Studies on the Selectivity Between Nickel-Catalyzed 1,2-Cis-2-Amino

Glycosylation of Hydroxyl Groups of Thioglycoside Acceptors with C(2)-Substituted

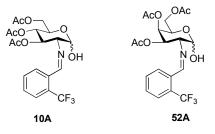
Benzylidene N-Phenyl Trifluoroacetimidates and Intermolecular Aglycon Transfer of

the Sulfide Group

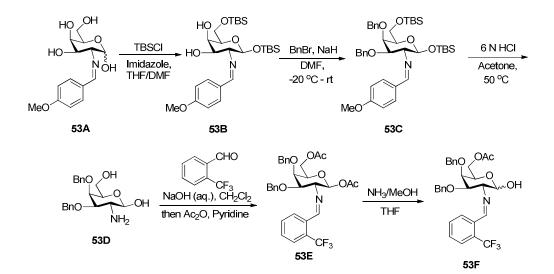
Fei Yu and Hien M. Nguyen*

Department of Chemistry, University of Iowa, Iowa City, IA 52242

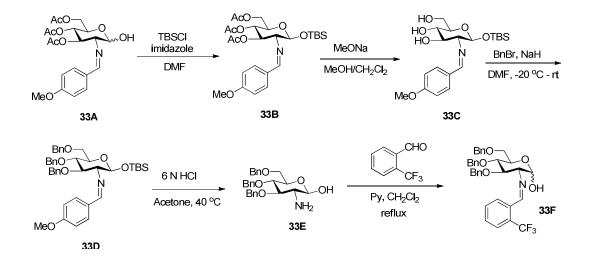
Table of Contents


Methods and Reagents	Page	S1
Synthetic Scheme for Preparation of Hemiacetals	Page	S 2
References	Page	S 3

Methods and Reagents. All reactions were performed in oven-dried Schlenk flasks fitted with glass stoppers under a positive pressure of argon. Organic solutions were concentrated by rotary evaporation below 40 °C at 25 torr. Analytical thin-layer chromatography (TLC) was routinely used to monitor the progress of the reactions and performed using pre-coated glass plates with 230-400 mesh silica gel impregnated with a fluorescent indicator (250 nm). Visualization was achieved using UV light, iodine, or ceric ammonium molybdate. Flash chromatography was performed and employed 230-400 mesh silica gel. Dichloromethane were distilled from calcium hydride under an argon atmosphere at 760 torr. All of the nickel catalysts were prepared according to the literature procedure.¹ All other chemicals were obtained from commercial vendors and used without further purification.


Instrumentation. All proton (¹H) nuclear magnetic resonance spectra were recorded on 400 MHz spectrometer. All carbon (¹³C) nuclear magnetic resonance spectra were recorded on 100 MHz NMR spectrometer. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃: δ 7.26 ppm, δ 77.00 ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and brs = broad singlet), integration, and coupling constant in hertz (Hz). Infrared (IR) spectra were reported in cm⁻¹. High resolution TOF mass spectrometry utilizing electrospray ionization in positive mode or electron ionization was performed to confirm the identity of the compounds.

A) Trichloroacetimidate donors 1 and 2 were prepared according to our reported procedure.


B) D-Glucosamine and Galactosamine Hemiacetals 10A and 52A were prepared according to our reported procedure.

C) Synthetic Scheme of 6-O-Acetyl-3,4-di-O-Benzyl-D-Galactosamine Hemiacetal 53F

D) Synthesis of 3,4,6-O-tri-O-Benzyl-D-Glucosamine Hemiacetal 33F

(1) (a) Bomfim, J. A. S.; de Souza, F. P.; Filgueiras, C. A. L.; de Sousa, A. G.; Gambardella, M. T. P. *Polyhedron* **2003**, 22, 1567. (b) Qian H.; Pei, T.; Widenhoefer, R. A. *Organometallics* **2005**, *24*, 287.