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S.1 Transition and tipping point for different N and 〈k〉

The critical intiator fraction required to trigger cascades in ER networks is found to be independent of the
network size N . However, it increases with the increase in average degree 〈k〉. In Fig. S1 (a) and (b), we
show more results on critical initiator fraction pc similar to what is shown Fig. 2 (a) and (b) (in the main
text) but for a different 〈k〉 and N . We observe a similar qualitative behavior where a transition takes place
when a critical value of p is reached.
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Figure S1: (a) Cascade size S as a function of p for ER networks with N = 5000 and 〈k〉 = 6.0. (b) Scaled
cascade size S̃ for the same set of parameters

S.2 Transition and tipping point for different selection strategies

We also employed the three selection strategies (selecting initiators by their degrees, k-shell scores, and
randomly) as discussed in the main text in the context of cascade windows, to see how it affects the critical
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point. We find that pc is the samllest (transition happens for a smaller p) for the highest degree method(Fig.
S2). This is consistent with our finding that selection by degree works best.
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Figure S2: Three strategies of selecting the initiator nodes (a) S as a function of p (b) Scaled S̃ as a function
of p, for ER networks with 〈k〉 = 6.0. (c) S as a function of p (d) Scaled S̃ as a function of p, for ER networks
with 〈k〉 = 10.0. All results are for φ = 0.4 and network size N = 5000.

S.3 Analytic approximation for cascade size

Gleeson and Cahalane [3] obtained an asymptotic expression for the eventual cascade size S
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where pk = e−〈k〉〈k〉k/k! is the degree distribution of ER networks, and q∞ is the fixed point of the following
recursion relation (for n = 0, 1, 2, .. with q0 = p)

qn+1 = p+ (1− p)G(qn), (2)
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For the case of uniform threshold distribution, the function F takes the form of a step function (F (m
k
) = 1 if

m
k
≥ φ and F (m

k
) = 0 otherwise). In the approximation where only the linear and q2 terms are considered,

the cascade conditions (respectively for the first and second order) are written as [3] (for uniform distribution
of thresholds, C0 = 0)

(1− p)C1 > 1, (5)

and
(C1 − 1)2 + 2p(C1 − C2

1 − 2C2) < 0. (6)

To obtain pc, we systematically increase p from 0. The smallest value of p for which either one of the above
equations(5 or 6) is satisfied, gives an estimate of pc.

S.4 Clustering coefficient

Clustering coefficient Ci for a node in an undirected network is defined as the number of links among its
neighbors divided by the toal number of possible links among its neighbors [1].

Ci =
2Ei

ki(ki − 1)
, (7)

where Ei is the total number of links among the neighbors of i and ki is the degree of node i. The average
clustering coefficient C for the network is the average of Ci’s of all nodes in the network [2].

C =
1

N

N
∑

i=1

Ci. (8)

Both randomization methods (x-swap and exact sampling method) discussed in the main text, leave the
orginal degree sequence unchanged. However during this process, local clustering present in the network is
destroyed (as shown in Table S1). In Fig. S3, starting from the original high-school network, we show how
C changes at each time step during X-swap randomization.

Network C (before randomization) C (after randomization)
X-swapped 0.125441 0.007648

Exact sampling 0.125441 0.008533

Table S1: Clustering coefficient of the high-school network before and after randomization for a single run.
For the x-swapped network, C was measured after t = 6000 time steps (when it stabilizes).
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Figure S3: Time evolution of the average clustering coefficient of the high-school network during X-swap
ranodmization.
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