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Supplemental Figure Legends 
 
Supplemental Figure 1. Related to Figure 1. 
(A) Metagene representations of mean ChIP-Seq density in regions surrounding 
constituents of super-enhancers and typical enhancers, active promoters, and the 
borders of topological domains for the indicated transcription factors in mESCs.  For 
each transcription factor, the leftmost panel shows background-subtracted densities 
within size-normalized constituents of super-enhancers (red) and typical enhancers 
(grey) plus adjacent 2.5kb regions.  The center panel shows background-subtracted 
densities within 1kb of RefSeq-defined transcription start sites of active transcripts. 
Active transcripts were defined as having an RNA Polymerase II mean ChIP-Seq 
signal >1 rpm/bpin this region. The right panel shows background-subtracted 
densities within +/-500kb of borders of topological domains in mESC as defined in 
(Dixon et al., 2012). 
(B) Table depicting transcription factor binding motifs at constituent enhancers within 
typical enhancer regions, and associated p-values. 
 
Supplemental Figure 2. Related to Figure 2. 
(A) (top) Schematic diagram the shRNAs knockdown of Oct4 in mESCs. (bottom) 
Box plots of fold change expression for all enhancer-associated genes, typical 
enhancer-associated genes and super-enhancer –associated genes 3, 4 and 5 days 
after knockdown. Expression values were normalized to the values measured in 
ESCs transduced with a control shRNA against GFP. 
(B) (top) Schematic diagram the shRNAs knockdown of the Mediator subunit Med12 
in mESCs. (bottom) Box plots of fold change expression for all enhancer-associated 
genes, typical enhancer-associated genes and super-enhancer –associated genes 3, 
4 and 5 days after knockdown. Expression values were normalized to the values 
measured in ESCs transduced with a control shRNA against GFP. 
(C) (top) Schematic diagram the shRNAs knockdown of the cohesin subunit Smc1 in 
mESCs. (bottom) Box plots of fold change expression for all enhancer-associated 
genes, typical enhancer-associated genes and super-enhancer –associated genes 3, 
4 and 5 days after knockdown. Expression values were normalized to the values 
measured in ESCs transduced with a control shRNA against GFP. 
 
Supplemental Figure 3. Related to Figure 3. 
(A) Comparison of the abilities of enhancer surrogate marks (p300, H3K27ac, 
H3K4me1, DNase hypersensitivity) to identify super-enhancers and super-enhancer 
–associated genes in mESCs. (top) ChIP-Seq binding profiles for OSN (merged 
binding profiles of the transcription factors Oct4, Sox2 and Nanog), Mediator (Med1), 
p300, H3K27ac, H3K4me1 and DNase hypersensitivity at the POLE and miR-290-
295 loci in mESCs. Red dots indicate the median enrichment of all bound regions in 
the respective ChIP-Seq datasets, and are positioned at maximum 20% of the axis 
height. (rpm/bp: reads per million per base pair) (middle left) Venn diagrams showing 
the overlap between super-enhancer domains identified by Oct4, Sox2, Nanog and 
Med1 data versus those identified using p300, H3K27ac, H3K4me1 ChIP-Seq data 
or DNase hypersensitivity data. (middle right) Venn diagrams showing the overlap 
between super-enhancer—associated genes identified by Oct4, Sox2, Nanog and 
Med1 data versus those identified by p300, H3K27ac or H3K4me1, ChIP-Seq data or 
DNase hypersensitivity data. We note that even though p300 appears to be an 
excellent enhancer surrogate to identify super-enhancers, p300 ChIP-Seq data for a 
large set of human samples are as yet not available. Super-enhancers identified by 
H3K27ac but not by OSN-Mediator are characterized by low Mediator ChIP-Seq 
signal, and associate with genes linked to ubiquitous biological processes such as 
transcription, indicating that OSN-Med1-identified super-enhancers are a subset of 
the super-enhancers identified by H3K27ac, and suggest that transcription factors 
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other than cell type specific master transcription factors may form large domains in 
the genome. (bottom, heatmap) Heatmap representation of H3K27ac and Med1 
ChIP-Seq densities at the 392 super-enhancer regions identified by H3K27ac in 
mESC. Super-enhancer regions are shown along with 5kb flanking distance up- and 
downstream. Color scale reflects the density of H3K27ac signal at the super-
enhancer regions. (bottom, GO analysis) Gene Ontology analysis the indicated gene 
sets. 
B) Heatmap showing the classification of super-enhancer-associated genes across 
26 human cell and tissue types. Each row is a gene and red color indicates the gene 
being associated with a super-enhancer in the respective cell type. 
C) Heatmap showing the classification of typyical enhancer-associated genes across 
26 human cell and tissue types. Each row is a gene and red color indicates the gene 
being associated with a super-enhancer in the respective cell type. 
D) Super-enhancers can overlap with Locus Control Regions (LCR), Transcription 
Initiation Platforms (TIP) and DNA methylation valleys (DMV). 
 
Supplemental Figure 4. Related to Figure 4. 
(A) Summary of trait-associated SNPs in the union of super-enhancers, typical 
enhancers and regulatory regions (defined as H3K27ac binding peaks) in 86 human 
cell and tissue samples. Displayed is the percentage of the total 4,378 trait-
associated non-coding SNPs falling into these regions. The percentage of the 
genome (3.4 billion bases) covered by the union of these regions in the 86 human 
cell and tissue types is also displayed. SNP enrichment is defined as the percent of 
SNPs contained in the percent of the genome covered for these regions. 
B) The SNP enrichment values of non-coding SNPs linked to the highlighted traits 
and diseases in the union of super-enhancers, typical enhancers and regulatory 
regions (defined as H3K27ac binding peaks) in 86 human cell and tissue samples. 
 
Supplemental Figure 5. Related to Figure 5. 
Radar plots showing the density of non-coding SNPs linked to selected diseases in 
the super-enhancer domains and typical enhancers identified in 12 human cell and 
tissue types. The center of the plot is 0, and a colored dot on the respective axis 
indicates the SNP density (SNP/10MB sequence) in the super-enhancer domains or 
typical enhancers of each cell and tissue type. Lines connecting the density values to 
the origin of the plot are added to improve visualization. 
 
Supplemental Figure 6. Related to Figure 6. 
ChIP-Seq binding profiles for H3K27ac at the c-MYC locus in the indicated cancer 
samples. Super-enhancers are highlighted as black bars above the binding profile. 
Purple track indicates the topological domains identified in hESC in (Dixon et al., 
2012). (rpm/bp: reads per million per base pair) 
 
 
 
Supplementary Table 1: Catalogue of ChIP-Seq densities in constituents of super-
enhancers and typical enhancers and corresponding control samples in mESCs. 
Reads per million mapped reads per base pair densities with background subtraction 
are shown in constituents of super-enhancers and typical enhancers (sheet 1) as 
well as in control regions randomly shifted on the same chromosome (sheet 2). 
 
Supplementary Table 2: Catalogue of 86 human cell and tissue types in which 
super-enhancers and super-enhancer—associated genes were identified. The tables 
containing the super-enhancers and super-enhancer—associated genes are found in 
Supplemental Data 1. The catalogue highlights the cell and tissue types. 
Representative datasets (Rep. Dataset) were used in Figure 3A, 3B, 3C and Figure 
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S3B,C. Datasets used for SNP analyses were included for Figures 4B, 5, and Figure 
S5. Cancer ID identifies the samples included on Figure 6A and Figure S6. Additional 
column indicates whether the sample was used for analyses on Figure 6B-E. CML 
stands for chronic myelogenous leukemia. 
 
Supplemental Table 3: Catalogue of candidate master transcription factors in 86 
human cell and tissue samples. Super-enhancer—associated transcription factor 
genes are displayed.  Classification as a transcription factor was determined by 
inclusion in both the AnimalTFDB and TcoF transcription factor databases. 
Candidate master transcription factors are ranked by their signal of H3K27ac at their 
associated super-enhancers. 
 
Supplemental Table 4: GWAS SNPs used in this study and their distributions in 
super-enhancers and typical enhancers. Single-nucleotide polymorphisms 
associated with traits were downloaded from the NHGRI genome-wide association 
study database (08/09/2013). Only SNPs that had a dbSNP identifier, and whose 
trait association was replicated in at least two studies were considered in the 
downstream analyses (sheet 1). Unique SNPs found outside of coding regions are 
listed in Sheet 2, and were used for analyses on Figures 4A right panel, 4B, 5, 
Figures S4 and S5. Sheets 3 and 4 show the number of unique, non-coding, 
replicated SNPs found in the super-enhancers and typical enhancers of the 86 
human cell and tissue samples, respectively. 
 
Supplemental Table 5: Cancer hallmark genes associated with super-enhancers 
acquired in colorectal cancer, T cell leukemia and pancreatic cancer. The fourth 
sheet lists all genes that acquire super-enhancer compared to their healthy 
counterparts, respectively. 
 
Supplemental Table 6: GEO accession identifiers for all samples used in the study.   
 
Supplemental Data 1: Zip file containing 86 files, each containing stitched 
enhancers, associated genes, and ChIP-Seq signal. Columns are: enhancer ID, 
chromosome, start, end, associated gene, enhancer rank, is enhancer a super-
enhancer (1:yes, 0:no), H3K27ac ChIP-Seq density (rpm/bp), read density in 
corresponding input sample (rpm/bp).  
 
Supplemental Data 2: Zip file containing 86 files, each a pair of UCSC Genome 
Browser tracks.  Tracks displayed in black are all stitched enhancers.  Tracks 
displayed in red are super-enhancers. 
 
 
 
 
Supplemental Experimental Procedures 
 

ChIP-Seq 
 
ChIP-Seq for Ronin was previously described (Dejosez et al., 2010). ChIP-Seq 
for Mbd3 in the murine ESC line V6.5 was performed with an anti-Mbd3 
antibody (Santa Cruz, SC-9402) as described (Whyte et al., 2012). ChIP-Seq 
for CBP in the murine ESC line V6.5 was performed with an anti-CBP antibody 
(Santa Cruz, SC-9402) as described (Mullen et al., 2011). ChIP-Seq for 
H3K27ac in RPMI-8402 cells was performed with an anti-H3K27ac antibody 
(Abcam, ab4729) as described (Sanda et al., 2012). 
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Several as yet unreleased ChIP-Seq datasets were generously shared by the 
NIH Roadmap Epigenome project (Bernstein et al., 2010). 

 
 

ChIP-Seq density analysis 
 
ChIP-Seq read density was measured as described in (Lin et al., 2012). Briefly, 
ChIP-Seq reads were extended 200bp and the density of reads per base pair 
was calculated.  This density was normalized to the millions of mapped reads 
contributing to the density, measured in reads per million per base pair 
(rpm/bp).   

 
Percent enhancer signal falling in super-enhancers (Figures 1D and 2C) was 
calculated using the sum of signal (density * length) of super-enhancers and 
typical enhancers.  Comparison of super-enhancer vs. typical enhancer signal 
was calculated using mean background-subtracted signal (density * length) of 
super-enhancers divided by the sum of super-enhancers and typical enhancers. 

 
 

Definition of enhancers and super-enhancers in mESC 
 
Genomic coordinates of murine embryonic stem cell typical enhancers, super-
enhancers, typical enhancer constituents and super-enhancer constituents 
were downloaded from (Whyte et al., 2013). 

 
 

Threshold for occupancy at enhancers 
 
For Figures 1 and 2, the occupancy of transcription factors, co-factors and 
chromatin regulators at enhancers in ESCs was determined as follows. The 
mean ChIP-Seq density at every enhancer constituent was calculated for each 
transcription factor, co-factor and chromatin regulator listed in Supplemental 
Table 1. Mean ChIP-Seq density values measured in the corresponding input 
samples were subtracted. To correct for ChIP-Seq background signal, a 
minimum value of 0.2 rpm/bp after background subtraction was required for 
further consideration. To correct for different ChIP-Seq qualities across multiple 
samples, the mean ChIP-Seq densities of random genomic regions of 
equivalent sizes of the enhancer constituents were calculated (Supplemental 
Table 1), and the ratio of the mean ChIP-seq signal at enhancer constituents 
and the mean ChIP-seq signal at the random genomic positions was calculated. 
Presence of a factor at enhancers was defined as this ratio >9. We found that 
these two thresholds largely captured the definition of presence or absence at 
enhancers for several factors where genomic localization of the factor has 
previously been analyzed in a similar context. 
 
 
USCS Browser tracks 
 
To assess the relative enrichment of binding peaks compared to other peaks in 
ChIP-Seq samples displayed as UCSC Browser tracks (Figure 1B, Figure 2A, 
Figure S3A) the median enrichment value for all bound regions was calculated. 
MACS was used to identify enriched regions (as described below), and the 
background subtracted read density at the enriched regions was determined. 
The median read density value of all enriched regions is denoted by a red dot 
on the y-axis of the UCSC Browser tracks. 
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Figure 6C (top), depicts a described translocation event that between chr8(q24) 
and chr3(q21) in the multiple myeloma cell line MM1S (Shou et al., 2000). The 
segment of chromosomal region chr3(q21) depicted on the figure is 
chr3:122,500,000-124,250,000. 
 
The sites of focal amplification Figure 6C (bottom) in small cell lung cancer 
were described in (Iwakawa et al., 2013). 
 
 
Overlaps with previously described large genomic regions 
 
The genomic co-ordinates for the DNA-methylation valleys were obtained from 
(Xie and Ren, 2013). The cell types pooled on Figure S3D include, hESC, 
mesenchymal stem cell, mesendoderm, neural progenitor and trophoblast 
(DMV), and hESC, fetal intestine, fetal large intestine, fetal thymus, fetal 
hematopoietic progenitor and fetal muscle (SE). 
 
The genomic co-ordinates for the globin LCR and TIP at the IFNAR1 loci were 
adapted from (Bonifer, 2000; Koch et al., 2011) 

 
 
Metagenes and Heatmaps 
 
Genome-wide average “meta” representations of ChIP-Seq density at typical 
enhancers and super-enhancers (Figure 1C, 2B) were created by mapping 
reads to the enhancer regions and flanking regions.  Each enhancer or flanking 
region was split into 100 equally sized bins. This split all enhancer regions, 
regardless of their size, into 300 bins. All typical enhancer or super-enhancer 
regions were then aligned and the average ChIP-seq density in each bin was 
calculated to create a meta genome-wide average in units of reads per million 
per base pair. In order to visualize the length disparity between typical and 
super-enhancer regions, the enhancer region (between its actual start and end) 
was scaled relative to its median length. 

 
Constituent metagenes (Figure 1E, 2D, Figure S1) were created in a similar 
fashion.  Constituents of super- and typical enhancers, as well as 2.5kb 
upstream and downstream were each broken into 50 bins. The ChIP-Seq 
density in these regions was calculated in and combined together to get 150 
bins spanning 2.5kb upstream, the constituent enhancer, and 2.5kb 
downstream.  The average combined profiles for the super- or typical 
enhancers constituents is shown. 

 
Metagenes around expressed promoters were similarly created.  Promoters 
were defined as +/- 1kb around the TSS. 9,667 expressed promoters were 
defined as those having RNAPII ChIP-Seq density > 1 rpm/bp.  The regions 
were broken into 50 bins and the average read density for expressed 
promoters is shown (Figure S1A).    

 
Metagenes around boundaries of topological domains (TD) were similarly 
created.  Topological domains defined in (Dixon et al., 2012) were downloaded 
for the mm9 genome build.  Regions interrogated were +/- 500kb from the TD 
border and were split into 100 bins.  The average read density per bin is shown 
(Figure S1A).   
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Heatmaps in Figure 3A and Figure S3A were calculated in a manner similar to 
metagenes.  The union of 26 sets of representative super-enhancers resulted 
in 5,988 regions used for H3K27ac density analysis in Figure 3A.  Each 
element in the union was broken into 50 equally sized bins.  Reads were 
extended 200bp and reads-per-million densities were calculated in each 
element in the union of super-enhancers. Figure S3A contains a heatmap 
showing densities in H3K27ac-defined super-enhancers.  Regions 5kb 
upstream and downstream of the super-enhancers are shown.  Each region 
(upstream, super-enhancer, downstream) is broken into 50 equally sized bins.  
Reads were extended 200bp and reads-per-million normalized densities were 
calculated in these regions. 
 
Motif analysis 
 
To find sequence motifs enriched in super-enhancers in murine ESCs, we 
analyzed the genomic sequence under the constituents within super-enhancers. 
We extracted their sequence from the mm9 genome and used this as input for 
TRAP using TRANSFAC vertebrates as the comparison library, mouse 
promoters as the control, and Benjamini-Hochberg as the correction (Thomas-
Chollier et al., 2011). To include Tcfcp2l1, we used the Jaspar vertebrates as 
the comparison library.  P-values displayed in Figure 1E correspond to the 
corrected P in the output. Motif enrichment analysis at typical enhancers 
(Figure S1B) was done the same way, but only the enhancer constituents with 
a size smaller than 500 bp were used, because of limitations of TRAP. P-
values displayed in Figure S1B correspond to the corrected P in the output. 
 
Matrices used: Oct4: M01124; Sox2: M01272; Nanog: M01123; Klf4: M01588; 
Esrrb: M01589; Stat3: M01595; Tcf3: M01594; Smad3: M00701; Tcfcp2l1: 
MA0145. 
 
The motif logos displayed on Figure 1E and Supplemental Figure 1B were 
downloaded from the Cistrome database (Liu et al., 2011). 
 

 
 
Identifying ChIP-Seq enriched regions in human cells 
 
Human sequencing reads were aligned to the human genome build hg19 
(GRCh37) using bowtie 0.12.9 (Langmead et al., 2009) using parameters -k 2, 
-m 2, -n 2, --best.  Mouse sequencing reads were aligned to the mouse 
genome build mm9 (NCBI37) using bowtie 0.12.9 using parameters -k 1, -m 1, 
-n 2, --best.  Regions of enrichment of H3K27ac in human samples were 
calculated using MACS 1.4.2 (Zhang et al., 2008) using parameters -p 1e-9, --
keep-dup=auto, -w –S –space=50, and -g hs on H3K27ac ChIP-Seq with 
control libraries.  MACS peaks were called on mouse ChIP-Seq using –p 1e-9, 
--keep-dup=auto, -w –S –space=50, -g mm. UCSC Genome Browser (Kent et 
al., 2002) tracks were generated using MACS wiggle outputs.  MACS peaks of 
human H3K27ac were used as constituent enhancers for super-enhancer 
identification. 
 
 
Definition of enhancers and super-enhancers in human cells 
 
Enhancers were stitched and super-enhancers were identified using ROSE 
(https://bitbucket.org/young_computation/rose), which is an implementation of 

https://bitbucket.org/young_computation/rose


 9 

the algorithm described in (Loven et al., 2013). Briefly, this algorithm stitches 
constituent enhancers together if they are within a certain distance and ranks 
the enhancers by their input-subtracted signal of H3K27ac. It then separates 
super-enhancers from typical enhancers by identifying an inflection point of 
H3K27ac signal vs. enhancer rank (Whyte et al., 2013). ROSE was run with a 
stitching distance of 12,500 bp, i.e. we allowed enhancers within 12,500 bp to 
be stitched together. In addition, we used a promoter exclusion zone of 2,000 
bp, i.e. if a constituent enhancer was wholly contained within a window +/-
1,000 bp around an annotated transcription start site, the constituent enhancer 
was excluded from stitching. 
 
Stitched enhancers were assigned to the expressed transcript whose TSS was 
the nearest to the center of the stitched enhancer. Expressed transcripts were 
defined as having an at least 0.5 mean rpm/bp H3K27ac ChIP-Seq density in a 
window 500 bases up- and downstream of the TSS. In cases where enhancer-
gene assignments were previously verified by experimental techniques, we 
assigned genes based on those studies. These examples include: MYC in 
multiple myeloma, IRF4 in multiple myeloma (Loven et al., 2013), MYC in 
colorectal cancer, breast cancer and prostate cancer (Ahmadiyeh et al., 2010; 
Pomerantz et al., 2009) (all on Figure 6). 
 
For the Figure 3A heatmap, the union of super-enhancers for 26 cell types was 
taken. The rpm/bp density of ChIP-Seq reads (extended by 200bp) was 
calculated for the corresponding 26 H3K27ac datasets and is represented by 
color intensity.  Each region in the union of super-enhancers was compared to 
every super-enhancer in the 26 cell types, and the cell types containing a 
super-enhancer that contacts a region in the union were recorded.  The 
heatmap is sorted first by the number of cell types containing a contacting 
super-enhancer and then by the order of cell types containing a contacting 
super-enhancer. 
 
 
Gene sets and annotations 
 
All analyses were performed using RefSeq (GRCh37/hg19) human gene 
annotations or RefSeq (NCBI37/mm9) mouse gene annotations (Pruitt et al., 
2007). 
 
The high confidence set of transcription factors used for analysis was the 
intersection of genes identified as transcription factors in two different 
transcription factor databases (AnimalTFDB and TcoF) (Schaefer et al., 2011; 
Zhang et al., 2012). 

 
 
References for the validation of candidate master transcription factors 
 
The references validating the transcription factors listed on Figure 3C, as 
candidate master transcription factors are as follows: 
 
Brain: NKX2-2 (Briscoe et al., 1999; Panman et al., 2011), OLIG1 (Arnett et al., 
2004), BRN2 (Ambasudhan et al., 2011; McEvilly et al., 2002; Pfisterer et al., 
2011; Son et al., 2011; Sugitani et al., 2002), SOX10 (Bondurand and Sham, 
2013; Britsch et al., 2001; Lee et al., 2008), SOX2 (Bergsland et al., 2011; 
Cavallaro et al., 2008; Ferri et al., 2004; Han et al., 2012; Ring et al., 2012). 
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Heart: TBX20 (Cai et al., 2005; Cai et al., 2013; Takeuchi et al., 2005), TBX5 
(Ieda et al., 2010; Nadeau et al., 2010; Qian et al., 2012; Song et al., 2012), 
MEF2A (Naya et al., 2002; Schlesinger et al., 2011), NKX2-5 (Lyons et al., 
1995; Schlesinger et al., 2011), GATA4 (Ieda et al., 2010; Nadeau et al., 2010; 
Qian et al., 2012; Song et al., 2012; Turbendian et al., 2013; Watt et al., 2004). 
 
Skeletal muscle: MYOD1 (Bergstrom et al., 2002; Davis et al., 1987; Rudnicki 
et al., 1993; Tajbakhsh et al., 1997), PITX2 (Gherzi et al., 2010; Lin et al., 
1999), SIX1 (Grifone et al., 2004; Yajima et al., 2010), TEAD4 (Benhaddou et 
al., 2012). 
 
Lung: NFIB (Hsu et al., 2011), TBX5 (Arora et al., 2012), CEBPA (Martis et al., 
2006), TBX2 (Ludtke et al., 2013), TBX3 (Ludtke et al., 2013). 
 
Adipose tissue: PPARG (Lehrke and Lazar, 2005; Rosen et al., 1999; Rosen et 
al., 2000; Schupp et al., 2009), CEBPB (Cao et al., 1991; Kajimura et al., 2009), 
CEBPD (Rosen et al., 2000; Tanaka et al., 1997), CREB1 (Reusch et al., 2000). 
 
B cell: IKZF3 (Ferreiros-Vidal et al., 2013; Kioussis, 2007; Ma et al., 2010), 
PAX5 (Busslinger, 2004; Medvedovic et al., 2011), BACH2 (Kallies and Nutt, 
2010), OCT2 (Gstaiger et al., 1996; Wirth et al., 1995), IKZF1 (Ferreiros-Vidal 
et al., 2013; Kioussis, 2007; Ma et al., 2010), IRF8 (Busslinger, 2004). 

 
 

Gene Ontology (GO) Analysis 
 
For gene ontology analysis, a subset of 26 datasets, representing the diversity 
of tissues in the collection used for this study, were first selected.  For each 
tissue, the genes that were associated with super-enhancers in that tissue and 
no more than two other tissues in the subset were analyzed using DAVID 
(http://david.abcc.ncifcrf.gov/home.jsp).  For each tissue, the three top scoring 
categories (ie the categories with the lowest p-values) were selected for 
display. A threshold p-value score of 2E-05 was incorporated as a minimum 
requirement filter for scoring as a top category. 
 
 
Trait-associated SNPs 
 
Trait-associated SNPs were downloaded from the NHGRI database of 
genome-wide association studies on August 9, 2013, which contained 13,957 
entries/rows. Since SNPs more strongly associated with a trait are suggested 
to have a higher likelihood of being causative (Maurano et al., 2012), we only 
considered SNPs that have a dbSNP identifier and were found to be 
associated with a trait in at least two independent studies. 5,303 such SNP-trait 
or disease associations were used for the left and center panels of Figure 4A.  
4,912 non-coding SNP-trait associations were used for 4B, 5, and 
Supplemental Figure 5.  4,378 unique SNPs located outside coding regions 
were used for Figure 4A right panel and Supplemental Table S4. 
 
Figure 4A right panel shows the distance from trait-associated, non-coding 
SNPs to the nearest border of a region in the union of 86 super-enhancer sets.  
SNPs within these regions were assigned to the 0 bin. 
 
Significance of the number of SNPs in super-enhancers was calculated using a 
permutation test.  Super-enhancer—sized regions were randomly shifted on 

http://david.abcc.ncifcrf/
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the chromosome of origin 10,000 times.  The number of SNPs falling in these 
shifted regions was counted.  No repetition resulted in the same or greater 
number of trait-associated SNPs in super-enhancer—sized regions. 
 

 
Radar plots 
 
The density of trait-associated non-coding SNPs in super-enhancer domains 
and typical enhancers of individual cell and tissue samples were calculated by 
first counting the number of SNPs that are found in these regions. The 
numbers were then divided by the number of base pairs super-enhancer 
domains and typical enhancers cover of genome in these cells, and multiplied 
by 10 million, to give a SNP/10MB dimension (Figure 4B, 5, Figure S5). 
 
 
Selection of oncogenes 
 
Proto-oncogenes for display in Figure 6A were selected based on their 
presence in the COSMIC (Catalogue Of Somatic Mutations In Cancer) or 
AOGIC (Amplified and Overexpressed Genes in Cancer) databases (Forbes et 
al., 2010; Santarius et al., 2010). 
 
Forbes et al., Nucleic Acids Research, 2010; Santarius et al., Nat. Rev. Cancer, 
2010 
 
 
Cancer hallmark analysis 
 
The following gene ontology categories were used as proxies for the 
characteristic hallmark capabilities that are thought to be acquired in cancers. 
 Angiogenesis:  
  GO:0001525 – Angiogenesis 
 Enabling Replicative Immortality: 
  GO:0032200 – Telomere organization 
  GO:0090398 – Cellular senescence 
  GO:0090399 – Replicative senescence 
 Activating Invasion: 
  GO:0034330 – Cell junction organization 
  GO:0016477 – Cell migration 
  GO:0010718 – Positive regulation of epithelial to mesenchymal  
   transition 
  GO:0007155 – Cell adhesion 
 Genome Instability: 
  GO:0006281 – DNA repair 
  GO:0051383 – Kinetochore organization 
  GO:0007065 – Sister chromatid cohesion 
  GO:0000819 – Sister chromatid segregation 
  GO:0051988 – Regulation of attachment of spindle  
   microtubules to kinetochore 
  GO:0030997 – Regulation of centriole-centriole cohesion 
  GO:0046605 – Regulation of centrosome cycle 
  GO:0090224 – Regulation of spindle organization 
  GO:0010695 – Regulation ofspindle pole body separation 
  GO:0031577 – Spindle checkpoint 
 Resisting Cell Death: 
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  GO:0060548 – Negative regulation of cell death 
  GO:0012501 – Programmed cell death 
  GO:0010941 – Regulation of cell death 
 Disrupting Cellular Energetics: 
  GO:0006091 – Generation of precursor metabolites and  
  energy 
 Sustaining proliferative signaling: 
  GO:0007166 – Cell surface receptor signaling pathway 
  GO:0070848 – Response to growth factor stimulus 
 Tumor-Promoting Inflammation: 
  GO:0006954 – Inflammatory response 
  GO:0045321 – Leukocyte activation 
 Avoiding Immune Destruction: 
  GO:0002507 – Tolerance induction 
  GO:0001910 – Regulation of leukocyte mediated cytotoxicity 
  GO:0019882 – Antigen processing and presentation 
  GO:0002767 – Immune response-inhibiting cell surface  
   receptor signaling pathway 
 Evading Growth Suppressors: 
  GO:0007049 – Cell cycle 
  GO:0008283 – Cell proliferation 
   

 
RNA-Seq 
 
RNA extraction, purification, quality control and sequencing was performed as 
described (Sigova et al., 2013).  Reads were aligned using TopHat (Trapnell et 
al., 2009) as a paired-end library with parameters –library-type fr-firststrand –
microexon-search –coverage-search.  RNA-Seq reads were not extended for 
density analyses, and reads that mapped to exonic sequences were removed 
for the analysis on Figure 2C. 
 
 
Gene expression analysis 
 
Microarray gene expression data used on Figure S2 were previously generated 
and described (Kagey et al., 2010; Whyte et al., 2013). 
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