
Multi-population classical HLA type imputation
Supporting Text S1

Alexander Dilthey * 1,2,†, Stephen Leslie3,†, Loukas Moutsianas2, Judong Shen4, Charles
Cox5, Matthew R. Nelson4, Gil McVean1,2

1Department of Statistics, University of Oxford, 1 South Parks Road, Oxford, OX1
3TG, United Kingdom

2Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN,
United Kingdom

3Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road,
Parkville, Victoria 3052 Australia

4Quantitative Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
5Quantitative Sciences, GlaxoSmithKline, Stevenage, UK
†contributed equally
* dilthey@well.ox.ac.uk

1

Before describing the algorithmic details of HLA*IMP:02, we give a high-level overview.

In genotype imputation, a reference panel with high marker density and a statistical model

of population haplotype structure are used to impute missing markers in imputation panels

with lower marker density [1]. The situation we deal with in this paper can be described

as follows: suppose there is a reference panel R, consisting of the genotype data GR of NR

individuals, typed at a (non-empty) set of loci L on the same chromosome. Also, there is

an imputation panel I, consisting of the genotype data GI of NI individuals, typed at a

(non-empty) set of loci L′ (L′ ⊆ L). The algorithm we present here then

1. uses R to construct a model of the haplotype structure of the haplotypes present in

R. We denote this model as M , and it will, like many other models in population

genetics, assign a likelihood to every possible haplotype over the L loci. M belongs

to the class of haplotype graph models (formally described below).

2. treats each individual in I independently, and makes inference on the loci of interest

{L \ L′} by integrating over possible underlying haplotypes. That is, for the i-th

individual in I, we evaluate the conditional probability P((h1, h2) |GI,i,M), where

M is our model of haplotype structure, GI,i the genotype data of the i-th individual

Ii in I and (h1, h2) a pair of haplotypes for Ii at the specified L loci. Each (h1, h2)

implies a genotype at all loci we may want to consider, and we average over these

according to P((h1, h2) |GI,i,M). Note that no information from I is used to build

M .

In the following, we will therefore describe two separate tasks: how to infer a haplotype

graph model M from a set of genotyped individuals and how to use this model to infer

the missing genotypes of an individual with genotype GI,i. Note that, although we use a

haplotype structure model, haplotype inference (phasing) is not our aim in this paper: we

are only interested in the correctness of the resulting genotype imputations. Note also that

we will only make explicit reference to HLA types during later stages – for now, we assume

that a locus may have an arbitrary number of alleles, and do therefore not fundamentally

differentiate between a SNP and a classical HLA locus.

Note that Figures 1, 3 and 2 in this document provide a compressed view of the

algorithm’s most important features.

2

Haplotype graph models and their induced HMMs

We give formal definitions of haplotypes, haplotype graph models and how they relate to

HMMs.

We define haplotypes to be strings of symbols of length T = |L| (therefore T > 0),

where at any given position p ∈ {0 .., (T − 1)} the symbols come from some predefined

set Ap, the model alphabet. In the context of genetics the model alphabet may be, for

example, the set of possible nucleotides (A, C, G and T).

Let the directed connected graph M consist of the directed edges E and the vertices

V , i.e. M = (V,E). If va, vb ∈ V then we define (va, vb) to be the edge in E running from

va to vb, provided such an edge exists, and we say (va, vb) ∈ E. For haplotype graphs, each

vertex v ∈ V has an associated well-defined level function l(v), according to the following

definition. There is exactly one vertex v0 with no incoming edges and l(v0) = 0. This

vertex is called the root vertex. For every (va, vb) ∈ E, we define l(vb) = l(va) + 1. All

vertices with no outgoing edges are called “final vertices”, and in the case of haplotype

graphs all such vertices have the same level, T . Each level can be thought of as a genetic

locus. At each level p there is a set of possible emission symbols, the “model alphabet”Ap.

Each edge (va, vb) at level p (i.e. l(va) = p) has an associated emission symbol from Ap.

There are no two edges with the same emission symbol originating from the same vertex.

Each edge has an associated transition probability, and the transition probabilities of all

edges emanating from a non-final vertex add up to 1.

Haplotype graphs probabilistically generate strings of the same length (haplotypes).

We give a description of the algorithm that produces haplotypes from a haplotype graph

model. Begin at vertex v0. If at vertex va, select one outgoing edge e = (va, vb) according

to the probabilities attached to the edges emanating from va. Emit the symbol attached

to e. Move to the “target vertex” vb. Continue this procedure at vb until vb is a final vertex

with no outgoing edges. This may be thought of as defining a path through the graph,

i.e. a connected sequence of vertices from v0 to a final vertex at level T . Note that all

so-generated haplotypes have the same length.

Browning and Browning [2] note that haplotype graph models as described above are

Hidden Markov Models (HMMs). Each edge corresponds to a state, and the transition

3

probabilities between any two edges (va, vb) and (vc, vd) are 0 unless vc = vb. If vc = vb

then the transition probabilities are defined by the edge probability distribution at vb. In

a basic model, for a given state the emitted symbol (e.g. nucleotide) is just the symbol

associated with the corresponding edge.

The induced HMM so-described provides a haploid model for genetic data. The gen-

eralization for diploid data, based on two connected haploid HMMs and their combined

emission probabilities follows immediately, as described by Browning and Browning [2].

Informally, if the haploid model has n states mapping to level p in the haplotype graph,

the diploid model has n2 states at the same level, mapped to the set of ordered pairs

(k, r) (k ∈ {1..n}, r ∈ {1..n}). To be explicit, state (k, r) refers to the first of the two

connected haploid models being in state k, and the other one being in state r. In a ba-

sic emission probability distribution, (k, r) emits the unordered 2-tuple (genotype) of the

emission symbols associated with the haploid states k and r, and more complex emission

probability distributions follow from combining the respective haploid emission probability

distributions. The transition probability of (k, r) at level p to (k′, r′) at level p+ 1 is equal

to the product of the haploid transition probabilities from k to k′ and r to r′.

Note that at this point we can sample diploid (i.e., sequences g of T ordered geno-

types) and haploid (i.e., haplotypes h) data from the graph-equivalent HMMs: P(h |M →

HMM1) and P(g |M → HMM2) are both well-defined (M → HMM1 denotes the M -

equivalent haploid HMM, and M → HMM2 denotes the M -equivalent diploid HMM). If

we have observed haploid data h, we can use standard statistical techniques [3] to sample

a haplotype h′ (formed from concatenating the emission symbols of the edges associated

with the traversed states) from P(h′ |h,M → HMM1). Both h and h′ are haplotypes of

length T , so that this expression does not seem to be very useful. Now, suppose that h

was actually only typed at the loci specified by L′, and that all other loci carry a “missing

data” symbol EM . If we now modify the emission probability structure of M → HMM1

accordingly, for example by assigning each state the same probability to emit EM (we

say that this is an “agnostic” way to deal with missing data), we can use samples from

P(h′ |h,M → HMM1) to estimate symbols for the positions carrying an EM in h. This

property immediately translates to M → HMM2, the M -equivalent diploid HMM. That

4

is, conditional on some genotype data g for an individual, with some of the positions po-

tentially being missing data, we can sample from P((h1, h2) | g,M → HMM2) ((h1, h2) is

a pair of two haplotypes, formed from concatenating the emission symbols of the pairs of

edges associated with the traversed states). If desired, by marginalizing over the respective

elements in (h1, h2), it is now possible to independently estimate the underlying genotype

of any of the loci in L loci conditional on M and g, including of course the loci L \ L′.

We have now described a (well-known, see [2]) solution to the second task: inference

of missing genotypes for an additional individual, conditional on some observed geno-

type data and a haplotype graph M . By specifying the emission probability structure

of M → HMM1 in a way that allows for emitting other symbols than EM or the state’s

underlying emission symbol, we introduce a mutation- or error-like effect (like [4]). For

all following applications, we define a graph sampling error parameter mS for the emis-

sion probability structure of haplotype graph-induced HMMs: conditional on not emitting

EM , the state’s underlying emission symbol (coming from the associated edge in M) is

emitted with probability 1−mS . With probability mS , one of the other members of the

locus-specific model alphabet is uniformly selected and emitted.

Constructing a haplotype graph

We now describe our algorithm to construct a haplotype graph model M from a set R of

individuals genotyped at T loci.

Note that the following description is conceptual – when actually implementing the

algorithm, we employ a couple of heuristics to reduce the computational effort (see Section

“Computational efficiency” for details).

Following [2], we employ an iterative strategy, with Zstop (the number of iterations)

usually set to 12:

1. Define a set H of temporary haplotypes and populate H with a number of samples

for each individual i in R. The samples are generated by drawing NS times from

a uniform probability distribution over all pairs of haplotypes which are compatible

(ignoring read error or mutation) with an individual’s genotypes GR,i, and each

haplotype pair is broken up into two separate haplotypes before insertion into H.

5

Missing data in the genotypes is carried over to the haplotypes. Set Z := 1.

2. Construct a haplotype graph model M based on H, as described below.

3. SetH = {}. For each reference individual i, drawNS samples from P((h1, h2) |GR,i,M →

HMM2), and add h1 and h2 to H.

4. Invert each haplotype in H.

5. Set Z := Z + 1, terminate if Z > Zstop. Otherwise, go to step 2.

Our haplotype graph construction algorithm is a probabilistic generalization of the

works of Browning and Browning [2], which allows for uncertainty and missing data in the

set of estimated haplotypes H and a tailoring of the graph according to prior knowledge on

regional LD structure (“localization”). The aim is to infer an accurate and computationally

convenient haplotype graph model from the set of haplotypes H.

Suppose for a given number of levels T (corresponding to the lengths of the haplotypes

in the set H) we have the most general possible haplotype graph topology, i.e. a tree for

which every possible emission symbol has an edge at every vertex in the graph. Note

that at this stage there are no probabilities assigned. Each h ∈ H with no missing data

corresponds to a unique path through the graph topology, and we say that h is attached

to all vertices that the path passes through. However, we want to allow for missing data

in H, and we also want to take into account the possibility that an error process may have

modified the elements in H prior to observation. In the context of genetics, it is easy to

see why this makes sense. For example, a SNP genotyping error may lead to a haplotype

being present in H which does really not exist in the population.

We define a simple error process for the elements in H. We assume that this error

process acts independently on each character position and that, if an error occurs (with

probability mB), a new observed value is drawn from a uniform distribution over possible

alternative alleles at the affected position (this could, if desired, be easily generalized to

more complex error models). If we observe string h1 of length T , the likelihood that string

6

h2 is the true underlying string is

∏
p=0 .. T−1

[
Ih1(p)==h2(p) × (1−mB) + (1− Ih1(p)==h2(p))×

mB

|Ap| − 1

]
,

where we define Ih1(p)==h2(p) to be 1 if the p-th symbol of h1 is equal to the p-th symbol

of h2 and 0 otherwise. For simplicity, although mB may capture other effects than error,

we refer to mB as the graph building error probability. |Ap| is the number of available

symbols at haplotype position p (the size of the model alphabet at p).

If we observe missing data, we want to treat it in an agnostic way, i.e. assume equal

probabilities for each symbol in the model alphabet at the corresponding position.

We now probabilistically attach the haplotypes in H to the most general possible

haplotype graph topology for T levels (in our implementation, we actually prune the tree

as we move along the haplotypes – see Section “Computational efficiency” for details). For

each vertex, we introduce a list of probability-weighted potentially attached haplotypes.

At each level of the graph, the sum of attachment probabilities has to be 1 for each

haplotype. All haplotypes are attached to the root vertex with probability 1 by defining

the attachment probability PH(v0, h) := 1 for all h ∈ H; they are then distributed along

the graph according to our error model. That is, if haplotype h is attached to va at level

l(va) with probability y, and if the next observed haplotype symbol is s 6= EM , we have

the following attachment probabilities for the children vb of va at level l(va)+1: if the edge

(va, vb) carries the attached symbol s, the attachment probability of h at vb is y×(1−mB),

i.e. we define PH(vb, h) := PH(va, h) × (1 −mB). Otherwise, the attachment probability

is y × mB
|Al(va)|−1 , and we define PH(vb, h) := PH(va, h)× mB

|Al(va)|−1 . If s = EM , we attach h

in an agnostic manner, i.e. we define PH(vb, h) := PH(va, h)× 1
|Al(va)|

.

For notational convenience, let attached(v) denote the set of haplotypes attached to v

with attachment probability PH(v, h) > 0. To examine the structure of the graph topology

with attached haplotypes, for each vertex v, we define a function count(v, x). If x is the

empty string ′′, count(v, x) returns the expected number of haplotypes in H attached to

v:

7

count(v,′′) =
∑

h∈attached(v)

PH(v, h)

If x is a string of length ≥ 1, count(v, x) returns the expected number of haplotypes

that continue with a specified suffix x of length len(x) ≥ 1 to the right-hand side of v. x

can be a partial or complete suffix, i.e. of length 1..[T − l(v)]:

count(v, x) =
∑

h∈attached(v)

(
PH(v, h)×

∏
p=[l(v)]..[l(v)+len(x)−1]

[
Ih(p)==x(p) × (1−mB)+

(1− Ih(p)==x(p))×
mB

Ap − 1

])
We complete the definition of a haplotype graph by specifying edge transition probab-

ilities. Define P(e|v) as the probability to follow edge e conditional on being at vertex v,

and let s denote the symbol that is attached to e. Then we set

P(e|v) := count(v, s)/count(v,′′) ,

Figure 1 in this document illustrates the effect of the described algorithm: instead of

taking one specified path through the graph topology, a haplotype’s probability “flows”

through the graph.

However, we observe i) that the resulting haplotype graph exhibits a considerable

topological complexity, if built from a reasonably sized set H, possibly leading to compu-

tational difficulties in later stages and ii) that the topology of the graph is still the most

general one. If we assume that H was actually sampled from a haplotype graph, and if

we want to recover the original graph’s underlying structure, we have to take into account

the possibility that the original graph’s structure may have been simpler, i.e. that one

vertex in the original graph corresponds to more than one vertex on the same level in the

current graph. Introducing a criterion of similarity that is based on comparing vertices’

conditional suffix distributions addresses both points. Informally speaking, vertices with

very similar suffix output distributions can be merged into one vertex to reduce computa-

8

Figure 1: A: a non-probabilistic haplotype graph construction algorithm. Each haplotype
in the set H follows one defined path (orange) through the graph’s possible topology (or-
ange and gray branches), here depicted for H1 = AAA. Each node (red squares) carries a
list of attached haplotypes. B: the probabilistic haplotype graph construction algorithm
presented in this chapter. Each haplotype in the set H induces a probability distribu-
tion over possible paths through the graph, here pictured as orange lines. The width of
the lines indicates how probable a path is according to the path probability distribution
(not drawn to scale). At each node, the path follows the edge carrying the haplotype’s
next symbol with probability 1 − mB, and the remaining probability mass is split over
the remaining available edges. Each node carries a list of attached haplotypes with the
respective attachment probability. The figure is based on a path distribution for “AAA”,
with the graph-building error probability mB set to 0.1.

tional demands without substantially changing the model’s haplotype frequencies. Also, if

two vertices were actually identical or not distinguishable in an original haplotype graph

model, we would expect their suffix output distributions to be similar (see [5] for a formal

treatment).

We formalize the notion of similar suffix distributions following Ron et al. [5] and

Browning and Browning [2] by defining the function similar(va, vb) as the maximum

difference between the two conditional suffix probability distributions of va and vb:

similar(va, vb) := max
x∈Sva,vb

|PSuffix(va, x)− PSuffix(vb, x)| ,

where we define

PSuffix(v, x) := count(v, x)/count(v,′′) .

Sva,vb is defined as the set of possible suffixes originating from va or vb (partial or

complete). In order to accommodate the complex haplotype structure of the MHC, we

9

include the edge label leading to a node as the first character of all suffixes.

We apply similar to all pairs of vertices (va, vb) at all levels to identify pairs of vertices

that can be merged. If similar(va, vb) < ε, two vertices are merged. We follow Browning

and Browning [2] in using a variance-based threshold:

ε := D ×
√
NS/2× (count(va,

′′)−1 + count(vb,
′′)−1)1/2 ,

where D is a scale parameter (usually 0.8 here, determined by initial experiments) and

NS is the number of haplotype pair samples from each individual.

To merge va and vb,

1. create a new vertex vc at the same level as va and vb

2. redirect all incoming edges of va and vb to vc, and for all h ∈ {attached(vb) ∪

attached(va)}, set PH(vc, h) := PH(vb, h) + PH(va, h)

3. attach all outgoing edges of vb and va to vc, and delete vb and va.

4. note that step 2 will result in a structure violating the haplotype graph assumptions,

as it will result in two edges (vc, vd) , (vc, vd′) with the same attached symbol. Merge

vd and vd′ as described for all such cases (i.e. recursively from step 1, if necessary),

and delete one of the two resulting edges leading to the new node replacing d and

d′.

5. finally, update P(e|v) for all modified vertices and compute the similar function for

vc and all other vertices on the same level.

Figure 2 in this document illustrates the process of merging nodes. For notational

convenience, we have assumed a fixed graph building error probability mB here for all

loci, but it is easy to see that this is not necessary.

Finally, we describe how to localize the graph construction process. Localization aims

at incorporating prior knowledge on patterns of long-range LD into the graph-building

process. Consider the following example to see why localization can be sensible. Suppose

that two haplotypes from H are attached to va: ’00A’ and ’11A’ (the allele identifiers

are arbitrary). Suppose further that a node vb on the same level has also two attached

10

Figure 2: The essential steps of merging nodes in the probabilistic framework described
here. A: two haplotypes (AAA and ATA) have been attached to the topology shown in
Figure 1 in this document (the graph’s first level is not shown) with mB = 0.1. The
conditional suffix distributions of two nodes (pictured as blue squares) are identical and
the nodes will be merged. B: all outgoing edges from the two nodes have been attached
to one newly created joint node (blue square). The resulting structure is no haplotype
graph, because two edges emanating from the new node carry the same symbols as two
other edges emanating from the same node. C: The nodes that the conflicting edges lead
two are recursively merged, resulting in a haplotype graph structure.

haplotypes, ’00B’ and ’11B’. If we compare the conditional suffix distributions, we find no

difference for suffixes of length up to 2. For suffixes of length 3 and a small mB, we find

that the maximum difference is just below 0.5 (because none of the 3-character suffixes

present in one vertex is present in the other one). Depending on our choice of ε, we may

decide to merge the two vertices. The problem here is that the vertices actually exhibit

quite different patterns of LD to the third position – the maximum conditional probability

difference is almost 1. The localization element extends the function similar to take into

account such situations for a set SL of levels of predefined loci and could therefore prevent

merging the two vertices.

Define the indicator function Ih(p)==s to be 1 if haplotype h carries allele s at position

p, and 0 otherwise. We define

PLOCALIZE(v, s, p) :=∑
h∈attached(v) PH(v,h)×(Ih(p)==s×(1−mB)+(1−Ih(p)==s)× mB

|Ap|−1
)

count(v,′′) .

We note that this conditional probability integrates over the uncertainty in the inter-

mediate SNP genotypes and redefine the similar function to include all loci specified in

SL:

11

similar(va, vb) := max {

maxx∈Sva,vb
|P(va, x)− P(vb, x)|,

max{p∈SL,s∈Ap} |PLOCALIZE(va, s, p)− PLOCALIZE(vb, s, p)|

} .

Figure 3 in this document illustrates the localization feature.

Figure 3: Localization at the example of an HLA locus. When comparing the conditional
HLA allele probabilities for two nodes (blue squares) for a particular HLA-A allele (marked
with an orange circle in the graph), the probabilities of all paths leading to this allele are
added up (separately for each node). Note that the two blue paths for the lower node
would count as two distinct suffixes without localization.

Computational efficiency

The algorithm we have described to build localized haplotype graphs from an uncertain set

of haplotypes requires substantial computational resources: to calculate the conditional

suffix distributions for each vertex, it is necessary to sum over all attached haplotypes with

attachment probability > 0. Haplotype attachment distributions of single haplotypes are

12

typically (depending on the uncertainty model and the number of alleles at the involved

loci) very skewed: a few vertices at any level usually account for most of the available

probability. Therefore, a threshold t is introduced: if PH(v, h) < t, PH(v, h) is set to 0 and

the removed probability mass is spread proportionally over all vertices with PH(v, h) ≥ t.

Also, when computing similar(va, vb) for two vertices, only such x ∈ Sva,vb that are

present in at least one of the haplotypes attached to va or vb are evaluated – suffixes x

merely induced by error processes on both vertices will carry smaller probabilities than

the original strings and therefore lead to a smaller absolute difference in probability.

HLA type inference

HLA loci are treated as multi-allelic SNPs, i.e. the observed HLA types are part of the hap-

lotype strings H and appear as edges in the haplotype graph. SNP- and HLA-genotyped

individuals can be used as input for the “iterative refinement” algorithm, without prior

phasing. Only individuals with at least one genotyped 4-digit HLA allele are used for

constructing the haplotype graph model, and 4- and 2-digit alleles are treated in the same

way, i.e. as unrelated, separate entities (4-digit resolution specifies the primary structure

of the classical HLA proteins, whereas 2-digit resolution refers to more general serological

properties of the alleles).

To account for the long-range LD structure of the MHC region, the graph building

algorithm is localized for all classical HLA loci but B and DRB1 (see below). Usually, we

set mB = mS .

Note that the results from step 3 of the model building algorithm can be used to quant-

itatively assess whether a lab-based HLA typing result in the reference dataset is consistent

with the graph or not; the posterior probabilities follow from summing over the haplo-

type samples. To minimize the impact of mis-typed HLA alleles in the reference panel,

after a specific number of graph-building and sampling iterations (usually 8), the number

of sampled haplotypes for a specific individual is weighted by the internally estimated

probability that the individual’s lab-based HLA type is consistent with the graph.

We build locus-specific HLA haplotype graphs for windows of a specified size each side

of the locus; 300 SNPs each side have been found to give good results. HLA type inference

13

is carried out by sampling haplotype pairs from the diploid HMM, conditional on the

observed genotypes GI,i for each individual i in the inference dataset and the haplotype

graph: P((h1, h2) |GI,i,M → HMM2). This leads to posterior distributions over possible

pairs of HLA types that can be processed in an uncertainty-aware way or thresholded. To

call alleles, we first determine the most likely single allele for each individual and then the

most likely second allele, conditional on that individual carrying the first allele. We use

the marginal probability to observe the first allele (i.e. summed over all samples from the

haplotype pair distribution) as quality score (“allele-specific posterior probability”) for the

first allele and the joint probability for the first and the second allele as quality score for

the second allele.

Properties of the presented model and parameter inference

We have presented a generalized haplotype graph construction algorithm, related to the

BEAGLE algorithm [2] and earlier work in computational linguistics [5], which probabil-

istically attaches haplotypes to vertices while building the graph. We have introduced two

additional parameters: a graph building error parameter mB and the set of localization

loci SL that can be used to adapt graph construction to complex patterns of LD. Our

algorithm also allows for missing data.

We briefly discuss some properties of the generalized model:

• The error model we have introduced leads to a relative decline of the importance

of long-range haplotype differences in terms of collapsing vertices: |PSuffix(v1, x) −

PSuffix(v2, x)| is decreased for x with large differences. This depends on d, the scaling

parameter in the collapsing criterion, and mB, the error probability.

• We expect the generalized model to be potentially useful in other applications than

the one considered here. For example, if a haplotype graph is to be constructed for

a set of experimentally determined haplotypes (from single chromosome sequencing,

say), the uncertainty model for the graph-building step we have introduced can be

used to model read errors.

• The described algorithm can deal with missing data in the set of haplotypes in a

14

straightforward way by defining a probability distribution on missing characters,

e.g. a uniform distribution. This property allows us not having to guess genotypes

for the first iteration of graph-building. Although the algorithm as described here

imputes missing genotypes in the reference panel during the first sampling process,

the missing data status could as well be preserved in the sampled haplotypes and

could be carried over to later stages. As the reference panels we are dealing with are

consistently typed on dense sets of markers, we have decided against this possibility

here. However, under other circumstances, for example when SNP coverage in the

reference panel varies strongly, not imputing missing SNP data may turn out to be

beneficial [6].

• Treating HLA alleles as multiallelic SNPs leads to a couple of useful properties in

learning and inference settings. The graph itself can reflect patterns of long-range

linkage disequilibrium between HLA alleles – HLA and SNP genotypes are used to

infer the graph structure in a combined manner, and there is no requirement that all

individuals be typed at the same set of HLA loci. Consider, for example, an inference

dataset with HLA-DRB1 -typed individuals, but lacking information for HLA-DQB1.

Providing the DRB1 genotypes as well as the SNP genotypes enables the model to

use partial HLA type information in inferring missing bits of the complete HLA type

(depending on the particular structure of the graph used for inference, of course).

Choosing optimal parameters for building haplotype graphs and for inference is an

important direction for further research. For the experiments presented in the main text,

we have used: mB = mS = 0.002, t = 0.001, NS = 50, D = 0.8 .

Although standard statistical techniques like Maximum Likelihood and Markov Chain

Monte Carlo could be applied in theory, the computational costs to do so seem prohib-

itive at the moment. In the context of this paper, our main purpose is statistical HLA

type imputation, and we measure the fit of model and parameterization by the validation

experiments presented in the main text. In order to justify the introduction of additional

parameters, we have repeated some of the experiments presented in Leslie et al. [7] and

Dilthey et al. [8]. We have used CEU HapMap data as a reference panel, constructed

haplotype graphs and imputed HLA types into a subset of the BC58 (all data exactly as

15

described in our earlier papers). The results are summarized in Table S1. The column

“HLA*IMP:02” refers to the full model (with parameters adapted to accommodate the

much reduced panel size). In column I, the error probabilities for sampling from the graph

and for building the graph are set to 0 (all other parameters equal to the full model). In

column II, the error probability for building the graph is set to 0, and in column III, the

error probability for sampling from the graph is set to 0. We find that the full model

outperforms each of the reduced versions. In column IV, we have deactivated HLA local-

ization. Interestingly, the full model only yields better results at A and DQB1, whereas

the results at B and DRB1 are worse. This may relate to classical typing problems, po-

tentially associated with hypervariability (B) and nearby structural variation (DRB1),

or it may indicate that localization does not improve imputation accuracy. Until further

investigation, we deactivate localization for B and DRB1.

References

1. Marchini J, Howie B (2010) Genotype imputation for genome-wide association stud-

ies. Nat Rev Genet 11: 499-511.

2. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and

missing-data inference for whole-genome association studies by use of localized hap-

lotype clustering. Am J Hum Genet 81: 1084-97.

3. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the Ieee 77: 257-286.

4. Browning BL, Yu Z (2009) Simultaneous genotype calling and haplotype phasing

improves genotype accuracy and reduces false-positive associations for genome-wide

association studies. Am J Hum Genet 85: 847-61.

5. Ron D, Singer Y, Tishby N (1998) On the learnability and usage of acyclic probab-

ilistic finite automata. Journal of Computer and System Sciences 56: 133-152.

6. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputa-

16

tion method for the next generation of genome-wide association studies. PLoS Genet

5: e1000529.

7. Leslie S, Donnelly P, McVean G (2008) A statistical method for predicting classical

HLA alleles from SNP data. Am J Hum Genet 82: 48-56.

8. Dilthey AT, Moutsianas L, Leslie S, McVean G (2011) HLA*IMP – an integrated

framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics

27: 968-72.

17

