Supporting Information

Bacterial biosynthesis and maturation of the didemnin anticancer agents

Ying Xu[†], Roland D. Kersten[‡], Sang-Jip Nam[‡], Liang Lu[†], Abdulaziz M. Al-Suwailem[§], Huajun Zheng[∥], William Fenical[‡], Pieter C. Dorrestein^{‡,⊥}, Bradley S. Moore^{‡,⊥}, Pei-Yuan Qian^{†,*}

[†]KAUST Global Collaborative Research, Division of Life Science, School of Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China;
[‡]Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA;
[§]The Coastal and Marine Resources Core Lab, Red Sea Research Center, 4700 King Abdullah University of Science and Technology, Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia;
[§]Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 250 Bi Bo Road, Shanghai 201203, China;
[⊥]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA

*Corresponding Authors: Pei-Yuan Qian, Phone: 852-2358-7331, Fax: 852-2358-1559, Email: boqianpy@ust.hk and

Bradley S. Moore, Phone: 858-822-6650, Fax: 858-534-1305, Email: bsmoore@ucsd.edu.

Supporting Information

Supplementary Figures

Fig. S1. Characterization of didemnin B. (a) MSⁿ analysis.

Fig. S1. Characterization of didemnin B. (b) ¹H NMR spectrum.

Fig. S2. Characterization of nordidemnin B. (a) MSⁿ analysis.

Fig. S2. Characterization of nordidemnin B. (b) $^1\!H$ NMR spectrum.

Fig. S3. Bioinformatic analysis of uncharacterized *nrps1* gene cluster on plasmid 2 in the *T. mobilis* KA081020-065 genome. Domain notation: AL, acyl ligase; C, condensation domain; A, adenylation domain; T, thiolation domain; E, epimerization; TE, thioesterase. Substrate abbreviation: Dpg, dihydroxyphenylglycine.

NRPS or PKS related

ted F

Regulation, resistance related

Unknown function

4Kb

Gene	Size [aa]	Sequence similarity/organism	Proposed function	ldentity/ similarity	GenBank accession no.
orf1	261	Thioesterase, Actinomadura kijaniata	Thioesterase	41%, 54%	ACB46473
orf2	483	Membrane protease subunit stomatin/prohibitin-like protein, a- proteobacterium BAL199	Putative protease	42%, 59%	ZP_02189733
orf3	560	Cyclic peptide transporter, <i>Methylobacter tundripaludum</i> SV96	Transporter	48%, 68%	ZP_07653047
orf4	70	None	Hypothetical		
orf5	190	GTPase domain-containing protein, <i>Methylobacter tundripaludum</i> SV96	Hypothetical	39%, 57%	ZP_07653048
orf6	987	Hydrophobic/amphiphilic exporter-1, <i>Azospirillum</i> sp. B510	Resistance	38%, 56%	YP_003450508
orf7	377	Secretion protein, Azospirillum sp. B510	Resistance	28%, 47%	YP_003450507
didA	2123	OciA protein, <i>Planktothrix rubescens</i> NIVA-CYA 98	NRPS	29%, 40%	CAQ48254
didB	1796	Linear gramicidin synthetase subunit D, <i>Stigmatella aurantiaca</i> DW4/3-1	NPRS	36%, 48%	ZP_01459555
didC	1330	NRPS, Myxococcus xanthus DK 1622	NRPS	41%, 52%	YP_632257
didD	3853	Amino acid adenylation domain protein, <i>Streptomyces violaceusniger</i> Tu 4113	NRPS	39%, 50%	ZP_07603194
didE	1705	Amino acid adenylation domain protein, Acetivibrio cellulolyticus CD2	NRPS/PKS	36%, 53%	ZP_07325073
didF	1613	HctF, <i>Lyngbya majuscula</i>	NRPS	35%, 52%	AAY42398
didG	1413	NRPS/PKS, Amycolatopsis mediterranei U32	PKS	46%, 56%	YP_003765866
didH	1286	NRPS/PKS, Myxococcus xanthus DK 1622	NRPS	39%, 53%	YP_631961
didl	873	NRPS, Myxococcus xanthus DK 1622	NRPS	39%, 52%	YP_632257
didJ	2163	Amino acid adenylation domain protein, <i>Lyngbya majuscula</i> 3L	NRPS	36%, 53%	ZP_08431746

Fig. S4. Organization and deduced functions of the open reading frames within and flanking the didemnin biosynthetic gene cluster.

Gene	Size [aa]	Sequence similarity/organism	Proposed function	Identity/ similarity	GenBank accession no.
orf8	77	MbtH domain-containing protein, <i>Herpetosiphon aurantiacus</i> ATCC 23779	MbtH-like protein	80%, 89%	YP_001542806
orf9	68	Hypothetical protein, <i>Acidovorax</i> sp. JS42	Hypothetical	79%, 91%	YP_986866
orf10	45	None	Hypothetical		
orf11	60	None	Hypothetical		
orf12	190	Hypothetical protein, <i>Acidovorax</i> sp. JS42	Hypothetical	94%, 97%	YP_986861
orf13	75	Hypothetical protein, <i>Acidovorax</i> sp. JS42	Hypothetical	98%,100%	YP_004387524
orf14	324	CAAX amino terminal protease family, <i>Synechococcus</i> sp. PCC 7335	Putative protease	30%, 49%	ZP_05035401
orf15	398	Cyanate transport system protein, <i>Pseudomonas syringae</i> pv. syringae 642	Transport	40%, 52%	ZP_07265073
orf16	255	GntR family transcriptional regulator, <i>Chromobacterium violaceum</i> ATCC 12472	Regulation	39%, 55%	NP_903400

Fig. S4, continued. Organization and deduced functions of the open reading frames within and flanking the didemnin biosynthetic gene cluster.

Fig. S5. Characterization of didemnin B derivative [Hysp]didemnin B produced by *Tistrella mobilis* KA081020-065 due to putative NRPS substrate promiscuity in DidF A8 domain. MS^n analysis of [Hysp]didemnin B. Hysp, α -(α -hydroxy sec-butylacetyl) propionic acid.

Fig. S6. Detection of didemnin precursors in the extract of *Tistrella mobilis* KA081020-065 by MALDI-TOF MS. a – Nordidemnin X ($[M+H]^{\dagger}$, obs 1651.8 Da, calc 1651.9 Da), b – Didemnin X ($[M+H]^{\dagger}$, obs 1665.8 Da, calc 1666.0), c – Nordidemnin Y ($[M+H]^{\dagger}$, obs 1779.7 Da, calc 1780.0 Da), d – Didemnin Y ($[M+H]^{\dagger}$, obs 1793.7 Da, calc 1794.0 Da).

Fig. S7. Characterization of didemnin precursors by MSⁿ. (a) MSⁿ analysis of didemnin X.

Fig. S7. Characterization of didemnin precursors by MSⁿ. (b) MSⁿ analysis of didemnin Y.

Fig. S7. Characterization of didemnin precursors by MS^n . (c) MS^n analysis of nordidemnin X.

Fig. S7. Characterization of didemnin precursors by MSⁿ. (d) MSⁿ analysis of nordidemnin Y.

Fig. S8. Didemnin precursor hydrolysis assay. MALDI-TOF MS analysis of didemnin X hydrolysis time course in presence of *Tistrella mobilis* secreted proteome ((a), 1d growth in liquid culture, >10kDa protein cutoff filter) and in presence of sterile GYP medium ((b), negative control).

S15

Fig. S8. Didemnin precursor hydrolysis assay. MALDI-TOF MS analysis of didemnin Y hydrolysis time course in presence of *Tistrella mobilis* secreted proteome ((c), 1d growth in liquid culture, >10kDa protein cutoff filter) and in presence of sterile GYP medium ((d), negative control).

d

Features	Chromosome	pTM1	pTM2	pTM3	pTM4
Topology	Circular	Circular	Circular	Circular	Circular
Genome size (bp)	3919492	692874	690188	1126962	83885
G+C content	68.15%	68.26%	67.61%	68.08%	67.26%
CDs number	3565	605	602	942	72
Coding density	89.08%	90.38%	88.92%	88.55%	85.06%
Average CDs length (bp)	979	1035	1019	1059	991
Assigned function	2852	432	501	726	60
Conserved hypothetical	472	101	71	165	9
Hypothetical	244	72	30	51	3
rRNA operons	2	0	0	1	1
tRNA operons	41	0	1	9	3

Table S1. General genome features of Tistrella mobilis KA081020-065