Supporting Information

Koch et al. 10.1073/pnas.1116125109

Fig. S1. Up-regulation of microRNA-155 (miR-155) is similar in Toll-like receptor 2 (TLR2^{-/-}), Toll-like receptor 4 (TLR4^{-/-}), MyD88^{-/-}, and Trif^{-/-} bone marrowderived macrophages (BMMs). (A and B) H. pylori P12 [multiplicity of infection (MOI) of 50] and P12 LPS (1.5 μ g/mL, 2,000 endotoxin unit/mL) led to upregulation of miR-155 in TLR2^{-/-} (A) and TLR4^{-/-} BMMs (B). (C and D) BMMs lacking the adaptor protein MyD88 (C) show an up-regulation of miR-155 in response to P12 and P12 LPS similar to that seen in BMMs lacking the adaptor protein Trif (D). Experiments were performed with at least two biologically independent experiments and are presented as mean + SE.

Fig. 52. Functional type IV secretion system in bafilomycin A1 (BafA1)-treated BMMs. A representative Western blot (of three total) shows phosphorylated CagA in P12-infected WT BMMs (3 h) as well as in P12-infected WT BMMs treated with 100 nM BafA1.

Fig. S3. Control experiments for the BafA1 effects. (*A*) BafA1 treatment (100 nM 1 h before infection) almost completely blocks IL-6 mRNA expression response to P12 infection (MOI of 50; 3 h) in TLR2/4^{-/-} BMMs but not in WT BMMs. (*B*) WT BMMs were pretreated with 100 nM BafA1 or were left untreated and were infected with P12 (MOI of 50; 3 h). Experiments were performed with at least three biologically independent replicates and are presented as mean + SE. To determine the statistical significance, Students *t* test was performed between the ratio of BafA1-treated to untreated BMMs; ****P* < 0.001.

Fig. S4. Experiments with NOD1/2 ligands. (A) BMMs lacking the NOD adaptor molecule RIP2 were infected with *H. pylori* P12 (MOI of 50), *Escherichia coli* LPS (EC LPS, 100 ng/mL) for 3 h. (*B*) BMMs lacking TLR2/4 were incubated with the NOD1 ligand TriDAP (2.5 μg/mL) and the NOD2 ligand MDP (100 μg/mL) for 3 h. Experiments were performed with at least two biologically independent replicates and are presented as mean + SE.

Fig. S5. Mutation of the miR-155 targets *Pmaip1*, *Tspan14*, and *Lpin1*. Sequences of the putative binding sites for Mus musculus (mmu) mmu-miR-155 (mouse) and their mutated versions *Pmaip1-3'* UTR (*A*), *Tspan14-3'* UTR (*B*), and *Lpin1-3'* UTR (*C*). All putative targets here possess two binding sites for mmu-miR-155. In Lpin1 and Pmaip1 constructs, both binding sites were mutated; the double mutation showed the stronger effect. In case of Tspan14, a full-length construct (Tspan14-2), and a truncated version (Tspan14-1) were used; only the truncated version was mutated.

Fig. S6. Control of viability of BMMs before cisplatin treatment. To detect any differences in survival of the infected cells, water-soluble tetrazolium salts (WST-8) assays were performed. WT and miR-155^{-/-} BMMs were infected with *H. pylori* P12 for 30 h (MOI of 50) or were mock infected. The results were normalized to mock-infected WT BMMs at 100%. The WST-8 assays did not reveal any significant differences among any of the cells. Data are presented as percentage (viability) and represent mean + SE of three biologically independent experiments.

Array 1		Array 2			Drimory cogyopco
Fold change	P value	Fold change	P value	Accession no.	name
-7.45	5.35E-30	-2.16	6.69E-16	NM_178165	Fcrl1
-5.95	0	-2.10	1.02E-30	NM_021897	Trp53inp1
-5.64	2.42E-32	-1.57	5.51E-12	NM_008043	Frat1
-4.83	0	-3.27	5.55E-39	NM_021451	Pmaip1
-4.69	1.50E-27	-1.80	1.16E-20	NM_175398	6530418L21Rik
-4.57	0	-1.89	2.86E-22	NM_015763	Lpin1
-3.96	0	-1.68	1.01E-18	NM_177733	E2f2
-3.74	4.28E-12	-1.88	1.84E-06	NM_010559	ll6ra
-3.74	3.08E-40	-1.62	2.54E-06	NM_008873	Plau
-3.62	1.11E-36	-1.70	3.24E-06	NM_013753	X99384
-3.32	2.16E-13	-1.60	1.41E-06	NM_001012450	Ankrd6
-3.08	2.97E-12	-1.74	3.82E-08	NM_007520	Bach1
-3.05	0	-1.54	1.92E-14	NM_028808	P2ry13
-2.94	1.52E-13	-1.90	1.39E-12	NM_133218	Zfp704
-2.83	6.42E-14	-1.52	1.09E-06	NM_019464	Sh3glb1
-2.79	2.13E-42	-1.65	2.16E-10	NM_024191	Arl2bp
-2.76	0	-1.86	7.21E-13	NM_008245	Hhex
-2.44	0	-1.89	1.24E-10	NM_145928	Tspan14
-2.20	3.67E-36	-2.48	3.20E-37	NM_133738	Antxr2
-2.12	1.14E-12	-2.18	4.10E-18	NM_024173	Atp6v1g1
-2.12	8.66E-18	-1.54	6.14E-09	NM_172595	Arl15
-2.09	1.28E-20	-1.67	5.70E-07	NM_011890	Sgcb
-2.07	5.30E-14	-1.87	1.47E-07	NM_145959	D15Ertd621e
-2.07	1.47E-07	-1.81	9.15E-13	NM_029019	Stard6
-2.00	3.94E-12	-2.03	1.55E-12	NM_008541	Smad5
-1.97	4.75E-07	-2.15	1.64E-06	NM_178592	Bat5
-1.91	1.15E-09	-1.72	5.01E-07	NM_134002	Csnk1g2
-1.85	2.40E-13	-1.73	2.75E-21	NM_175127	Fbxo28
-1.84	2.78E-19	-1.63	1.46E-06	NM_172742	BB128963
-1.82	1.22E-24	-1.65	3.58E-18	NM_138667	Map3k7ip2
-1.80	1.79E-17	-1.86	8.32E-09	NM_007929	Emp2
-1.60	3.92E-06	-1.72	1.14E-07	NM_146032	Srp68
-1.55	8.88E-12	-1.51	2.63E-10	NM_145958	Kbtbd2
-1.55	1.64E-15	-1.58	4.41E-09	NM_199307	Ece1
-1.54	3.15E-07	-1.87	2.96E-07	NM_173432	Pskh1

Table S1. Microarray analysis shows known and unknown targets of miR-155 during infection with *H. pylori*

Data presented here show the overlap of down-regulated hits of array 1 and array 2 that are predicted by TargetScan5.1 possessing a 7-mer or 8-mer seed of mmu-miR-155.

Table S2. Primer sequences

PNAS PNAS

5'–3' forward	5'-3' reverse					
Primers for quantitative RT-PCR (SYBR-green method)						
CGTGAAAAGATGACCCAGATCA	CACAGCCTGGATGGCTACGT					
ACAAGTCGGAGGCTTAATTACACAT	TTGCCATTGCACAACTCTTTTC					
CCGCCGGTTGATGGAA	AGCGTTTCTCTCATCACATCACA					
CCGCAGCATCCATTTCAAC	TCCGCATAGGAAGGGCTCTT					
GAGCATGCCAAGACCAACATC	CAATGGGAAGACGTGATCGA					
GGCGAGGACCCTGATCTCA	TGCTGCATCTGCTTCTCAGAA					
CCGCTCGAGCGCGACCGAGCATTAAAGG	ATAAGAATGCGGCCGCGGCTGCAGAGGGCATTTG					
CCGCTCGAGGTTCTTCCAAAGCTTTTGCAAG	ATAAGAATGCGGCCGCGCATTTTTCAATAGTTAC					
CCGCTCGAGGAAGCAGATGCAGCAAATG	ATAAGAATGCGGCCGCGCATGCCTCGGAGTATCCAG					
CCGCTCGAGGAAGCAGATGCAGCAAATG	ATAAGAATGCGGCCGCGCTTAATGCTTTTTGTTTTAATAG					
GAGCGCGACCGAGCAAATAAGGATAG	CCCCACAACCTATCCTTATTTGCTC					
GCCGTCATGAATGCAAATAAAG	CACACTTAACTTTATTTGCATTC					
GTGTGTTATTGTAAGCAAATACTGG	CTTTATACTCTCCAGTATTTGCTTAC					
GCTAGTGGGCCTCAGCAAATAGG	GTAAACAACCTATTTGCTGAGG					
CTCGTTTCTCCATAGCAAATAGCCC	CCCTCAGTAGGGCTATTTGCTATG					
	5'-3' forward R-green method) CGTGAAAAGATGACCCAGATCA ACAAGTCGGAGGCTTAATTACACAT CCGCCGGTTGATGGAA CCGCAGCATCCATTTCAAC GAGCATGCCAAGACCAACATC GGCGAGGACCCTGATCTCA CCGCTCGAGGGCGCGACCGAGCATTAAAGG CCGCTCGAGGAGCAGATGCAGCAAATG CCGCTCGAGGAAGCAGATGCAGCAAATG CCGCTCGAGGAAGCAGATGCAGCAAATG GAGCGCGACCGAGCAAATAAGGATAG GCCGTCATGAATGCAAATAAGG GTGTGTTATTGTAAGCAAATAGG CTCGTTTCCCATAGCAAATAGCC					