Supplementary Information

FGF21 regulates circadian behavior and metabolism by acting on the nervous system

Angie L. Bookout^{1,2}, Marleen H. M. de Groot^{3,4}, Bryn M. Owen¹, Syann Lee², Laurent Gautron², Heather L. Lawrence¹, Xunshan Ding⁴, Joel K. Elmquist², Joseph S.

Takahashi^{3,4}, David J. Mangelsdorf^{1,4}*, and Steven A. Kliewer^{1,5}*

¹Department of Pharmacology; ²Department of Internal Medicine, Division of Hypothalamic Research; ³Department of Neuroscience; ⁴Howard Hughes Medical Institute; ⁵Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas TX 75390, USA

*To whom correspondence should be addressed. Email:

davo.mango@utsouthwestern.edu; steven.kliewer@utsouthwestern.edu

Supplementary Figure 1 β -Klotho in situ hybridization across the mouse brain. Mouse brain coronal sections (25 μ m, 1:4 series) were subjected to free-floating in situ hybridization with a ³³P-labeled antisense riboprobe for *Klb* and mounted onto slides in rostral (top left) to caudal (bottom right) order. Boxed areas indicate regions shown in Figure 1. Bar = 45 mm.

Supplementary Figure 2 Circadian profiles of gene expression and plasma analytes in Tg(Fgf21) mice. Male wild-type (WT) or Tg(FGF21) mice were sacrificed every 4 h over a 24 h period, beginning at the start of the light phase (ZT0). (a) Plasma hormones and metabolites. (b) Hypothalamic clock, FGF21 receptor, and neuropeptide gene expression. Arginine vasopressin (*Avp*); Corticotropin releasing hormone (*Crh*). (c) Liver clock, growth hormone pathway, and FGF21 signaling pathway gene expression. Values on the x-axes are double-plotted; data represent mean \pm SEM, n = 3-6. Asterisks indicate significant differences (P < 0.05) between WT and Tg(Fgf21).

Supplementary Figure 3 *Klb* expression is intact in peripheral tissues of the *Klb* brain knockout models. Male mice of indicated genotypes without (–) or with (Tg21) the Tg(Fgf21) insertion were sacrificed ZT8. *Klb* mRNA was quantified in liver and brown and white adipose of (**a**) *Camk2a*-cre and (**b**) *Phox2b*-cre models. Data represent mean \pm SEM, n = 5-9. Ct values shown inside bars. Asterisks indicate significant differences (P < 0.05) between Tg21 and (–) control mice.

а

Supplementary Figure 4 Representative actograms for Tg(Fgf21) mice. Representative actograms are shown double-plotted for three individual (**a**) wild-type (WT) or Tg(Fgf21) male mice, and (**b**) Klb^{tm1} ::Tg(Fgf21) or $Klb^{tm1(Camk2a)}$::Tg(Fgf21) male mice (bottom). Time on x-axis refers to zeitgeber time (ZT) 0 at lights on. Yellow indicates light phase (LD, 12 hours light/12 hours dark; DD, constant darkness).

Supplementary Figure 5 Ketogenic diet mimics transgenic FGF21 overexpression in regulating circadian behavior. (a) Hepatic FGF21 mRNA and plasma protein levels in male wild-type mice fed chow or ketogenic diet for 6 weeks. Mice were sacrificed every

4 h over a 24 h period, beginning at the start of the light phase (ZT0). Values on the xaxes are double-plotted; data represent mean \pm SEM, n = 4. Asterisks indicate significant differences (P < 0.05) between diets. (**b**, **c**) Representative actograms are shown doubleplotted for three individual wild-type males (**b**) fed standard chow or ketogenic diet, and $Fgf21^{-/-}$ males (**c**) fed standard chow or ketogenic diet. Time on x-axis refers to zeitgeber time (ZT) 0 at lights on. Yellow indicates light phase (LD, 12 hours light/12 hours dark; DD, constant darkness).

Supplementary Figure 6 Brain-specific effects of FGF21 on growth morphometry and adipose gene expression. (a) Tibia length, lean mass, and fat mass from male mice of indicated genotypes without (–) or with (Tg21) the Tg(Fgf21) insertion (n = 4-7). Animals were sacrificed at ZT8. (b) White adipose tissue gene expression in brain deletion of *Klb*. Male mice (n = 5-9) of indicated genotypes were sacrificed at ZT8. Ct values shown inside bars. Data represent mean ± SEM. Asterisks indicate significant differences (P < 0.05) between Tg21 and (–) control mice. (c) Plasma FGF21 levels in individual 12-week old male C57BL/6J mice at ZT3 fed ad libitum or fasted for 24 h.

Supplementary Table 1 Metabolic parameters from $Klb^{tm1(Camk2a)}$::Tg(Fgf21) and $Klb^{tm1(Phox2b)}$::Tg(Fgf21) mice.

	Klb^{tm1} ::			$Klb^{tm1(Camk2a)}$::
<u>-</u>	Klb ^{tm1}	Tg(Fgf21)	$Klb^{tm1(Camk2a)}$	Tg(Fgf21)
n	5	7	5	7
glucose (mg dl^{-1})	130.9 ± 4.72	126.8 ± 4.69	140.8 ± 9.82	118.9 ± 3.86
βhydroxybutyrate (µM)	66.29 ± 8.63	$205.4 \pm 44.96*$	29.68 ± 9.65	45.38 ± 6.053
cholesterol (mg dl ⁻¹)	146.1 ± 13.32	$112 \pm 6.32*$	161.1 ± 15.94	153.7 ± 8.67
triglycerides (mg d ⁻¹)	50.18 ± 12.72	42.13 ± 5.96	55.9 ± 7.24	67.42 ± 13.74
$FGF21 (ng ml^{-1})$	0.54 ± 0.09	$657.4 \pm 117.5*$	0.75 ± 0.15	$737.3 \pm 167.4*$

		Klb^{tml} ::		$Klb^{tml(Phox2b)}$::
	Klb ^{tml}	Tg(Fgf21)	$Klb^{tml(Phox2b)}$	Tg(Fgf21)
n	9	9	5	8
glucose (mg dl ^{-1})	131.6 ± 3.74	119.3 ± 8.67	147.1 ± 5.19	112.4 ± 15.48
cholesterol (mg dl ⁻¹)	136.6 ± 10.44	$104.3 \pm 6.20*$	128.1 ± 15.30	126.5 ± 5.82
triglycerides (mg dl ⁻¹)	46.44 ± 4.08	49.08 ± 9.62	59.38 ± 6.59	41.33 ± 6.19
FGF21 (ng m^{-1})	0.41 ± 0.70	$784.6 \pm 111.1*$	1.45 ± 0.85	$933.5 \pm 228.9*$

Data are presented as mean \pm SEM. Asterisks indicate significant differences (P < 0.05) compared to controls without Tg(Fgf21). FGF21 measurement was taken at ZT3.

	Wild-type chow	Tg(Fgf21) chow
п	16	28
total activity (revs/day $\times 10^4$)	2.62 ± 0.17	$1.91 \pm 0.19*$
% light activity	3.20 ± 0.71	$13.94 \pm 2.95*$
% dark activity	96.80 ± 0.71	$86.06 \pm 2.95*$
period (h)	23.62 ± 0.03	23.57 ± 0.04
amplitude (%)	17.79 ± 1.49	$12.14 \pm 1.50*$
phase (h)	0.24 ± 0.07	$-0.96 \pm 0.37*$
	Klb ^{tm1} ::Tg(Fgf21)	<i>Klb</i> ^{tm1(Camk2a)} ::Tg(Fgf21)
п	<u><i>Klb</i>^{tm1}</u> ::Tg(Fgf21) 11	<i>Klb^{tm1(Camk2a)}</i> ::Tg(Fgf21)
<i>n</i> total activity (revs/day $\times 10^4$)	$\frac{Klb^{tm1}::Tg(Fgf21)}{11}$ 0.97 ± 0.22	$\frac{Klb^{tm1(Camk2a)}::Tg(Fgf21)}{12}$ 2.60 ± 0.16*
<i>n</i> total activity (revs/day × 10 ⁴) % light activity	$\frac{Klb^{tm1}::Tg(Fgf21)}{11}$ 0.97 ± 0.22 15.26 ± 3.72	$\frac{Klb^{tm1(Camk2a)}::Tg(Fgf21)}{12}$ $2.60 \pm 0.16*$ $1.87 \pm 0.36*$
n total activity (revs/day × 10 ⁴) % light activity % dark activity	$ \underline{Klb^{tm1}::Tg(Fgf21)} 11 0.97 \pm 0.22 15.26 \pm 3.72 84.74 \pm 3.72 $	$\frac{Klb^{lm1(Camk2a)}::Tg(Fgf21)}{12}$ $2.60 \pm 0.16*$ $1.87 \pm 0.36*$ $98.13 \pm 0.36*$
n total activity (revs/day × 10 ⁴) % light activity % dark activity period (h)	$\frac{Klb^{tm1}::Tg(Fgf21)}{11}$ 0.97 ± 0.22 15.26 ± 3.72 84.74 ± 3.72 23.58 ± 0.05	$\frac{Klb^{tm1(Camk2a)}::Tg(Fgf21)}{12}$ $\frac{12}{2.60 \pm 0.16*}$ $1.87 \pm 0.36*$ $98.13 \pm 0.36*$ 23.54 ± 0.02
n total activity (revs/day × 10 ⁴) % light activity % dark activity period (h) amplitude (%)	$\frac{Klb^{tm1}::Tg(Fgf21)}{11}$ $\frac{11}{0.97 \pm 0.22}$ 15.26 ± 3.72 84.74 ± 3.72 23.58 ± 0.05 7.82 ± 2.03	$\frac{Klb^{tm1(Camk2a)}::Tg(Fgf21)}{12}$ $\frac{12}{2.60 \pm 0.16^{*}}$ $1.87 \pm 0.36^{*}$ $98.13 \pm 0.36^{*}$ 23.54 ± 0.02 $17.31 \pm 1.29^{*}$

Supplementary Table 2 Circadian wheel running parameters in *Klb*^{tm1(Camk2a)}::Tg(Fgf21) mice.

Data are presented as mean \pm SEM. Asterisks indicate significant differences (P < 0.05) compared to wild-type or Klb^{lm1} ::Tg(Fgf21) controls.

Supplementary Table 3 Circadian wheel running parameters and plasma FGF21 in wild-type versus $Fgf21^{-/-}$ mice.

	Wild-type chow	Wild-type ketogenic	$Fgf21^{-/-}$ chow	<i>Fgf21^{-/-}</i> ketogenic
n	6	24	18	23
total activity (revs/day $\times 10^4$)	3.39 ± 0.18	$1.86 \pm 0.12*$	2.87 ± 0.20	$2.14 \pm 0.12*$
% light activity	3.48 ± 1.54	$8.78 \pm 1.47*$	1.81 ± 0.53 †	3.84 ± 0.76
% dark activity	96.52 ± 1.54	$91.23 \pm 1.47*$	98.19 ± 0.53 †	96.16 ± 0.76
period (h)	23.69 ± 0.02	23.62 ± 0.04	23.62 ± 0.03	23.64 ± 0.05
amplitude (%)	17.32 ± 2.37	15.41 ± 1.41	19.77 ± 1.06	19.43 ± 1.48
phase (h)	0.38 ± 0.20	-0.53 ± 0.24	0.52 ± 0.06	$0.03 \pm 0.16*$
Plasma FGF21 (ng ml ⁻¹)	0.44 ± 0.0	$21.92 \pm 5.45*$	undetectable	undetectable

Data are presented as mean \pm SEM. Asterisks indicate significant differences (P < 0.05) compared to chow-fed mice. Daggers indicate significant differences (P < 0.05) compared to all other groups. FGF21 measurement was taken at ZT8.

		-
	Paxinos &	
	Franklin	
Nucleus	Atlas ³¹ Level	Full Name
CTX	40-41	cortex
Thal AD	39-40	anterodorsal thalamic nucleus
OVLT	27	vascular organ of lamina terminalis
MnPO	27	median preoptic nucleus
SCN	34-38	suprachiasmatic nucleus
PVH	37-41	paraventricular hypothalamic nucleus
RCN	39-40	retrochiasmatic nucleus
		lateral hypothalmic area to paraventricular hypothalamic
LHA1	39	nucleus
dmVMH	42-46	dorsomedial ventromedial hypothalamic nucleus
vlVMH	42-46	ventrolateral ventromedial hypothalamic nucleus
ARC	42-46	arcuate nucleus
cDMH	47-48	compact dorsomedial hypothalamic nucleus
vDMH	47-48	ventral dorsomedial hypothalamic nucleus
		lateral hypothalamic area to dorsomedial hypothalamic
LHA2	47	nucleus plus perifornical area
PH	51	posterior hypothalamic area
PMV	51-53	premammillary nucleus, ventral part
VTA	61	caudal ventral tegmental area
mPBN	74-75	medial parabrachial nucleus
1PBN	74-75	lateral parabrachial nucleus
AP	92-93	area postrema
DMV (X)	92-93	dorsal motor nucleus of the vagus (Xth cranial nerve)
NTS	92-93	nucleus tractus solitarius
nodose		left nodose ganglion; cell body of vagal sensory neurons
DRG		mid-lower thoracic dorsal root ganglia (T7-T12)

Supplementary Table 4 List of nuclei collected for expression profiling.