

bi(
1
2
XAa-A,i +

1
2
XAa-a,i +Xaa-A,i +Xaa-a,i)− hya

(61)

Here g and h denote respectively the death rates of virgin queens and males. Note that virgin
queens become fertilized queens after mating. Hence, the term βy is added to their death rate,
where y = yA + ya is the total abundance of males. We assume that males do not die because of
the mating, but they have a very short life span. Hence it is unlikely that a male mates twice.
Finally, we assume that males and females are produced at the same rate, an assumption which
could easily be modified by introducing an additional parameter.

For computer simulations we add density limitation by multiplying each birth term with a factor
φ = 1/(1 + ηX) where η is a constant and X is the total population size.

Figure 5 shows the equilibrium structure of the sexual model assuming that the eusocial allele,
a, is recessive. This means that aa females stay with the nest with probability q, while AA and
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Aa females always leave the nest. Therefore, ‘full-sized’ colonies are formed by aa-a queens and
‘half-sized’ colonies are formed by Aa-a queens. All daughters of aa-a queens are aa and stay with
the nest with probability q. Half of the daughters of Aa-a queens are aa, who stay with the nest
with probability q, while the other half are Aa who leave the nest. All other fertilized females are
solitary, because all of their offspring leave the nest. We assume that all males leave the nest.

We use the same parameter values as for the asexual simulation. The birth rate of a solitary
queen is b0 = 0.5 and her death rate is d0 = 0.1. The benefits of eusociality emerge once the colony
reaches a critical size of m = 3. For all colony sizes, i ≥ m, the birth rate of the queen is b = 4
and her death rate is d = 0.01. We make the following observation. As long as q < 0.7 the solitary
allele is selected: all females are AA and all males are A. At q ≈ 0.7 there is a sudden reversal.
For 0.7 < q < 0.88 the eusocial allele outcompetes the solitary one: all females are aa and all
males are a. But for q > 0.88 we find that heterozygote females, Aa, become abundant; now many
colonies are now founded by Aa females that have mated with a males. Figure 5 shows the stable
equilibrium that is reached from an initial state where the eusocial allele, a, is rare. This initial
condition is relevant, if we want to study the origin of eusociality in a world of solitary insects.

Figure 6 uses the same parameter values as Figure 5, but this time we show the stable equilibrium
that is reached when starting from a state where the solitary allele is rare. This initial condition
is relevant, if we want to study the evolutionary stability of eusociality. This time we find that the
solitary allele, A, wins if 0 < q < 0.26, while the eusocial allele, a, wins if 0.26 < q < 0.88. For
0.88 < q < 1 there is coexistence of the two alleles.

We have the following situation. There are three critical thresholds of q. In our numerical
example they are qc1 ≈ 0.26, qc2 ≈ 0.7, qc3 ≈ 0.88. If 0 < q < qc1 the solitary allele wins. If
qc1 < q < qc2 then we observe bi-stability; either the solitary or the eusocial allele wins depending
on initial condition. This means each homogeneous population is stable against invasion by the
other allele. If qc2 < q < qc3 then the eusocial allele wins. If qc3 < q < 1 then there is coexistence
between the two alleles.

12 Summary

We have proposed a model for the origin of eusociality. The basic idea is that a mutation prevents
some daughters from leaving the nest. We study if this mutant allele is favored by natural selection.
The fundamental consideration is the following: how are the key demographic parameters of the
eusocial queen (her fecundity and her death rate) affected by the presence of workers. We find
that eusociality is selected if the fecundity of the queen increases dramatically while colony size
is still small. This means that a eusocial queen that is supported by a few workers must already
have a significantly increased rate of oviposition, must be more successful at guarding the larvae,
and having them fed until they hatch. The evolution of eusociality is also favored if the queen has
a reduced death rate in the presence of workers. Both effects can arise naturally given that the
eusocial queen stays at the nest, thereby reducing her risk of predation and devoting her resources
to laying eggs and guarding them. Interestingly, we find that a reduced death rate alone is not
sufficient for the evolution of eusociality. An increased birth rate is necessary.

A key observation of our model is that it is difficult to evolve eusociality, because we need
very favorable parameters. In our numerical examples we assumed that a eusocial queen with
two workers has an 8-fold increased birth rate and a 10-fold reduced death rate. For the same
parameter choices, for example, a 7-fold increased birth rate would not have allowed the evolution
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Figure 5: Emergence of eusociality in a model with haplodiploid genetics. We study the competition
between a wildtype allele, A, and a recessive mutant allele, a. There are three types of females:
AA (red), Aa (green) and aa (blue); aa females stay with the nest with probability q. There are
two types of males: A (red) and a (blue). We simulate the system given by (59) - (61) showing
the equilibrium that is reached from an initial condition where the solitary allele, A, dominates
the population. For 0.7 < q < 0.88 the eusocial allele replaces the solitary one. For 0.88 < q < 1
there is coexistence. Parameter values: b0 = 0.5, m = 3, b = 4, β = 0.1, η = 0.01; mortality rates:
d0 = α = g = h = 0.1 and d = 0.01.
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Figure 6: Evolutionary stability of eusociality in a model with haplodiploid genetics. We study the
competition between a wildtype allele, A, and a recessive mutant allele, a. There are three types
of females: AA (red), Aa (green) and aa (blue); aa females stay with the nest with probability
q. There are two types of males: A (red) and a (blue). We simulate the system given by (59) -
(61) showing the equilibrium that is reached from an initial condition where the eusocial allele, a,
dominates the population. For 0.26 < q < 0.88 the eusocial allele outcompetes the solitary one.
For 0.88 < q < 1 there is coexistence. Same parameter values as for Figure 5.
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of eusociality. This observation is interesting: despite the obvious and intuitive advantages of
eusociality, it is very hard for a solitary species to achieve it.

Whether or not the circumstances can be that favorable for eusociality depends on the ecological
environment of the pre-eusocial species under consideration. As outlined in the main text, a key
factor is whether it is possible to establish and defend a valuable nest site that is close enough to
a rich food source.

Another interesting aspect of our haplodiploid model is the occurrence of bistability. It is
easier to maintain eusociality than to evolve it. For a wide parameter region the eusocial allele
cannot invade the solitary allele, and vice versa the solitary allele cannot invade the eusocial one
(compare Figs 4 and 5). This property of the model explains in part why, even though eusociality
is ecologically dominant, the condition has evolved rarely in the history of life.

Our model leads to a number of radical new suggestions for research on eusociality.
(i) Contrary to the prevailing dogma of inclusive fitness theory, it is not useful to view eusociality

as an evolutionary game between workers and queens. Inclusive fitness theory claims to be a gene-
centered approach, but instead it is ‘worker-centered’. It puts the worker into the center of the
analysis and asks the (puzzling) question: why does a worker sacrifice her reproductive potential
to help raise the offspring of the queen? But if we put the gene into the center of the analysis (as
we have done) then this question of altruism does not even appear. A standard selection equation
determines if the eusocial allele wins over the solitary one. There is no payoff matrix, there is
no evolutionary game on the decisive level of competition. By formulating a model of population
genetics in the context of family structure, we find that there is no need for the inclusive fitness
detour.

(ii) The queen and her workers are not engaged in a standard cooperative dilemma. The reason
is that the workers are not independent agents. Their properties are determined by the alleles that
are present in the queen (both in her own genome and in that of the sperm she has stored). The
workers can be seen as ‘robots’ that are built by the queen. They are part of the queen’s strategy
for reproduction.

(iii) It is not useful to describe a female who stays with the colony as ‘altruistic’ and a female
who leaves as ‘selfish’. Both types of females are needed for the reproduction of the colony.

(iv) Our model does not use standard multilevel selection. There is only one level of selection,
the hymenopteran colony, which is treated as an extension of the queen, whose genes are the units
of selection. Selection operates between queens and solitary females or between different queens.

(v) Relatedness does not drive the evolution of eusociality. We can use our model to study
the fate of eusocial alleles that arise in thousands of different presocial species with haplodiploid
genetics and progressive provisioning. In some of those species eusociality might evolve, while in
others it does not. Whether or not eusociality evolves depends on the demographic parameters of
the queen (as discussed above), but not on relatedness. The relatedness parameters would be the
same for all species under consideration.

(vi) Once eusociality has evolved, colonies consist of related individuals, because daughters stay
with their mother to produce further offspring. Thus, relatedness is a consequence of eusociality,
but not a cause.

(vii) Our model has clear implications for productive empirical research. The crucial mea-
surement that needs to be performed is the effect of the size of the colony on the demographic
parameters of the queen, such as her oviposition rate and average longevity. The animals most
likely to yield significant data are the primitively eusocial bees and wasps, of which there are a
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large number of species representing finely divided grades of evolution – including those that have
reverted from eusociality to the solitary condition. There is moreover a need to identify the genetic
coding of the solitary-eusocial transition, as well as to identify the phenotypic flexibility of the
genes involved and the environmental pressures that drive selection.

Finally, we propose that kin selection among social insects is an apparent phenomenon which
arises only when you put the worker into the center of evolutionary analysis. Kin selectionists
have argued that a worker who behaves altruistically by raising the offspring of another individual,
requires an explanation other than natural selection, and this other explanation is kin selection.
We argue, however, that there exists a more convenient coordinate system. If the eusocial gene is
in the center of the evolutionary analysis, then a standard natural selection equation determines
whether or not eusociality wins. There is no paradoxical altruism that needs to be explained. The
epicycles of kin selection and inclusive fitness disappear.
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