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Site-directed mutagenesis has been performed in the human transforming growth factor o gene. When
tyrosine 38 is mutated into phenylalanine or tryptophane, biological activity is retained. In contrast, other
alterations between cysteine 34 and cysteine 43 and disruption of disulfide bonds 8 to 21 and 34 to 43 resulted
in loss of activities. The presence of an aromatic side chain at position 38 of transforming growth factor « seems

to be essential for its activity.

Transforming growth factor a (TGF-a) is a 50-amino-acid
polypeptide. First isolated from a retrovirus-transformed
mouse cell line (10), it has subsequently been found in
human tumor cells (11, 31), in early rat embryo cells (19), in
cell cultures from the bovine pituitary gland (25), and normal
keratinocytes from human adults (8). Although the function
of TGF-a is not yet clear, roles for TGF-a have been
proposed in transformation (1, 33, 24), wound healing (29),
bone resorption (15), angiogenesis (28), and cell migration
(2). TGF-a is related to epidermal growth factor (EGF) both
structurally and functionally (1, 20, 21). Little is known
about the amino acids involved in their binding to the
receptor. We have previously described (18) mutations car-
ried out at residues Asp-47 and Leu-48 and shown that
Leu-48 is critical for the function of TGF-a. Here we
describe mutations performed in other parts of the molecule.

Mutations performed on TGF-a. We performed mutagen-
esis as shown in Fig. 1. The most mutations were performed
on amino acids located between cysteines 34 and 43 that
were conserved in the EGF-like family of peptides. Conser-
vation of these residues suggests that they are important
either structurally or functionally. Tyr-38, Gly-40, and Arg-
42 are conserved among all EGF-like peptides (4, 7, 12, 14,
20, 27, 30, 32). The fact that three conserved amino acids are
located close to each other is striking; the only other amino
acids conserved among all EGF-like peptides (apart from the
six cysteines) are Gly-19 and Leu-48. The crucial importance
of Leu-48 for the activity of TGF-a has been described (18).

We focused our attention on Tyr-38, which is a large polar
amino acid and well conserved. Tyr-38 was mutated into Ala
(small, nonpolar), Ser and Thr (small, with a hydroxyl
group), His (large, with an imidazole ring), and Trp and Phe
(aromatic amino acids like Tyr) (Fig. 1). Of special interest is
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the mutation of Tyr-38 into Phe, because Phe differs from
Tyr only in the lack of a hydroxyl group on the aromatic ring.
Detection and biological activity of yeast-secreted proteins of
mutant TGF-a. The mutations shown in Fig. 1 were per-
formed by site-directed mutagenesis of a human TGF-a
coding sequence cloned in M13mp18 (12). The sequence of
the mutated gene has been determined (26) along the entire
sequence of TGF-a for each mutant. The mutated sequences
were inserted into the yeast shuttle vector pyTE1 (18) and
expressed in Saccharomyces cerevisiae 20B-12 (MATa trpl
pep4-3) (16). Selected clones were grown to saturation, and
the yeast media were dialyzed thoroughly against 1 M acetic
acid in 3,000-molecular-weight cutoff dialysis tubing. The
presence of mutant TGF-a proteins was verified by radioim-
munoassay in nondenaturing conditions by using a poly-
clonal antibody (34D) raised against the recombinant human
TGF-a molecule (6). Biological activity of the mutant pro-
teins was also tested in radioreceptor and colony formation
assays (1). All of the tested mutant TGF-a proteins were
detected by the radioimmunoassay, proving that they were
all expressed and secreted into the yeast media. The
amounts of mutant TGF-a proteins detected varied between
50 and 500 ng/ml. The dialyzed yeast media were lyophilized
and concentrated 20 or 100 times, and radioreceptor and
colony-forming abilities were measured on these concen-
trated media. The only active mutants were two mutants in
position 38: [Trp-38]-TGF-a and [Phe-38]-TGF-a.
Mutations of TYR-38 not equally tolerated for biological
activity. Mutants of Tyr-38 were further purified as described
previously (18). The elution profiles on a Biogel P30 column
for the mutant TGF-a proteins were identical to that shown
for wild-type TGF-a in a previous paper (18). The wild-type
and mutant TGF-a activities were always found between the
two peaks of A,gy, in an area were few proteins were
present. The maximum activities in both radioreceptor and
soft-agar assays were found in the same fraction, called the
peak fraction. The activities were expressed in terms of EGF
equivalence as reported previously (18). The peak fractions
were also tested in thymidine incorporation assays and in
radioimmungpassays (with the Biotope polyclonal antibody in
denaturing condijtions). All of the partially purified mutant
TGF-a proteins were recognized, under denaturing condi-
tions, by this polyclonal antibody, which was raised against
the native TGF-a. Nevertheless, our radioimmunoassay,
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FIG. 1. Mutations in human TGF-a. The amino acids conserved in all of the family of EGF-like growth factors (human and murine EGFs
and TGF-as), as well as the gene products of the vaccinia virus (vaccinia growth factor), the Shope fibroma virus (Shope fibroma growth
factor), and the myxoma virus (myxoma growth factor), are enclosed in bold circles. The mutations of amino acids at positions 8, 21, 34, 38,
42, and 43 are indicated by arrows. The deletions at positions 37, 38, 40, 41, 42, and 44 to 49 are symbolized by A. Symbols: A, Ala; C, Cys;
D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.

which is carried out under conditions for which TGF-a is
partially or fully denatured, does not discriminate between
correctly and improperly folded TGF-a molecules. The
results of the bioassays are summarized in Table 1. As a
general feature, mutants showing very little activity in the
radioreceptor assay (less than 2 ng/ml, EGF equivalence)
exhibit more activity in the soft-agar assay. This discrepancy
has been observed for other TGF-a mutants (18). The
amounts of protein present in the peak fraction of the
biologically active mutants were measured by a Bradford (5)
micromethod assay and were (png/ml) 1.8 for wild-type
TGF-q, 1.5 for [Phe-38}-TGF-a, and 0.5 for [Trp-38]-TGF-a.
Dilution curves of the peak fractions (Fig. 2) were used to
quantitate the biological activities and to check whether
wild-type TGF-a and the active mutant proteins [Phe-38]-

TGF-a and [Trp-38]-TGF-a behave in a similar way. The
slopes of these curves in the three assays performed (binding
competition, Fig. 2A; colony formation, Fig. 2B; and thymi-
dine incorporation, Fig. 2C) were parallel to the ones estab-
lished in the same assay with recombinant TGF-a and with
EGF used as standards. In Table 2, activities of the mutants
were normalized in protein amounts and expressed as per-
centages of those obtained with the wild type. Although
[Trp-38]-TGF-a showed similar relative potencies in all
assays, [Phe-38]-TGF-a showed only 50% activity relative to
wild-type TGF-a in the radioreceptor assay and showed
100% activity relative to wild-type TGF-a in colony forma-
tion and thymidine incorporation assays. The differences
between the relative binding and colony-forming activities
for [Trp-38]-TGF-a suggest that this mutant acts as a super-

TABLE 1. Biological and biochemical activities of partially purified mutant TGF-« proteins

EGF equivalence (ng/ml) in“: T,GF“‘
Insert in yeast Clone e?:g'}lr:lﬁ';;e

expression vector no. Radioreceptor Soft-agar radioimmuno-
assay assay assay
Wild-type TGF-a 27 167 (a) 173 (a) 320
350 (b) 240 (b) 2,400
215 450 (c) 540 (c) 2,000
None 32 0 0 0
[Phe-38]-TGF-«a 36 87 (a)-178 (b) 101 (b) 800
39 41 (a)-73 (b) 60 (b) 300
[Trp-38}-TGF-« 125 50 (b) 128 (b) 600
126 40 (c) 220 (c) 900
[His-38]-TGF-a 42 2 (a) 3.3(b) 320
44 1.4 (a) 1.8 (b) 770
[Thr-38}-TGF-« 1 2.3(b) 4.8 (b) 1,600
3 1(b) 2.1 (b) 2,400
[Ser-38]-TGF-« 7 1.6 (b) 4 (b) 1,400
9 1(b) 2.3 (b) 2,000
[A Tyr-38}-TGF-a 11 0.1 (b) 0 (b) 600
[Ala-38]-TGF-a 27 0.3 (b) 5.6 (b) 860
30 0.4 (b) 5.6 (b) 900
[A Ala-41]-TGF-a 0 0 900
[A Arg-42]-TGF-a 0 0 700
[Ala-42]-TGF-a 0 0 360

% a, b, and c refer to different series of experiments.
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FIG. 2. Biological activities of wild-type TGF-a, [Phe-38]-TGF-
a, and [Trp-38)}-TGF-a. Biological activities of the peak fraction
from the P30 columns were measured and normalized to protein
amounts (4). Dilutions of the peak fractions were used to establish
the curves. Symbols: A, wild-type TGF-«; B, [Phe-38]-TGF-a; O,
[Trp-38]-TGF-a. (A) EGF radioreceptor assay. @, EGF standard
curve. (B) Colony-forming assay. Colonies (62 pm) were counted.
@, EGF standard curve. (C) [*H]thymidine incorporation assay. @,
TGF-a standard curve.

agonist and that the molecular basis of TGF-a binding might
be distinguishable from its transforming activity.
[His-38]-TGF-a seemed to be an interesting mutant to be
compared with wild-type TGF-a because of the nature of the
side chain of His. This mutant has an aromatic imidazole
side chain at position 38. Nevertheless, all its biological
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TABLE 2. Relative bioactivities of partially purified
TGF-a proteins

Bioactivities expressed as % of those of the

Insert in the yeast wild type
expression vector Radioreceptor Colony [*H]thymidine
assay formation incorporation
Wild-type TGF-a 100 100 100
No TGF-a 0 0 0
[Phe-38]-TGF-a 60 60 50
[Trp-38])-TGF-a 50 100 100
[His-38]-TGF-a 1 1 4

activities are low, and [His-38]-TGF-a does not bind to the
receptor. It seems that the nature of the aromatic side chain
at position 38 is critical for the binding of TGF-a to its
receptor.

A few other mutant TGF-a proteins, [AAla-41]-TGF-a,
[AArg-42]-TGF-a, and [Ala-42]-TGF-a, were also partially
purified on a Biogel P30 column. The expression of these
TGF-a mutants was confirmed by radioimmunoassay, and
the peak fraction was defined in this case as the fraction
containing the highest amount of immunoreactive TGF-a.
Despite further purification, none of these mutants which
were inactive in the initial screening (above) displayed
biological activity (Table 1), either in the radioreceptor or in
the colony-forming assay.

We wished to study the relationship between structure and
function of TGF-a by means of site-directed mutagenesis of
TGF-a. Our first results showed the critical role that Leu-48
plays in the function of TGF-a (18). In this paper, we report
that disruption of the disulfide bonds 8 to 21 or 34 to 43, as
well as deletion of six amino acids (positions 44 to 49) at the
carboxyl terminus of TGF-a, leads to the loss of activity
(data not shown). Changes in amino acids located between
Cys-34 and Cys-43 showed that deletion of Gly-37, Gly-40,
Ala-41, and Arg-42 and changing Arg-42 into Ala-42 also
resulted in loss of biological activity.

We focused our attention on Tyr-38, which is highly
conserved among EGF-like peptides. When Tyr-38 is de-
leted or mutated into Ala, Ser, His, and Thr, the mutant
proteins have no activity or insignificant activity. For bio-
logically inactive mutants, we cannot distinguish effects of
mutation on the folding of TGF-a from effects on the
biological activity due to alterations of the side-chain func-
tional groups. Structural physical data such as circular
dichroism or nuclear magnetic resonance would be neces-
sary to distinguish these effects. Interestingly, mutation of
Tyr-38 into Phe or Trp leads to mutants displaying binding
ability. Phe and Trp both have an aromatic side chain,
suggesting that the presence of an aromatic side chain at
residue 38 of TGF-a is essential for the interaction with the
receptor. However, while [Phe-38]-TGF-a is equipotent in
binding, colony-forming, and mitogenic assays, [Trp-38]-
TGF-a is more potent in the colony-forming and mitogenic
assays than in binding. This result suggests that it might be
possible to dissociate binding from signal transduction.

It is interesting to note that, in two homeotic gene prod-
ucts, the Drosophila Notch gene product (17, 34) and the
lin-12 gene product of the nematode Caenorhabditis elegans
(13), as well as in repeat units from the EGF precursor (3),
there are EGF-like sequences where the residue correspond-
ing to Tyr-38 of TGF-a is in most cases a tyrosine or a
phenylalanine. At the DNA level, the preferred codon for
Tyr is TAC and for Phe it is TTC, which allows the mutation
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of Tyr into Phe by only one base substitution. The solution
structures of murine and human EGFs determined by nu-
clear magnetic resonance analysis, show, that Tyr-37 of
EGF (which is the equivalent of Tyr-38 of TGF-a) is exposed
in the molecule, making it a possible candidate for interac-
tion with the receptor (9, 22, 23). Montelione et al. proposed
that Tyr-37 and Leu-47 belong to a cluster of amino acids
present at the surface of the EGF. We have shown previ-
ously that Leu-48 of TGF-a is crucial for the activity of the
molecule.

Our present data show that Tyr-38 can be mutated into
Phe or Trp, both being amino acids with aromatic side
chains. We suggest that Leu-48 and Tyr-38, which are close
to each other in solution and are exposed in the molecule,
are both involved in the function of TGF-a. They may
interact and provide a proper conformation to TGF-a or bind
directly to the receptor.
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