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ABSTRACT Free microtubule or actin filaments, along with
the monomeric forms of the protein, hydrolyze GTP or ATP to
produce a flux of subunits through the polymer. This flux, called
treadmilling, produces no useful work. In the cell, however, these
filaments are likely to be constrained between nucleating sites and
other barriers that will limit polymer growth. We study here the
effects ofa small compression ofthe filaments resulting from poly-
merization against such barriers. If subunits can still exchange at
the two ends, treadmillingwill take place here as well. Under these
conditions, the filament system can do useful work. The free en-
ergy of NTP hydrolysis can be used to transport materials, at-
tached to the filament, against a resisting force. This process can
in principle take place at high efficiency and bears a resemblance
in a bioenergetic sense to the utilization of ATP free energy in
muscle contraction. The same general principles apply to a poly-
mer in which one end is anchored and one end is free.

Steady-state treadmilling (1-3) of subunits in microtubules or
actin microfilaments in solution uses GTP or ATP, respectively,
but none of the NTP free energy loss is converted into me-
chanical work or other form offree energy (4). Ifthe free subunit
concentration is increased above the steady-state concentration,
these polymers will grow (5). In a cell, a growing polymer, with
one or both ends free, will eventually encounter a barrier ofone
kind or another (e.g., the cell membrane) at the free end or
ends. At this point, further addition ofa relatively small number
of subunits will produce sufficient compression of the polymer
to stop the net growth. This important effect is a consequence
of the increase in the chemical potential of the subunits in the
polymer; there is some resemblance here to the pressure-in-
duced chemical potential increase ofthe solvent (in the solution)
in an osmotic system. Although growth has ceased, a new re-
gime of treadmilling will now be possible if subunits can still
be exchanged between the solution and both ends of the poly-
mer. In this paper we show that, ifa chromosome or some other
structure (or structures) is attached to the polymer, treadmilling
between barriers, and exerts a force that resists the directional
motion of the subunits of the polymer, then some of the NTP
free energy ofhydrolysis, expended in the treadmilling, will be
converted into mechanical work. In fact, this latter system, in
a formal bioenergetic sense, resembles the actin-myosin-ATP
system in muscle contraction. For example, there will be a
force-velocity curve: As the resisting force is increased, the
treadmilling velocity decreases.

Treadmilling and free energy transfer ofthe above type is also
possible if one end of the polymer is anchored and one end is

free, although the details are different (to be published
elsewhere).
Our object in this paper is to outline the basic bioenergetic

theory applicable to a polymer that is treadmilling against bar-
riers at both ends, with or without an attached resisting force.
With the resisting force, work can be done. As a preliminary,
however, we consider an equilibrium polymer (i.e., one with
no NTPase activity) that has grown and encountered barriers,
and consequently is under a compressive force. This equilib-
rium treatment would apply to other cases directly, for example,
to sickle-cell hemoglobin (Hb S) aggregation.

EQUILIBRIUM POLYMER BETWEEN BARRIERS
We consider the aggregation ofa linear polymer with no NTPase
activity. Let Ce be the "critical" concentration ofmonomers (sub-
units) in equilibrium with an infinite polymer in solution. If the
monomer concentration c is slightly <Ce, finite polymers are
stable (4, 6, 7). If c > ce, the polymers will grow steadily. We
are interested here in the case in which c > ce, but the polymer,
in its growth, encounters barriers a distance L apart that limit
its length. Monomer exchange is assumed to be possible at one
or both ends despite the barriers. The polymer is somewhat
compressible. The assumed compressibility, including bend-
ing, if any, is expressed by F = a(l - lo) (Hooke's law), where
10 is L/No, 1 is LIN, F is the force on the polymer (negative for
compression), a is a force constant, N is the number of mono-
mers in the polymer, and No is the value of N at zero force (F
= 0). Hooke's law uses the first term in an expansion in powers
of I - 10; it is adequate for small compressions, as in the present
problem.

The system (polymer) is characterized by the independent
variables c, L, a(T), 10(T), and the temperature T (N is a depen-
dent variable that fluctuates). The independent thermodynamic
variables are ,u, L, and T, where ,u is the chemical potential of
monomers in the polymer (g) or in the solution (.t8):

= /L8 = /40 + kT ln c. [1]

For microtubules, lo = 80/13 = 6.15 A; a is not known, but we
make reasonable guesses below. Strictly, we should use the
grand partition function ,(pi,L,T) and small system thermo-
dynamics (6, 8) for this open finite system (with end effects in-
cluded). However, No is fairly large, of order 104 or 105, so with
very small error we can use the canonical (or any) partition func-
tion and macroscopic thermodynamics.
The canonical partition function for the above defined sys-

tem, omitting end effects, is

Q(NLT) = {q exp[ a(L - i0) 2kT]}
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where Q = qN when the polymer is under no compression (c
= Ce). The chemical potential in this case is

-kT In q p0 = uo + kT In ce, [3]

so that

A - AO = kT ln(c/ce). [4]
From the thermodynamic relation

dA = - SdT + FdL + udN [5]

and Eq. 2, we deduce
F =a(l -10) [6]

A - =-2 (12-12) = -[10F + (F2/2a)]. [7]2

For a given value of C/Ce > 1, Eqs. 4 and 7 determine the
equilibrium (compressive) force F. The corresponding value of
N is also given by Eq. 7 because 1 = L/N. If the monomer con-
centration is increased from Ce to C > Ce,-F andN increase from
-F = 0 and N = No until p in the polymer becomes equal to
ps(c) in the solution (Eq. 1).
The detailed balance relations for on-off transitions, at either

end of the polymer, are ac = a' for Eq. 1 and aOCe = a0 for
Eq. 3, where the as are rate constants. These rate constants are
related by (Eq. 4)

a/a' = (alao)e A

The separate rate constants can be written as

a = aoef(w-;L)kT

a' = aoe

[8]

[9]

where f is an essential parameter (9) that represents the "split"
of pu - AL between forward and backward transitions. Usually
0 < f - 1, but this is not necessary.

The barriers referred to above need not be rigid. If they are
somewhat elastic, they will be pushed back by the growing poly-
mer until they resist with the same equilibrium force F (Eqs.
4 and 7). In this case, L refers to the polymer length when
growth stops (equilibrium). A cap is a barrier that offers no
mechanical resistance at all (F = 0), although rate constants will
be affected. (This case will be discussed elsewhere.)

As already mentioned, N actually fluctuates, so that N in Eq.
7 is really the mean value N. The variance in N, when L is held
fixed, is (using Eq. 7)

2=~-3 2oN N= -P2 = kT(aN/Za)LT = kTN3/aL2. [10]

The Principal Approximation. There are approximate forms
ofthe above relations, probably good to 1% or better (depending
on a). We define n (number of subunit insertions) by N = No
+ n. Then, if n << No (i.e., very little compression), which is
presumably the case, the above equations simplify to

(p -,wo0)/kT = ln(c/ce) =-10F/kT = 'yn [11]

1/a. For example, if C/Ce = e = 2.72 and My = 0.01, than in =
100 and or,, = 10. If y = 0.05, n = 20 and orn = 4.5. Recall that
No is of order 104 or 105 and that in = 13 would correspond to
adding one subunit to each strand of a microtubule. The ad-
dition of 10-30 subunits for C/Ce of order 3-5 seems intuitively
reasonable.
The estimation of the actual compressibility of a microtubule

(or of a Hb S aggregate) is not easy. As an average for both tor-
sional and center-of-mass vibrational motion in Hb S, using an
Einstein model, Ferrone et al. (10) chose a frequency 3 X 109
s l. For the center-of-mass motion itself, we then estimate 8
X 109 s-'. Then, by a straightforward argument to be published
elsewhere, taking No = 2 x 104, we find y -0.05.

If we write Eq. 2 as Q = qNe-W/kT, then W is the work of
inserting in subunits. W/kT is easily seen to be yni2/2. Then the
work per subunit added is

W/ = y-nkT/2 = (kT/2)ln(C/ce). [13]

If C/Ce = 2.72, W/n = kT/2 300 cal mol'. Note that W/in
is independent of y.

For reference below, we now consider this system from a
more detailed stochastic point of view (in the same approxi-
mation). We are interested in the rate constants for the arbitrary
polymerization step (at one end only) n . n + 1. With no
compression, these rate constants are a0c and a' (Eq. 8). The
work of insertion for n -* n + 1 is

AW/kT = (y/2)[(n + 1)2 - n2] = (2n + l)y/2. [14]

On including this effect, the two rate constants become (Eq.
9)

[15]

where x-e~'2. IfPe is the equilibrium probability ofa polymer
with n subunit insertions, then detailed balance in n ;± n + 1
together with Eq. 15 gives

Pn+ I/Pn = aCx2n+/ao. [16]

On the other hand, from the grand partition function for an open
system with N molecules, PN Q(N)AN, where A = e kT. Thus,
in the present case (Eq. 2),

Pn (q9A) x, [17]P.+ /Pn = qX2n+l+l
On comparing this with Eqs. 4 and 16, we verify that

qA = c/ce= aoc/ao, [18]

which is a self-consistency check.
The equilibrium distribution P. will be substantially confined

to positive n if ii> 3oa-that is, if

ln(c/ce) > 3i/2. [19]
This will usually be the case.

The parameterf in Eqs. 9 and 15 could in principle be afunc-
tion of n (or of F), but it is a reasonable approximation to treat
it as a constant for n > 0 (9). This is done below; here, at equi-
librium, the choice is immaterial.

2
=

2 = 1/i, Va/N~kT, [12]
where 'y is a dimensionless force constant (Eq. 11) for subunit
insertions (n) that is more convenient as a parameter than a.

Because ln(c/ce) is of order unity, the approximation is valid if
No >> 'yf. Eqs. 8, 9, and 11 are equivalent to equations 5-8
of ref. 9.

For a given value of c/ce, both W and o-2 vary as I/fy or as

TREADMILLING BETWEEN BARRIERS
We now consider a polymer with on-offNTPase activity at each
end (1, 4) but without a resisting force (Fr = 0 in Fig. 1). The
monomer or subunit concentration c is large enough (c > c=;
see below) so that the polymer grows until it is restrained by
barriers, as discussed above, and as shown schematically in Fig.
1. This is presumably a common situation in vivo for both tu-
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a2

fl%
We have the usual thermokinetic relations (4)

a442/a° la%2 = /30132/03-113 2 = eT/kT

I A

Li ??CIFr>OtIL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IF r > 0 a_

I** I a

,. 0..

\T

L

FIG. 1. Schematic representation of a steady-state treadmilling
polymer between two barriers a distance L apart. A is a monomer, AT
(in solution) contains bound NTP, and AD (in polymer) has bound NDP.
The end monomers of the polymer can exchange with AT in solution.
The cycle biochemistry is discussed in refs. 4 and 11. There is net ad-
dition of monomer at the + end and net loss at the - end. The heavy
arrow shows direction of motion of monomer in polymer; E, appendage
C, which resists this motion with a force Fr.

bulin and actin. The polymer has length L and is under a com-

pressive force F just sufficient to halt the net growth, but tread-
milling ofsubunits is assumed to occur. Under these conditions,
the rate constant notation is as shown in Fig. 1. Equations 6-17
of ref. 4 apply without formal change except that cl is replaced
here by c, e.g.,

C = (a2 + (2 + a-, + 81)/(al + 1 + a-2 + ) [20]

is the condition for zero net growth of the polymer. When F
= 0 (c = c,. below), the rate constants are denoted by al, o,(,
etc. These would differ from the rate constants for a polymer
with free ends because ofthe "capping. " Equations 6-17 of ref.
4 also apply with the F =0 set al, (01, etc; in this case, we denote
the steady-state monomer concentration by c,,:

Ca, (aO 3°2 ao 3° %)/(ao 03 a_ + -2) [21]

In principle, each transition pair in Fig. 1 (e.g., a,, a1) can

be considered in an equilibrium with polymer by itself, as in
Eqs. 6-9. Thus, we can write the explicit rate constant equations
(see equations 22 and 23 of ref. 9)

[23]

XT AT D -P,

where XT is the NTP thermodynamic force (denoted byX in ref.
4). Eqs. 23 also hold for the rate constants in Eqs. 22 (F # 0).

Special Case. We turn now to the most important special
case. In addition to assuming that ii << No, we drop rate con-

stants with negative subscripts and take f'j = P, f1 and f2
= ff2 [this is likely because the chemical steps in the

NTPase activity (4, 11) are probably the same at the two ends
of the polymer]. Eqs. 20-22 then lead to

(fi + f2 -'In(c/c.) = -loF/kT= yR [24]

for F and R as functions of c/c,,. The NTP and monomer fluxes
are (4)

JT = a2 + (32 = J Tc/c,)f/(f +f2)

Im = (al(32 - a2j31)/(al + (1) = Jo(c/c.)f2/(fi +f2),

where JO = a2 + 8 and

Jo = (aoB a2°,3°l)/(ao + /31).

[25]

[26]

[27]

Thus JT and Im both increase with c/c. (assumingf andf2 are

positive, as would be expected) by the same factor. As a first
guess, one might takef1 = f2= 1/2.

Stochastic Treatment in the Special Case. Because the ki-
netic scheme is linear (in n), a "detailed balance" type ofsolution
(11) is possible (numerically) at steady state, even in the most
general case. But in the special case above (Eqs. 24-27), we can

give an analytical quasi-equilibrium treatment. If we use Eq.
15 for each transition pair together with thef notation in Eqs.
22, the rate constants for n ;± n + 1 become (in place of Eq.
15)

c(a? + ) 1)f and (a 0 + 3°x-(2n+l)f2.

Thus, at steady state,

Pn+l/Pn = (c/cx)y X

[28]

[29]

al = a°Ef', a = a-lef1,

0 -f2 0 1-f2a2 a2e, a-2 = a-2e [22]

ei =
OE (3-1 (30

02 802E (3-2 =
o 2-E1'

where four differentfs are introduced for generality and E =

elOF/kT in the approximation above (n << No) that we shall con-

tinue to use (Eq. 7 gives the correction term in the definition
of E if the approximation is not used). In principle, the fs can

all be functions (9) of F, but we shall treat them as constants
below.

In a general numerical calculation, c > c,, is first specified.
Eqs. 22 are then substituted into Eq. 20 and that value of F
<0 is found which satisfies Eq. 20. At the same time, using this
F, values of all rate constants in Eqs. 22 are determined. These
are then introduced into equations 4-17 of ref. 4 to calculate
the monomer flux Jm' the NTP flux JT, etc. Also, using F, the
value of ii can be found from Eq. 6, because 1 = L/(No + ii).
Eq. 6 is a mechanical property of the polymer that holds
whether the polymer is at equilibrium or at steady state.

where y xfi+f2. This is formally the same as Eq. 16 or 17 with
y in place of x and c/c, in place of aoc/a' or qA. Hence, Pn
-(C/c,)nyn . This Pn, put in gaussian form, then gives the same
5 as a function of c/c,, as in Eq. 24 and, in addition, cro2 = 1/
y(f1 + f2). A stochastic approach is necessary to obtain this
steady-state result. Also, we can make a correction to JT andJm
(Eqs. 25 and 26) to take care of the fact that this is actually an

open system with fluctuations in n. We find, after a short
calculation,

a=c(a +
fA I Pn (2n+1)fi

n

=J .(c/c, )f2/(f1 +f2)e-fif2/2(f1 +f2)

A similar calculation ofJm gives the same correction factor in
'y. The correction is probably oforder 1% or less. The treatment
in Eqs. 24-27 corresponds to using only the term n = ji in the
sums over n encountered in this subsection.

TREADMILIlNG BETWEEN BARRIERS
AGAINST A RESISTING FORCE

Here we consider the more general and interesting bioener-
getics of the treadmilling polymer in Fig. 1 on which there is

(2

A n
T

I3
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an appendage C that moves with the subunits against a resisting
force Fr, There has been much .interest in possible ways that
treadmilling NTPase activity might be put to some use (5). The
scheme in Fig. 1, with Fr included, allows the transfer of some
(or all, in a limiting case) NTPase free energy of hydrolysis into
the mechanical work of moving C against Fr. For example, C
might be a vesicle or chromosome that is transported by a mi-
crotubule and Fr its viscous drag [although Fr in this case would
be very small, -10-8 dyne (1 dyne = 0.01 mN) for a particle
the size of a chromosome (12, 13)]. The position of C, specified
by the fraction 6 in Fig. 1, does not appear in the final results
(see below). C could also represent a composite of a number of
attachments.
Our primary interest here is not in particular applications but

in general principles: we shall consider that Fr can be made
arbitrarily large, even large enough to stop or to reverse the
treadmilling direction.

Ifone subunit is inserted at the + end ofthe polymer in Fig.
1, C moves to the left essentially a distance 01o against the force
Fr. From this and similar considerations for other possible cases,
we must now generalize Eqs. 22 to read

orOf~ej ~ 0 fi1-1 0(1-f'l)al = aloe ar- =a a1 r

o6 -f~rQ2af 0
a 1-f~r ffl-1)a2 = a2e r, a-2 = a.2E r [31]

p = p~fr'(1-'ef p1 = p0° 8~f-1.(1-e)(fr-1)
2 = Po fr(1e)fi2, 2 2

where r el.r/kT Here r 2 1 and E < 1. The value of r is as-
signed in advance, along with c. e and 6 occur in Eqs. 31 only
in the combination Er9@. The value of Er-@ is that which satisfies
the steady-state Eq. 20 when Eqs. 31 are substituted there. If
this value of Er-' is used, Eqs. 31 at steady state no longer de-
pend explicitly on E and. 6.

The six steady-state cycles (14) that have to be considered are
indicated in Fig. 2, along with the thermodynamic force in each
case. The relations between these forces and rate constants are
(using Eqs. 23):

(A) ala2/ala-2 = exTkT, (B) 1}3132/fL11-2 = eXT/kT
(C) a1P82/a-1fL02 = eXT/kTr-1, (D) a2pl/a-2P.l = eXT/kTr [32]

(E) al,3l/a~all = r1, (F) aj2P2/a2PJ2 = r-'
Cycles A and B hydrolyze NTP, cycles C and D hydrolyze NTP
and move C, whereas cycles E and F only move C.
The fluxes can be found from (4)

IT = (ac - aj) + (Pc - f3-1) [33]
Jm = (a, + a-2)c-(a-, + a2).

Polymer
I I A

XT I

B I I
s XT

C EIZIIIZJ C

D I I D
XT + IOFr

- loFr a

P""F~lEZZZZ F
- I0Fr

FIG. 2. The fluxesJT and Jlm in Eqs. 34 can be decomposed into the
six cycle fluxes given in Eqs. 35. These cycle fluxes are indicated
graphically (compare rate constants in Eqs..35 with those in Fig. 1).
A rectangle represents the polymer of Fig. 1. Under each rectangle is
the thermodynamic force associated with the indicated cycle (Eqs. 32).

On substituting Eq. 20 and using Eqs. 32, we find

JT JA +IB +IC + JD, E JCJ JD + JE + JF, [34]

where the subscripts identify the cycle (Fig. 2) and

1A= ala2(1 e-XTIkT)/D, lB = BI32(1 - e-XT/kT)/D

IC = al,2(l - exTkTr)/D, ID = a2,81(1 - e-XT/kTr-')/D

JE = alP(1 -r)ID, IF = a2j32(1- r)/D [35]

D = a, + ,(1 + a-2 + 1P-2-

The terms in e-Xr/kT are generally negligible as are the rate con-
stants that have negative subscripts.
The efficiency offree energy transduction and the rate offree

energy dissipation are

[36]7 = JmIJr/ITXT

T(dAS/dt) = JTXT - JmloFr [37]

= (A + JB)XT + JC(XT l0Fr) + ID(XT + lOFr)

+ (JE + JF)(llFr). [381

The latter expression is in terms ofcycle fluxes and forces. Eqs.
36 and 37 have the same form as in the theory of muscle con-
traction (14), as might be expected, with JmlO equivalent to the
velocity ofcontraction and Fr equivalent to the load being lifted.
T(diS/dt) can also be expressed in terms of the four transition
fluxes (Fig. 1) and gross free energy levels (4, 14), but we omit
this.

Incidentally, it is possible in principle to have treadmilling
in a polymer without NTPase activity. For example, if we put
a2, a2, (32, and 18-2 equal to zero above, cycle E still remains.
The force (pulling, now, rather than resisting) in this cycle (Fig.
2) is -l Fr and Im = JE (negative): the force Fr induces tread-
milling in the reverse direction from that in Fig. 1. There is no
free energy transduction.

Tight Coupling. Because r 2 1, the only positive term in Jm
is Jc. In JT, only the fluxJc moves C against Fr and hence con-
tributes to free energy transduction. Thus, all cycles are com-
pletely wasteful (reduce 77) except cycle C. Consider now the
hypothetical case in which (3'1, 83- 1, a2, and a 2are all zero (see
Fig. 1). Thus only cycle C remains. There is tight coupling be-
tween NTPase activity and the movement of C: IT = Im = Jc
The efficiency becomes 77 = l0Fr/XT. IfFr is increased until l0Fr
approaches XT, 71-- 1. In this limit, the free energy transduc-
tion from NTP to C is complete. When l0Fr = XT, the system
is at equilibrium: both the cycle C thermodynamic force,
XT - loFr, and the flux, Jc, are zero. If loFr > XT, the tread-
milling direction reverses and NTP is synthesized (Jc < 0).

Special Case. We consider again the important special case
introduced above, but we now include Fr. Cycles E and F drop
out; cycles A-D all become one-way cycles. From Eqs. 20 and
31, the steady-state F and -n are given.by

(f, + f2)'lln(c/c') = -10F/kT = yni [39]

where

c' = (a' + B2'r-f2)rO(f1+f2)/(ao + 8o'rf). [40]

Note that, for given c and r, F and ni depend on 6 (i.e., on the
location ofC along the polymer); in fact, -F = constant - 6Fr.

Cell Biology: Hill and Kirschner
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Using this F (Eq. 39), we then find for the steady-state fluxes

JT = (ao + 3or-f2) [c(a° + Pl3rf')/(aO + por-f2)]f2l(fW+f2) [41]

m = (a?2°r f2 - af131rfi) [c(a' + 80rfi)1(aO
+ p0r-f2)]f2/(f1+f2)/(aO + 3°r0fi). [42]

J1 and Jm do not depend on (see the discussion of Eqs. 31).
Jm is zero when

r= r0--(alf32Ja°/ )l0(f +f2) [43]

A plot of ln r againstJm is essentially the "force-velocity curve"
(14) for this system.

In the tight-coupling special case (13,l = a? = 0),

JT = Jm = PB2(c/c,,)fi2(fi1+f2)r-f1fr2/(fi1+f2), [44]

where c. = 132/a?.
We conclude with a numerical example that illustrates Eqs.

39-43. We take, for a microtubule, f1 = f2 = 1/2, c = 5.25 ,uM,
and

a° = 7 ,uM-1 s-, ao = 7 s1, [45]

010 = 1 ,UM-1-S-1, IP2= 7 s-1.
Then,

cx - 1.75 ,uM, Jo = 14 s-1 [46]

Jo = 5.25 s-1, c/cX 3, ro-= 7.

For the fluxes at c,

r =1, Fr = 0:JT= 24.2 s', Jm= 9.1 s1, [47]

r=ro=7:JT=22.1s-1, Jm=°.

At r = 1, both fluxes are increased over the cr,. values (Eq. 46)
by a factor of \/3 (Eqs. 25 and 26). A plot (not shown) of
ln r = 10FrkT against Jm (Eq. 42) between the two points in

Eq. 47 is very close to linear [unlike the force-velocity curve
in muscle (14)]. The value of Fr ("isometric force," Eq. 43) at
whichJm = 0 is 1.3 x 10-6 dyne (25TC), compared with lo-'
dyne for the drag of a chromosome (12, 13). The maximum
treadmilling velocity (i.e., at F. = 0) in this example is 9.1 x
6.15 = 56A-s- compared with 20 Aims-1 for Vmax in muscle
contraction and 170 Ais-1 (or 1 tum-min-') for a chromosome
in anaphase. The efficiency Iq (Eq. 36) is zero at Fr = 0 and at
Im = 0. In between, 'q has a maximum ofonly 0.81% (using XT/
kT = 23.0) at r = 2.67: most of the GTP hydrolysis is wasted.
At this r, J1JT = 0.19 and VoFATX = 0.043. The low efficiency
is implicit in this example at the outset because ofthe use ofone-
way (irreversible) cycles and the contributions -ofthe inefficient
cycles A, B, and D. The corresponding efficiency in muscle
contraction is of order 50% (15).

At r = 2.67, c' = 2.14 ,uM for 6 = 1/2 (Eq. 40). Then -IF/
kT = 0.90 (Eq. 39). Also, ii = 18.0 ifwe take -y = 0.05 (Eq. 39).
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