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Figure S1: Simplified illustration of the problem of mutational heterogeneity 
 

 
 
Figure S1.  Effect of heterogeneity in background mutation frequency on detection of 
significantly mutated genes.  Here,  a simplified exome consists of 20,000 genes, each with 
the same coding length of 1500 nucleotides, and a dataset comprises  200 patients.  The 
average background mutation frequency1 of a gene is 10/Mb, and all mutations are 
assumed to be due to the background mutation processes; there are no true driver genes.  
Two variants of this scenario are compared.   (a) Uniform model. All genes have a 
background mutation frequency (BMF) of 10/Mb.  The plot shows a histogram of genes by 
their observed mutation frequency, which follows a distribution based on stochastic 
binomial sampling. The green line indicates a significance threshold that allows a single 
false positive gene (that is, P<1/20,000), which corresponds to ~40/Mb. (b) 
Heterogeneous model. One quarter of the genes (light green) have a BMF equal to 4/Mb; 
another 50% of the genes (light blue) have a BMF of 8/Mb; and the final one quarter of the 
genes (light red) have a BMF equal to 20/Mb. Applying the same threshold for significance 
(green light corresponding to ~40 mutations/Mb), 59 genes will be called significantly 
mutated.   The heterogeneity can also decrease sensitivity. In the uniform case, a driver 
gene with a mutation rate 4-fold higher than the background rate will be detected. In the 
heterogeneous case, a true cancer gene among the low-BMF genes (green distribution) will 
not be detected unless it has a mutation rate that is 10-fold higher than its background rate. 
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Figure S2: Effect of biological factors on mutation frequencies 
 

 

Figure S2.  In some cases, heterogeneity in mutation rates can be ascribed to key biological factors.  
(a) Effect of microsatellite instability (MSI) status on mutation frequency in colorectal tumors2.  (b) 
Effect of human papillomavirus (HPV) status on mutation frequency in head-and-neck tumors3. 
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Figure S3: Concordance of genomic measures across tissue types. 
 

 
Figure S3.  Concordance of genomic measures across tissue types, illustrated on 
chromosome 14 as in Figure 3.  (a) Correlation of mutation rates in non-coding regions, 
compared across breast cancer4, colorectal cancer5, and multiple myeloma6, compared to 
the average of 126 WGS samples shown in Figure 3. (b) Correlation of expression levels 
across breast cancer, large intestine cancer, and lung squamous carcinoma (data from 
Cancer Cell Line Encyclopedia7), compared to the average of 91 CCLE cell lines shown in 
Figure 3.  (c) Correlation of DNA replication timing data in HeLa cells8 (shown in Figure 
3), and human blood cell lines9.   
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Figure S4: Six mutational spectra detected by NMF 

 
 
Figure S4.  “Lego” plots for each of the six mutational patterns determined by NMF.  Each 
plot organizes the 96 possible mutation types into six large blocks, color-coded to reflect 
the base substitution type.  Each large block is further subdivided into the 16 possible pairs 
of 5’ and 3’ neighbors, as listed in the “trinucleotide context” legend.  The height of each 
block corresponds to the mutation frequency for that kind of mutation. The patterns are 
named according to their dominant type of mutation. 
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Figure S5: Relationship between tumor types and the six mutational 
processes.  

 
Figure S5.  Heatmap showing the contribution to each tumor type from each of the six 
mutational processes (factors) discovered by NMF. For example, melanoma has a high 
weight corresponding to C→T mutations (factor 3). Cervical and bladder cancer (as well as 
head-and-neck cancer to a lesser degree) are dominated by the Tp*C mutations that 
represent the APOBEC signature (factor 4).  Gastrointestinal tumor types such as colorectal, 
esophageal, and stomach—as well as central nervous system cancers such as 
glioblastomas, low-grade gliomas, and medulloblastomas—and pancreatic cancer are 
distinguished by their elevated frequency of transitions at CpG dinucleotides (factor 5). 
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Figure S6: Samples ordered according to clustering of weights of 
mutational spectra 

 

 
 
Figure S6. Samples were clustered based on their weights of the six mutational spectra 
found by NMF (W matrix of Method S1), then displayed horizontally in the order of their 
clustering dendrogram. The top matrix shows the six factors and their contribution to each 
sample. The lower matrix shows tumor-type membership for each sample. For example, 
the tight black cluster at left (melanoma) corresponds to dominant activation of the C→T 
signature (factor 3).  Lung tumors (red) align with the C→A signature (factor 2).  A subset 
of leukemias at the extreme left of the figure (AML, cyan; and CLL, magenta) are 
distinguished by a high frequency of Tp*A→T mutations (factor 1). 
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Figure S7: Radial plot based on clustering of spectra weights 

 
 
Figure S7.  Alternate method of distributing the samples around the circle.  Instead of 
assigning angular positions based on rank order of the NMF factors (as in Figure 2), this 
figure assigns angular positions based on clustering of factor weights. The distance 
between any pair of samples was defined based on the correlation of their weights (W 
matrix of Method S1). The samples were then clustered using the average-linkage 
clustering method10. The order of samples was then based on the dendrogram from that 
clustering.   As before, tumor samples with more than 10 mutations are shown.  Again, the 
samples tended to cluster according to tumor types or subtypes with similar active 
processes, e.g. lung cancer at 12–1 o’clock, melanoma at ~3 o’clock, and samples with 
potential APOBEC activity11 between them at ~2 o’clock. Clustering results were similar 
when clustering was performed using the entire set of 96 categories (not shown); however 
reducing the dimensions and decoupling the contributions of different factors enabled 
illumination of clearer associations with distinct mutational processes (Supplementary 
Figures S5,6). 
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Figure S8: Mutational spectra of 27 tumor types. 

 
 
Figure S8.  “Lego” plots for each of the 27 tumor types investigated in the study.  
Representation is same as that used in Figure S4.  Of particular interest are the unique 
spectra of AML (tall purple bars corresponding to factor 1), bladder and cervical (elevated 
back row corresponding to factor 4), and lung cancer and neuroblastoma (raised cyan 
block, corresponding to factor 2).  
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Figure S9: Scatter plots of somatic mutation frequency against gene 
characteristics. 

 

 

Figure S9.  Six gene characteristics (Table S5) were evaluated as potential predictors of 
somatic noncoding mutation frequency.   In each case, the y-axis shows log10 of the 
somatic noncoding mutation frequency (mutations/Mb) measured from the panel of 126 
cancer samples that were subjected to whole-genome sequencing.  The x-axis shows (a) 
average expression level across 91 cell lines in the CCLE7; (b) DNA replication time8, 
expressed on a scale of 100 (early) to 1500 (late); (c) a HiC12-derived metric indicating 
which chromosomal compartment the gene is in (negative values = closed compartment 
“B”, positive values = open compartment “A”); (d) the mean sequencing depth (fold 
coverage) of the gene, measured in the panel of 126 WGS samples; (e) the mean percentage 
of bases that were covered to at least 200 fold, measured in the panel of ~3000 exome 
capture samples; and (f) the mean percent GC content of the reads that covered the gene, 
also measured from the exome samples.  Linear regression fits and coefficients (“R”) are 
indicated on the plots: see also Table S6.  Overall, the genomic characteristics (a–c) were 
much more effective predictors than the technical metrics (d–f). 
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Figure S10: Kataegis events detected in WGS data. 
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Figure S10.  Kataegis13 (or clustered mutations11) events detected in samples that were 
subjected to whole-genome sequencing.  “Rainfall plots” were constructed as described13 
for two example samples: (a) breast tumor BR-0004 and (b) multiple myeloma sample 
MM-0344.  In each of these plots, the log10 inter-mutation distances between mutations 
(ordered by chromosomal position) are plotted on the y-axis.  X-axis indicates mutation 
number.  Chromosome boundaries are shown as grey vertical divisions.  The color of each 
point tells what type of basepair change it is: C→A (cyan) , C→G (black), C→T (red), A→C 
(pink), A→G (light green), or A→T (grey).  Kataegis events, detected by identifying 
stretches of at least six mutations having inter-mutation distances at least two standard 
deviations smaller than the sample median, are indicated with blue boxes at the bottom of 
the plots.  In some cases it can be observed that the individual mutations of a kataegis event 
are all of the same category.  (c)  Summary of number of kataegis events observed per WGS 
patient genome.  In general the more highly mutated samples are seen to have larger 
numbers of kataegis events. 
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Figure S11: Transcription-coupled repair across pan-cancer dataset. 

 
 
Figure S11.  Survey of transcription-coupled repair (TCR) across the ~3000 exomes of the 
pan-cancer dataset.  In order to quantitate TCR in exomes (where only transcribed regions 
are interrogated), the ~18,000 genes were partitioned into expression tertiles (highest, 
middle, lowest) according to their average general expression level across 91 cell lines in 
the Cancer Cell Line Encyclopedia (CCLE)7.  Then, the size of the TCR effect was defined as 
the log2 ratio of mutation rate in the lowest-expression tertile divided by mutation rate in 
the highest-expression tertile.  The scatterplot x-axis shows this TCR metric, and the y-axis 
shows the log2 total number of mutations supporting each measurement, with a minimum 
of 50 mutations required for inclusion in the plot.  Each point is a sample, color-coded as in 
Figure 2.  Panels show (a) all samples, and (b) stomach and GBM tumors, highlighting a 
subclass of samples that are hypermutated and TCR-inactive (or TCR-overwhelmed14).
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 Methods S0: Sample collection and DNA sequencing analysis 
 

 
Sample Collection 

All samples were obtained under institutional IRB approval and with documented 
informed consent. A total of 3,083 tumors were analyzed, with 2,842 (92%) having been 
sequenced at the Broad Institute and the remaining 241 having been published as part of The 
Cancer Genome Atlas (TCGA) projects2,15,16. A total of 1647 were from The Cancer Genome 
Atlas (TCGA) projects (394 ovarian cancer16, 225 kidney cancer, 219 glioblastoma15, 222 
colorectal cancer2, 134 AML, 88 stomach cancer, 94 head and neck, 81 prostate, 57 lower grade 
glioma, 52 thyroid cancer, 35 bladder cancer, 20 cervical cancer, 13 pancreas, 13 lung cancer). 
An additional 956 tumors were from NHGRI Center Initiated Projects (501 lung cancer17, 141 
prostate18, 121 melanoma19, 91 CLL20, 76 esophageal21, 26 medulloblastoma22). An additional 
299 samples (121 breast4, 87 head and neck3, 49 diffuse large B-cell lymphoma23, 22 rhabdoid 
tumors24, 20 Ewing sarcoma) were from the Slim Initiative for Genomic Medicine collaboration, 
affiliated with the International Cancer Genome Consortium (ICGC). An additional 81 
neuroblastoma25 samples were from the NCI TARGET project (http://target.cancer.gov). 
Additional samples were analyzed in collaboration with research foundations: 63 multiple 
myeloma6 with the Multiple Myeloma Research Foundation and 23 carcinoid samples with the 
Care for Carcinoid Foundation.  Several whole-genome datasets were from published papers (9 
colorectal5; 5 prostate26; 5 melanoma27). A complete list of samples is given in Supplementary 
Table S2. 
 

Whole-exome capture libraries were constructed from 100ng of tumor and normal DNA 
following shearing, end repair, phosphorylation and ligation to barcoded sequencing adapters

Whole exome sequencing 

28 
29. Ligated DNA was size-selected for lengths between 200-350bp and subjected to exonic 
hybrid capture using SureSelect v2 Exome bait (Agilent). Samples were multiplexed and 
sequenced on multiple Illumina HiSeq flowcells to average target exome coverage of 118x. 
 

Whole-genome sequencing library construction was done with 1-3 micrograms of native DNA 
from primary tumor and germline samples for each patient. The DNA was sheared to a range of 
101-700 bp using the Covaris E210 Instrument, and then phosphorylated and adenylated 
according to the Illumina protocol. Adapter ligated purification was done by preparatory gel 
electrophoresis (4% agarose, 85 volts, 3 hours), and size was selected by excision of two bands 
(500-520 bp and 520-540 bp respectively) yielding two libraries per sample with average of 380 
bp and 400 bp respectively

Whole genome sequencing 

6,5,26. Qiagen Min-Elute column based clean ups were performed after 

http://target.cancer.gov/�
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each step. For a subset of samples, gel electrophoresis and extraction was performed using the 
automated Pippin Prep system (Sage Science, Beverly MA).  Libraries were then sequenced with 
the Illumina GA-II or Illumina HiSeq sequencer with 76 or 101 bp reads, achieving an average 
of ~30X coverage depth.  

 

 
Sequence data processing and quality control 

Exome and whole-genome sequence data processing and analysis were performed as follows. 
Illumina reads were aligned to the reference human genome build hg19 using an implementation 
of the Burrows-Wheeler Aligner30, and a BAM file was produced for each tumor and normal 
sample by the Picard pipeline6. The Firehose pipeline (www.broadinstitute.org/cancer/cga) was 
used to manage input and output files and submit analyses for execution in GenePattern31. 

 
Quality control modules in Firehose were used to compare genotypes derived from Affymetrix 
arrays and sequencing data to ensure concordance. Genotypes from SNP arrays were also used to 
monitor for low levels of cross-contamination between samples from different individuals in 
sequencing data using the ContEst algorithm32. 
 

The MuTect algorithm

Mutation calling 

33 was used to identify SSNVs in targeted exons and whole-genome data.  
MuTect identifies candidate SSNVs by Bayesian statistical analysis of bases and their qualities 
in the tumor and normal BAMs at a given genomic locus. We required a minimum of 14 reads 
covering a site in the tumor and 8 in the normal for declaring a site is adequately covered for 
mutation calling. We used a minimal allelic fraction cutoff of 0.1. The MuTect publication33 
describes the specificity and sensitivity of the MuTect calling algorithm, performance parameters 
that are of crucial importance to downstream analyses such as the ones reported here.  Small 
somatic insertions and deletions were detected using the Indelocator algorithm (Sivachenko, A. 
et al., manuscript in preparation) after local realignment of tumor and normal sequences34.  All 
point mutations and short indels were subjected to filtering against a large panel of normal 
samples, in order to remove common alignment artifacts that escaped the original calling 
algorithms. 
 

http://www.broadinstitute.org/cancer/cga�
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Methods S1: Dimensionality reduction and decomposition to mutational 
processes 
 
We calculated the matrix R96×3083, which represents the relative mutation frequency of each of the 
96 mutation types in each of the each of the 3,083 samples (Supplementary Table S3). 
(Specifically, for each sample s and each mutation type c, we determined ncs, the total number of 
mutations observed and Ncs, the total number of bases with adequate coverage to observe such 
mutations (≥ 14 reads in tumor and ≥8 in normal). We defined a sample specific overall mutation 
frequency as µs = Σc ncs / Σc Ncs. We then calculated the relative rate of each category as 
Rcs = (ncs / Ncs) / µs. We then performed dimensionality reduction and detection of distinct 
mutational processes on R96×3088. We used non-negative matrix factorization (NMF)35,36 to 
approximate R by a product of two non-negative matrices with lower ranks, R≈H96×K×WK×3083 
where K represents the number of spectra (different mutational patterns) used to summarize the 
data (Supplementary Figures S4, S5). K was chosen to be six because it was found to ensure 
that known mutational processes are captured as distinct spectra (such as mutations in CpG 
dinucleotides, C>A mutations in lung cancer and C>T mutations in melanoma and mutations at 
C’s in TpC dinucleotides associated with HPV in cervical and head-and-neck cancers) 
(Supplementary Figure S8); larger values of K did not significantly change the results. 
Columns of H96×6 represent the six distinct spectra and the columns of W6×3083 represent the 
relative weight of each of the six spectra (level of activation of each process) in each sample. The 
angle assigned to each sample in Figure 2 reflects the rank order of the six weights in each 
sample. For sample s, we define isr to be the index (from 1 to K) of the spectrum with the r-th 
highest weight and the angle to be αs = 2πΣK

r=1
 ir(1/K)r. In this representation, the largest weight 

thus assigns the sample to one of the six sectors around the circle, the next largest assigns it to 
one of six sub-sectors, and so on. We also compared an alternative approach in which the 
weights in W were clustered and then the angle was determined according to the clustering 
dendrogram (Supplementary Figures S6, S7).  
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Methods S2: Standard significance analysis method (MutSig1.0) 
 
The standard method for detecting significantly mutated genes, which was used in many 
publications in the past recent years1-3,5,6,15,16,20,23,26,27,37-49, is based on using a single 
average genome-wide background mutation rate µ estimated for the tumor type, and a 
number of category-specific relative rates (rc , with µc=rcµ) for mutations of a handful of 
different categories. The set of mutation categories used for analysis of the lung squamous 
cell carcinoma dataset50  was as follows: (i) transitions in C’s or G’s in CpG dinucleotides; 
(ii) transversions in C’s or G’s in CpG dinucleotides; (iii) transitions in other C’s or G’s; (iv) 
transversions in other C’s or G’s; (v) transitions at A’s or T’s; (vi) transversions in A’s or T’s; 
and (vii) small insertions/deletions, nonsense and splice site mutations.  This simple set of 
categories was chosen to be consistent with the output of the NMF procedure when run on 
the lung data alone.  Note that a more complex category set may be required for analyzing 
other datasets. 
 
In order to calculate gene-specific p-values, first a  score is calculated for each gene based 
on the observed number of mutations (n) and number of covered bases (N) in each 
category c: 
 
sg = Σc [–log10 binomial(nc, Nc, µc)] 
 
Next, a p-value is calculated for the gene by convoluting the background distributions of all 
the mutation types, and determining the probability of meeting or exceeding that score by 
background mutation alone.  Finally, in order to control the false discovery rate, the 
Benjamini-Hochberg FDR procedure51 is applied obtaining q-values. Genes with  q≤0.1 are 
typically regarded as significantly mutated.   When we applied this method (“MutSig1.0”) to 
the lung squamous cell carcinoma dataset50, it identified 450 genes as significantly mutated 
(Supplementary Table S1). 



Methods S3: Significance analysis based on covariates (MutSigCV)

MutSigCV (Mutation Significance with covariates) extends the previ-
ously described MutSig algorithm1,6,16,4. Briefly, MutSig1.54 scores every
mutation against the corresponding patient-specific background rate µp in
which it is observed. The null distribution for the gene’s score is calculated
by convoluting across patients the patient-specific null distribution based on
µp. A p-value for the gene is then calculated by comparing the observed
score to this null distribution (as described in MutSig1.01). Additionally, to
prioritize genes that are mutated in many different samples, in preference
to those having several mutations in the same sample, a scoring technique
called Projection was introduced in MutSig1.5. First, the events in each sam-
ple are summarized by projecting to a space of degrees corresponding to the
different categories of mutations it could have (or no mutations) – the lowest
degree is associated with no mutations and the degrees increase with rarity
of the event. The degree associated with each sample represents the rarest
event observed in the sample. The probability for each sample to be of each
degree is computed based on µp, and the score associated with that degree is
given by the − log(probability of the degree under the null hypothesis). As
described above, the null distribution is then calculated by convoluting the
sample-specific nulls (which also depend on µp).

The crucial advance behind MutSigCV is its accounting for gene-specific
differences in background mutation rate. It approximates the mutation fre-
quency in different genes, categories, and patients, µg,c,p, (where g represents
the gene, c the category, and p the patient), by using genomic covariates
(such as expression level and DNA replication time). For very long genes,
we can directly estimate the local background mutation rate (BMR) from
(a) synonymous mutations in the gene’s coding sequence, and (b) noncoding
mutations in the flanking UTR and intronic sequences, safely beyond func-
tional splice site mutations. However, for shorter genes, where there is not
enough data to confidently estimate the local BMR, we extended the bin-
ning approach developed previously6, where genes were binned by estimated
expression level, and an average mutation rate was calculated for each bin,
with the observation that mutation rate generally decreased with increas-
ing expression. In MutSigCV, expression data, averaged across many tissue
types in the Cancer Cell Line Encyclopedia7, is augmented with other gene
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characteristics observed empirically to co-vary with mutation rate, such as
local DNA replication time8, open vs. closed chromatin status measured by
HiC mapping12, local GC content, and local gene density (Supplementary
Table S5). Note that gene expression levels and local replication time are
highly correlated across tissue types (Supplementary Figure S3).

We have developed a general framework to encompass an arbitrary col-
lection of such covariates. Briefly, each gene is placed in a high-dimensional
covariate space, and the gene’s nearest neighbors are identified. A set of
nearest neighbors surrounding the gene of interest (which we term a bagel
of genes, to reflect the fact that the gene itself is excluded and thus the set
has a hole at its center) is built up around the original gene, and the local
BMR is re-evaluated pooling the data across the genes in the bagel, gradually
decreasing the uncertainty of the estimate as the total amount of genomic
territory reflecting the genes in the bagel increases. A stopping criterion is
imposed to balance the increased precision with the decreased accuracy (i.e.
increased bias) that results from expanding outward to increasingly distant
neighbors. Finally, a gene-specific contribution to the BMR is estimated us-
ing the frequency of synonymous and noncoding mutations in the gene plus
its surrounding bagel. This gene-specific factor is combined with patient-
and category- specific factors to yield the final estimated distribution for the
expected value of µg,c,p, calculated for each gene g, category c, and patient
p combination. These µg,c,p values are then fed into the Projection method
described above, here extended to take into account up to two mutations (in-
stead of just one) in each patient, thus allowing an extra scoring opportunity
for genes that have both alleles mutated in one or more patients (e.g. clas-
sic two-hit tumor suppressors like APC). A further advance of MutSigCV is
its propagation of measurement error in the estimate of µg,c,p, by preserving
the mutation and coverage counts separately as xg,c,p and Xg,c,p respectively,
instead of merging them in the ratio µ = x/X and thereby losing the uncer-
tainty in µ (i.e. error bars).

1 Input data

The input data to MutSigCV consists of three files. Each of these is a tab-
delimited text file with a header row.
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1.1 Mutation table

This file contains information about the mutations detected in the sequencing
project. It lists one mutation per row, and the columns (named in the header
row) report several pieces of information for each mutation. The five columns
required by MutSigCV are

• Hugo Symbol = name of the gene that the mutation was in

• Tumor Sample Barcode = name of the patient that the mutation was
in

• categ = number of the category that the mutation was in (categories
must match those in the coverage table)

• is coding = 1 (the mutation in a coding region or splice-site) or 0 (the
mutation is in a noncoding flanking region)

• is silent = 1 (the mutation is a synonymous change) or 0 (the mu-
tation is a coding change or is noncoding)

For the specific data file used in the present manuscript, the category
numbers in categ are

1. transition mutations at CpG dinucleotides

2. transversion mutations at CpG dinucleotides

3. transition mutations at C:G basepairs not in CpG dinucleotides

4. transversion mutations at C:G basepairs not in CpG dinucleotides

5. transition mutations at A:T basepairs

6. transversion mutations at A:T basepairs

7. null+indel mutations, including nonsense, splice-site, and indel muta-
tions

Categories 1-6 correspond to the mutation categories discovered in the
NMF mutation spectrum analysis described in the main text.
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1.2 Coverage table

This file contains information about the sequencing coverage achieved for
each gene and patient. Within each gene-patient bin, the coverage is broken
down further according to the category (e.g. A:T basepairs, C:G basepairs),
and also according to the zone (silent/nonsilent/noncoding). The columns
of the file are

• gene = name of the gene that this line reports coverage for

• zone = either silent, nonsilent, or noncoding

• categ = number of the category that this line reports coverage for
(must match the categories in the mutation table)

• PATIENT1 NAME = number of covered bases for PATIENT1 in this
gene, zone, and category

• PATIENT2 NAME = number of covered bases for PATIENT2 in this
gene, zone, and category

• . . .

• PATIENTnp NAME = number of covered bases for PATIENTnp in
this gene, zone, and category

Note, covered bases will typically contribute fractionally to more than one
zone depending on the consequences of mutating to each of three different
possible alternate bases. For example, a particular covered C base may count
2
3

toward the nonsilent zone and 1
3

toward the silent zone, if mutation
to A or G causes an amino acid change whereas mutation to T is silent
(synonymous).

1.3 Covariates table

This file contains the genomic covariate data for each gene, for example
expression levels and DNA replication times, that will be used in MutSigCV
to judge which genes are near to each other in covariate space. In general,
the columns of this file are

• gene = name of the gene that this line reports coverage for
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• COVARIATE1 NAME = value of COVARIATE1 for this gene

• COVARIATE2 NAME = value of COVARIATE2 for this gene

• . . .

• COVARIATEnv NAME = value of COVARIATEnv for this gene

For the specific data file used in the present manuscript, the columns are

• gene = name of the gene that this line reports coverage for

• expr = expression level of this gene, averaged across many cell lines in
the Cancer Cell Line Encylcopedia

• reptime = DNA replication time of this gene, ranging approximately
from 100 (very early) to 1000 (very late)

• hic = chromatin compartment of this gene, measured from HiC ex-
perment, ranging approximately from -50 (very closed) to +50 (very
open)

Note, gene and patient names must agree across these three tables. Sim-
ilarly, the categ category numbers must agree between the mutation table
and the coverage table.

2 Algorithmic procedure

2.1 Representation of data matrices

In the first step of the algorithm, the input data files are loaded from disk and
converted in memory to the following matrix forms. The matrix indices g, c,
p, v range from 1 to ng, nc, np, nv, representing the total number of genes,
categories, patients, and covariates respectively. The special case c = nc + 1
is used to represent the total counts. For mutation counts n, this is simply
the sum across 1 to nc. However, for coverage counts N , the total may
be different than the sum across 1 to c, due to categories with overlapping
territories, e.g. the territory of A:T mutations (which can happen at any
A:T basepair) is included within the territory of indel mutations (which can
happen at any basepair). In practice, the total coverage N will be equal to
the coverage of the null+indel category.
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2.1.1 Mutation counts

The mutation table is converted to the following three matrices

nsilent
g,c,p

nnonsilent
g,c,p

nnoncoding
g,c,p

Each of these n matrices represents the number of mutations for a given gene
g, category c, and patient p.

2.1.2 Coverage counts

The coverage table is converted to the following three matrices

N silent
g,c,p

Nnonsilent
g,c,p

Nnoncoding
g,c,p

Each of these N matrices represents the number of covered sequenced bases
for a given gene g, category c, and patient p.

2.1.3 Covariate values

The covariate table is converted to the following matrix

Vv,g

It represents the value of covariate v for gene g.

2.2 Embedding of genes in covariate space

In the next step of the algorithm, each covariate is converted to a Z-score,
i.e. centered and normalized, by subtracting the mean and dividing by the
standard deviation across genes.
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Zv,g =

Vv,g − 1
ng

ng∑
i=1

Vv,i√
1

ng−1

ng∑
j=1

(
Vv,j − 1

ng

ng∑
i=1

Vv,i

)2

Each gene is now represented as a point in Rnv , such that the coordinate
v of gene g is equal to Zv,g. Pairwise distances between genes are calculated
in Euclidean fashion, such that the distance between genes i and j is

Di,j =

√√√√ nv∑
v=1

(Zv,i − Zv,j)2

2.3 Local regression using bagels

In this step of the computation, the local BMR (background mutation rate)
of each gene is estimated from the silent and noncoding mutations of the gene
itself, plus (if necessary) those of its neighbor genes in the covariate space.
First, silent and noncoding mutations are pooled together across patients
and categories to yield the following background (bkgd) counts

nbkgd
g =

np∑
p=1

(nsilent
g,c+1,p + nnoncoding

g,c+1,p )

N bkgd
g =

np∑
p=1

(N silent
g,c+1,p + Nnoncoding

g,c+1,p )

Note, as mentioned above, here c + 1 indicates the total counts across
categories.

For each gene, a bagel of the closest neighboring genes in the covariate
space is chosen, such that all of the genes in the bagel do not disagree with
the BMR (background mutation rate) estimated for the gene itself. The
neighbor genes in the bagel of gene g are represented as the largest set Bg

that meets these criteria

∀(i ∈ Bg, j /∈ Bg)(Dg,i ≤ Dg,j)

and
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∀(i ∈ Bg)(Qi,g ≥ Qmin)

and

|Bg| ≤ nmax
B

where nmax
B , the maximum neighbors, is defined to be 50, and Qmin, the

minimum quality, is defined to be 0.05. Qi,g is the two-sided p-value for
comparing the BMRs of gene i and the center gene g given their observed
mutation and coverage counts.

Qi,g = 2 min(Qleft
i,g , 1−Qleft

i,g )

Qleft
i,g = HC(nbkgd

i , N bkgd
i , nbkgd

g , N bkgd
g )

HC is the cumulative form of the beta-binomial distribution H.

HC(n1, N1, n2, N2) =

n1∑
n=0

H(n, N1, n2, N2)

H is the beta-binomial probability mass function

H(n1, N1, n2, N2) =

(
N1

n1

)
B(n1 + α, N1 − n1 + β)

B(α, β)
=

=
Γ(N1 + 1)Γ(N2 + 2)Γ(n1 + n2 + 1)Γ(N1 + N2 − n1 − n2 + 1)

Γ(n1 + 1)Γ(n2 + 1)Γ(N1 − n1 + 1)Γ(N2 − n2 + 1)Γ(N1 + N2 + 2)

where α = n2 + 1, β = N2 − n2 + 1 and Γ is the gamma function. Note that
H is normalized, i.e.

∑N1

n1=0 H(n1, N1, n2, N2) = 1.
Finally, the total background counts xg and Xg for the gene are calculated,

given the background counts in the gene itself plus its bagel (note, it is
possible for a gene to have no genes in its bagel).

xg = nbkgd
g +

∑
i∈Bg

nbkgd
i

Xg = N bkgd
g +

∑
i∈Bg

N bkgd
i
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2.4 Incorporation of category- and patient-specific rates

In this section, category- and patient-specific background mutation rates are
calculated and combined with the per-gene xg and Xg background counts
from the previous section.

First, mutations and coverage are summed across the three zones to yield
total counts

ntotal
g,c,p = nsilent

g,c,p + nnonsilent
g,c,p + nnoncoding

g,c,p

N total
g,c,p = N silent

g,c,p + Nnonsilent
g,c,p + Nnoncoding

g,c,p

Totals are calculated across genes

ntotal
c,p =

ng∑
g=1

ntotal
g,c,p

N total
c,p =

ng∑
g=1

N total
g,c,p

and across patients

ntotal
c =

np∑
p=1

ntotal
c,p

N total
c =

np∑
p=1

N total
c,p

to yield marginal category-specific mutation rates

µc =
ntotal

c

N total
c

and the overall total mutation rate

ntotal
overall = ntotal

c+1

N total
overall = N total

c+1

µoverall =
ntotal

overall

N total
overall
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Patient-specific marginal mutation rates are calculated

ntotal
p = ntotal

c+1,p

N total
p = N total

c+1,p

µp =
ntotal

p

N total
p

and relative category- and patient-specific rates f are calculated by nor-
malizing to µoverall

fc =
µc

µoverall

fp =
µp

µoverall

Also, the relative amounts of covered territory fN per category and pa-
tient are calculated. The category-specific territory is normalized to the total
overall territory, and the patient-specific territory is normalized to the mean
patient-specific territory.

fN
c =

N total
c

N total
overall

fN
p =

N total
p

1
np

N total
overall

Finally, xg,c,p and Xg,c,p are estimated by the product of marginal relative
rates and xg and Xg:

xg,c,p = xgfcfpf
N
c fN

p

Xg,c,p = Xgf
N
c fN

p

2.5 Calculation of gene p-values using 2-D Projection
method

For each gene, the mutational signal from the observed nonsilent counts are
compared to the mutational background estimated above. This is done by
first calculating how likely it would be by chance for each sample to have a
mutation in each of the categories.
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P (0)
g,c,p = H(0, Nnonsilent

g,c,p , xg,c,p, Xg,c,p)

P (1)
g,c,p = H(1, Nnonsilent

g,c,p , xg,c,p, Xg,c,p)

P (2+)
g,c,p = 1− P (0)

g,c,p − P (1)
g,c,p

H is the same beta-binomial probability mass function defined earlier.
P

(0)
g,c,p is the probability that in this gene g, patient p, has zero mutations in

category c. P
(1)
g,c,p is the probability of exactly one mutation, and P

(2+)
g,c,p is the

probability of two or more.
Next, within each patient, mutation categories are sorted into an order

of priorities according to P (1). The categories are sorted from the category
most likely by chance (lowest priority), to the category least likely by chance
(highest priority). Each patient is projected to a two-dimensional space of
degrees Dg,p = (d1, d2), taking into account up to two of its mutations, with
the mutations prioritized by category as described, i.e. the two with the
highest priorities (d1 ≥ d2). For example, a sample of degree (0,0) has no
mutations. A sample of degree (1,0) has one mutation, and that mutation is
of the lowest-priority category. A sample of degree (nc,0) has one mutation,
and that mutation is of the highest-priority category. A sample of degree
(nc,nc) has at least two mutations of the highest-priority category. Then,
in order to compute the distribution of patient degrees expected under the
estimated model of background mutation, the probability is calculated for
each patient to be of each degree by chance

P (d1,d2)
g,p =



nc∏
d=1

P
(0)
g,d,p, if d1 = 0, d2 = 0

P
(1)
g,d1,p

d1−1∏
d=1

P
(0)
g,d,p

nc∏
d=d1+1

P
(0)
g,d,p, if d1 > 0, d2 = 0

P
(1)
g,d1,p(P

(1)
g,d2,p + P

(2+)
g,d2,p)

d1−1∏
d=d2+1

P
(0)
g,d,p

nc∏
d=d1+1

P
(0)
g,d,p, if d1 > 0, 0 < d2 < d1

P
(2+)
g,d1,p

nc∏
d=d1+1

P
(0)
g,d,p, if d1 > 0, d2 = d1

0 (impossible by definition), if d2 > d1

Each degree is also associated with a score S.
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S(d1,d2)
g,p =



0, if d1 = 0, d2 = 0

Snull − log10 P
(1)
g,d1,p, if d1 > 0, d2 = 0

Snull − log10 P
(1)
g,d1,p − log10 P

(1)
g,d2,p, if d1 > 0, 0 < d2 < d1

Snull − log10 P
(2+)
g,d1,p, if d1 > 0, d2 = d1

0 (impossible by definition), if d2 > d1

where Snull represents the null score boost added to scores associated
with the presence of a null mutation, reflecting the increased value of a null
mutation towards the total evidence of a gene’s driver potential.

Snull =

{
0, if d1 < nc

+3, if d1 = nc

The gene is assigned a total overall score for the observed configuration of
patient degrees, by summing the scores associated with the observed degree
D of each patient.

Sobs
g =

np∑
p=1

S
Dg,p
g,p

Emin

where Emin is the minimum effect size considered sufficient evidence for
positive selection in the gene. A value of Emin = 1.25 is used, corresponding
to a required +25% effect size. Smaller effect sizes are treated as falling
within the noise regime of the data.

In order to determine the probability of obtaining a given score by chance,
i.e. from background mutation alone, a null distribution of scores is calcu-
lated by convolution. First, within each individual patient p, the null distri-
bution of scores for that patient is computed by convoluting the probabilities
and scores of each possible degree

P (S=x)
g,p =

nc⊗
d1=0

nc⊗
d2=0

P (d1,d2)
g,p δ(x− S(d1,d2)

g,p )

where δ is the Dirac delta function. Then, the distributions for each
patient are convoluted together to obtain the overall null distribution for the
gene.
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P (S=x)
g =

np⊗
p=1

P (S=x)
g,p

The p-value of the gene, i.e. the probability of obtaining at least the
observed score by chance, is given by

P (S≥Sobs)
g =

∞∫
Sobs

g

P (S=x)
g dx

In practice, it is easier to compute this by calculating the probability of
obtaining less than the observed score and subtracting from one.

P (S≥Sobs)
g = 1−

Sobs
g∫

0

P (S=x)
g dx

2.6 Calculation of False Discovery Rate

Each gene is assigned a q-value, i.e. False Discovery Rate, using the method
of Benjamini and Hochberg51. Genes with q ≤ 0.1 are considered to be
significantly mutated.

3 Output data

The output of the algorithm is a table listing the genes with their p- and
q-values, ordered by p-value.
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Table S1: Lung cancer genes called significantly mutated under the naive 
model 
 
Table S1 (see Excel spreadsheet tab 1).  List of 450 genes declared to be significantly 
mutated in lung squamous cell carcinoma (see text), when using the standard analytical 
approach (Supplementary Method S2), which fails to account for important sources of 
heterogeneity in mutational processes.  Genes known to be involved in lung squamous cell 
carcinoma are shown in green; other known cancer genes are shown in blue.  Olfactory 
receptors are shown in red. Other particularly suspicious genes are shown in orange. 

Table S2: Cancer samples analyzed 
 
Table S2 (see Excel spreadsheet tab 2).   List of the 3,083 cancer samples analyzed in this 
study.  Each sample is listed with its name, tumor type, and whether it underwent whole-
exome or whole-genome sequencing.  Also listed are the number of somatic coding 
mutations, and the somatic coding mutation rate.  These mutations are then broken down 
into the six categories shown at the bottom of Figure 1. 
 

Table S3: Mutation spectrum of each sample 
 
Table S3 (see Excel spreadsheet tab 3).   List of the 2,892 samples having at least 10 
somatic coding mutations each, as shown in Figure 2.  The mutations of each sample are 
broken down into the six color-coded categories from Figure 1, and then further into the 
16 contexts distinguished by the identity of the 5’ and 3’ nucleotide neighbors.  These are 
the 96 categories of the “Lego” plots (Supplementary Figures S4, S8).  For instance, the 
first category “ACAtoAAA” refers to C→A mutations in the context Ap*CpA, i.e. both the 5’ 
and 3’ neighbors of the mutating cytosine are adenosine.  The top of row of the table 
(“coverage”) lists the average number of coding basepairs in the exome that were covered 
to sufficient depth in DNA sequencing. 
 

Table S4: Genomic windows and their characteristics 
 
Table S4 (see Excel spreadsheet tab 4).   The hg19 genome was broken down into 
nonoverlapping windows of 100Kb.  These windows are listed, along with their 
 average expression level across 91 cell lines in the CCLE7, their DNA replication time8, 
expressed on a scale of 100 (early) to 1500 (late), and their average noncoding mutation 
frequency (mutations per bp), measured from the panel of 126 cancer samples that were 
subjected to whole-genome sequencing.  
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Table S5: Genes and their characteristics 
 
Table S5 (see Excel spreadsheet tab 5).   Genes are listed with their chromosomal 
coordinates, their average expression level across 91 cell lines in the CCLE7, their DNA 
replication time8, expressed on a scale of 100 (early) to 1500 (late), and their average 
noncoding mutation frequency (mutations per bp), measured from the panel of 126 cancer 
samples that were subjected to whole-genome sequencing.  Also listed for each gene are 
the local GC content in the genome (measured on a 100kB scale), a HiC12-derived metric 
indicating which chromosomal compartment the gene is in (negative values = closed 
compartment “B”, positive values = open compartment “A”).  Finally, a number of technical 
metrics for each gene are listed, relating to the efficiency and depth of the sequencing 
process.  Correlations between mutation frequency and the various gene characteristics are 
summarized in Table S6. 

Table S6: Correlations of somatic mutation frequency with gene 
characteristics 
 
Table S6 (see Excel spreadsheet tab 6).   The gene characteristics in Table S5 were 
evaluated to determine which were useful predictors of somatic noncoding mutation 
frequency.  For single-variable regressions, scatterplots and linear regressions were 
evaluated as in Figure S9.  Regression coefficients “R” are listed in the table.  The strongest 
predictor of mutation frequency was DNA replication time, yielding a correlation of 0.60.  
Expression level and HiC chromatin compartment were just behind this in predictive 
power, with correlations of 0.53 and 0.54 respectively.  For multivariate regressions, the 
MATLAB “regress” function52 was used to find the best fit to the set of covariates being 
evaluated.  This fit was then used to predict the mutation frequency, and the coefficient “R” 
was calculated for the correlation of the predicted and observed mutation frequencies.  In 
general,  the multivariate regressions yielded only a modest improvement (Rmax = 0.66) 
over the single-variable fits, reflecting the fact that the genomic characteristics were highly 
mutually correlated.  Finally, a number of technical metrics from the WGS and hybrid 
capture sequencing technology were evaluated as possible covariates / confounders in the 
analysis.  For WGS, the metrics were: mean sequencing depth, read length, fraction of 
paired reads, and percent of bases above 20X coverage.  For hybrid capture, they were:  the 
on-target rate (defined stringently as the number of reads that overlapped one of the gene’s 
exons, divided by the total number of reads that overlapped the gene), the mean 
sequencing depth, the percent of bases covered at various thresholds from 20X to 300X, 
and finally the mean GC content of the reads for that gene.  These technical metrics were 
generally uncorrelated (|R|<0.2) to mutation frequency, and thus much less useful in the 
analysis.   
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Table S7: Performance survey across variants of MutSig algorithm 
 
Table S7 (see Excel spreadsheet tabs 7 and 8).  Several variants of the MutSig algorithm 
were compared, using the lung squamous cell carcinoma dataset50 as a benchmark.  Each 
version was run on the entire set of ~18,000 genes in the genome, and the total number of 
genes called significantly mutated (q<0.1) is reported in line 9 of the spreadsheet.   A set of 
40 “indicator” genes were selected as an additional useful readout of the performance of 
the algorithm, and are listed from lines 11 onward.  The two tabs of the table (tabs 7 and 8) 
show p-values and q-values respectively.  Colored cells indicate genes that were found to 
be significantly mutated (q<0.1) in each analysis.  Colors distinguish the various subsets of 
indictator genes.  From top to bottom, dark green genes are known from previous studies 
to be involved in lung cancer.  Light green genes are known to be involved in other cancer 
types.  Grey genes have unknown cancer association status.  Red genes (e.g. titin, mucins, 
ryanodine receptors, cub and sushi domain proteins) are the dubious hits discussed in the 
main text, i. e. genes with very low expression and/or very late replication times, which 
tend to have elevated gene-specific background mutation frequencies, and represent false-
positive findings in the significance analysis.  Different variants of methods for significance 
analysis are shown in columns from left to right. (1) the original MutSig1.0 algorithm1 
(Method S2), which found the 450 significantly mutated genes listed in Table S1, including 
all the known cancer genes but also a huge number of spurious hits.  (2) the MuSiC 
algorithm38 using convolutions, which is a reimplementation of the MutSig1.0 method.  This 
method found 789 significantly mutated genes.  (3) the MuSiC algorithm replacing the 
convolutions with a likelihood ratio test (LRT), also described previously1.  This method 
identified 3,318 significantly mutated genes.  (4) the MuSiC algorithm using Fisher’s 
method of combining p-values, which identified 216 significantly mutated genes and 
missed some known cancer genes.  Note, the MuSiC algorithm reports a gene as 
significantly mutated if at least two out of its three submethods called the gene significant.  
Applying this criterion, MuSiC finds an overall list of 721 significantly mutated genes.  We 
also ran MuSiC with sample-specific background rates; this did not improve the results 
(data not shown).  The fundamental problem causing the inflated list of significant genes, as 
with MutSig1.0, is its assumption of a single genome-wide background mutation rate per 
category and/or per patient.  (5) the early refinement MutSig1.5, which take into account 
gene-specific nonsilent-to-silent mutation ratios_ENREF_2223.  This reduced the gene count 
to 150 and eliminated many of the dubious hits, but also lost some of the known cancer 
genes. (6) regression version of MutSigCV (“with covariates”), where three gene 
characteristics (expression level, DNA replication time, and HiC chromatin compartment, 
Table S5) were used in a multivariate linear regression (Table S6) to predict the gene-
specific mutation frequency.  This reduced the gene count to 50, but was overall 
unsuccessful in enriching known cancer genes over spurious hits; (7) standard version of 
MutSigCV, where the multivariate linear regression method was replaced by the local 
nonlinear regression “bagel-finding” technique described in detail in Method S3.  This 
method was judged to produce the best results out of the MutSig variants.  It found a total 
of 11 significantly mutated genes, including all the known cancer genes, and none of the 
dubious genes.  (8) The same analysis as the previous column, but with the bagel-finding 
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procedure supplemented by three additional covariates, techinical metrics from the 
sequencing process: mean WGS sequencing depth, mean percent of bases covered at >200X 
in capture sequencing, and mean GC content of capture reads (Table S5).  Addition of these 
technical covariates had only a modest effect on the results, with the loss of NOTCH1 and 
HLA-A, the total number of significantly mutated genes falling from 11 to 9.  (9) Variation 
of MutSig that estimates the gene-specific mutation frequency directly from the silent and 
flanking (intronic/UTR) mutations of each gene itself, without the assistance of “bagels”.  
To optimize this estimate, the silent+flanking mutations of all patients were added together 
(pooled).  This approach missed several known cancer genes: PIK3CA, NFE2L2, RB1, 
NOTCH1, and FBXW7.  In other words, using neighbor genes in covariate space can mitigate 
some of the damage to a gene’s significance level that is caused by that gene having by 
chance a modest number of silent and/or flanking mutations.  (10) Repeat of the previous 
column, but with patients kept segregated from each other.  In this approach, each patient 
is scored separately as to whether it has a higher rate of functional (nonsilent coding) 
mutations over its rate of nonfunctional (silent + flanking) mutations.  This removes the 
advantage of pooling evidence across patients, and leads to the identification of only a 
single significantly mutated gene: TP53.  (11) Same as previous column, but with an even 
more stringent criterion for each patient: it must show a higher rate of functional 
(nonsilent coding mutations divided by nonsilent coding territory) mutations over its total 
mutation rate (all mutations divided by all territory).  This approach corresponds to the 
extremely stringent “InVEx” method developed previously19 in reaction to the very high 
mutation rate of melanoma.  It identified no significantly mutated genes in the lung dataset, 
not even TP53.  In order for this approach to produce useful findings it requires 
supplementing with external data about the likely functional impact of individual 
mutations, e.g. from PolyPhen19,53; as a purely statistical approach it is underpowered. 
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