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File contains supplementary methods, along with Supplementary Tables 1-4 and
Supplementary Figures 1-6.

RNAcompete pool design

This description is partially redundant with the online methods but adds additional
details.

The RNA pool design is related to our previous design'! except that highly stable
RNA stem-loop structures were replaced with larger numbers of unstructured
probes. To generate this new probe set, we started with a de Bruijn sequence of
order 11 (generated using Linear Feedback Shift Registers®® with the primitive
polynomial

X T e T e D P e X+ 7 +X7) [Primitive
polynomial was downloaded from http://fchabaud.free.fr/English/Poly], and then
partitioned it with sliding windows of 35nts, while overlapping by 10 nts to prevent
the loss of any 11-mers and prepending each probe with the T7 initiator (AGA or
AGG) that forms a less structured probe of length 38nt. This resulted in 167,773
probes. We identified less structured probes using RNAshapes® with the option
to enumerate all secondary structures with free energies within 70% of the
minimum free energy (MFE) with the following call: RNAshapes -s —c 70.0
—r —M 30 —t 1 —o 2. We then summed the probabilities of the structures
(output by RNAshapes) with free energies less than -2.5 kcal /mol, and used this
value to quantify “structuredness”: if this value is larger than 0.5, that probe is
classified as “strongly structured”. Based on this, there were 130,936 strongly
structured probes and 36,837 weakly structured probes.

We applied a series of strategies to ensure that each 9-mer was represented in a
weakly structured context at least 16 times. First, we split each of the strongly
structured probes into two equal fragments of length 19nt. Let [i-j] represent the
subsequence starting from index i and ending at index j, inclusive. We fixed the
prefixes([1-19]) of the probes and tried swapping the suffixes ([20-38]) using a
greedy algorithm to match prefixes and suffixes. This succeeded in forming
98,602 weakly structure probes, leaving 32,334 strongly structured. Then, we
recombined the fragments [4-19] and [20-38] from two strongly structured
probes, and prepended the T7 initiator sequence that results in a less structured
probe. This step produced an additional 8,260 weakly structured probes. Third,
we merged 16-mers that span the breakpoints of strongly structured probes (8
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bases on either side). We were able to merge 107,070 16-mers that resulted in
53,535 weakly structured probes. We combined all the weakly structured probes
and calculated the distribution of 9-mer occurrences. For 65,723 9-mers
(including repeats) that were represented less than 16 times, we attempted to
increase the number of occurrences by merging four 9-mers or three 9-mers into
a single probe. For the 9-mers that did not result in a weakly structured probe
when merged, we designed probes that each contain one missing 9-mer using
RNAinverse (from the Vienna RNA package®). The final probe set contained
214,948 weakly structured probes.

Similar to the previous RNAcompete design, we sought two replicate sets for
robustness and evaluation purposes. Therefore, we attempted to divide the
probe set into two sets (i.e. Set A and Set B) with a balanced distribution of 9-
mer occurrences. To do this, we first randomly assigned probes to Set A or Set
B, and then greedily swapped individual probes between Set A and B to attempt
to correct imbalances in their 9-mers distributions, and continued swapping
probes until the 9-mer distributions were as balanced as possible. After this
greedy swapping step, Set A had 105,527 probes and Set B had 106,558
probes. Finally, to ensure that each 9-mer appears at least 8 times in any of the
sets, we added more probes (3804 for Set A and 3538 for Set B) formed by
merging three 9-mers.

Our next step was to remove probes that could lead to microarray cross-
hybridization or RNA-RNA interactions in the pool. We ran MegaBLAST (version
2.2.20 with command line parameters(-W 12 -D 3 -g -S 3)) in order to identify
matches with at least 14 consecutive bases, or with at least 17 bases with at
least 12 consecutive bases, to other sequences in either the forward or reverse
orientation. Some probes can match to many other probes because the same set
of 9-mers tends to get merged in the same probe when we try to combine three
or four 9-mers. We removed the probes that have matches to at least four other
probes. For probes with less than four matches, we attempted to disrupt the
matches by modifying the two bases in the middle of matching subsequences.
Among the 15 (except the original probe from 16 possible modifications) modified
probes, we kept the ones that are weakly structured. We also checked for
matches between the set of modified probes and the original probe set, and
removed the modified probes that have matches to the original probe set. Then,
we checked the distribution of 9-mers and designed probes to add missing 9-
mers either by merging three 9-mers or designing a single probe for a single 9-
mer (using RNAinverse) when merging was not possible. After the addition of
these new probes, we re-ran MegaBLAST and repeated the procedure described
above. During this iterative process, we also made sure that the Sap1 restriction
sites did not appear in newly designed probes. We fixed the probe set once each
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9-mer was represented at least 8 copies in each set. There were 109,642 probes
in Set A and 110,348 probes in Set B. Since we had more space in the array, we
duplicated some of the probes and ended up with 120,326 probes in Set A and
121,031 probes in Set B. Lastly, we added 22 control sequences which are
known targets for a set of RBPs. The final Set A and Set B each contained at
least 8 copies of each 9-mer, 33 copies of each 8-mer and 155 copies of
each 7-mer. There remained 2,858 strongly structured probes (containing 9-
mers that are self-structured) in the final design.

Protein cloning

RBP cDNA inserts were cloned into the multiple-cloning site of pDEST15 based
expression vectors, pTH5325%" and pTH6838 (a derivative of pTH5325
engineered with additional restriction enzyme sites to facilitate cloning), using
standard molecular biology techniques. The vector map and sequence for
pTH6838 is posted on our Supplementary Data page
(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/).
Primers were designed to amplify DNA corresponding to full-length RBPs and
various RBP fragments, based on boundaries defined by Pfam (as described in
supplementary section “Derivation of sequence similarity rules and construction
of cisBP-RNA”). We initially investigated three types of constructs: (1) full-length
proteins; (2) “core” RNA-binding regions (RBRs) which we defined to consist of a
contiguous region containing all RBDs in a given RBP; (3) discrete RBDs (e.g.
RBD1 and RBD2 etc. in separate constructs, for instances where an RBP
contains multiple RBDs). We cloned RBRs and discrete RBDs with either an
additional 90 or 150 bp (i.e. 30 or 50 amino acid residues) of respective 5'- and
3'- flanking sequence from corresponding cDNA or RNA templates, as structural
studies have demonstrated that amino acids neighboring an RBD can impact
RNA-binding affinity and specificity *> *°. Preliminary RNAcompete analysis of 62
constructs from a panel of 19 drosophila RBPs indicated that when successful,
RBRs and full length RBPs yield comparable RNAcompete data, whereas the
majority of discrete RBDs do not pass internal RNAcompete quality control
checks. We found the success rate of RBRs in RNAcompete assays to be
slightly higher (~1.25-fold) than full-length RBPs, and >4-fold higher than discrete
RBDs (Table S1). In addition, cloning and purification of RBRs was more
reliable and efficient than full-length RBPs. Thus, most of the constructs used in
this study contain RBRs. Note that we also used some inserts from collaborators
that did not satisfy these guidelines, and that we only included flanking sequence
up to the start or end of the annotated coding region of the protein. The
sequences of all inserts and their source are compiled in Supplementary Data
2.
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RNAcompete assay

The RNA pool generation, RNAcompete pulldown assays, microarray
hybridizations, and microarray data quantification were performed as previously
described'" with the following exceptions: (i) the common 3’-end linker from the
dsDNA pool was removed by digestion with BspQl instead of Sapl and (ii) GST-
tagged RBPs and RNA pool were typically incubated in 1 mL of Binding Buffer
(20 mM Hepes pH 7.8, 80 mM KCI, 20 mM NaCl, 10% glycerol, 2 mM DTT, 0.1
ug/uL BSA) containing 20 uL glutathione sepharose 4B (GE Healthcare) beads
(washed 3 times in Binding Buffer) for 30 minutes at 4°C, and subsequently
washed four times for two minutes with Binding Buffer at 4°C. In some instances,
alternative binding and washing conditions were used; these are listed together
with individual experiments and hybridizations are listed in Supplementary Data
2

Normalization of probe intensities

This section is partially redundant with the online methods but adds additional details.

Hybridizations were batched based on whether or not they used the same initial
RNA pool because arrays using the same pool tended to require similar
normalization. Each batch was represented as a matrix where rows correspond
to probes and columns are the pulldown intensities of each RBP profiled in that
batch. Note that we treated the red and green channels of the array as separate
one colour hybridizations. From this matrix, we set to NaN elements
corresponding to probes that we identified by visual inspection whose intensities
were affected by spatial trends or image analysis artifacts. Then, to correct for
any differences in laser power and to ensure that abundance estimates in each
column were in the same scale, we applied a separate global normalization to
each column. Specifically, we applied an affine transformation to each column
(i.,e. we added a bias and rescaled the elements of the column) so that the
median and inter-quartile range (IQR) of each column was equal to the median of
the column medians and the median of the column IQRs, respectively. To correct
for differences in the RNA oligo abundances in the initial RNA pool, we then
performed a row normalization. Specifically, we subtracted the row median from
each element in the row and then divided by a robust estimate of the standard
deviation, which we set equal to 1.4826 times the median absolute deviation of
the row. We call this row normalization a robust z-transform. We found — based
on visual inspection of motifs and reproducibility of 7-mers scores for the same
RBPs within and across batches — that the robust z-transform provided a better
correction for differences in the abundances of RNA oligos in the initial pool than
dividing by a direct measurement of the oligo abundances from a microarray
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(data not shown). As a final normalization, so that we could interpret the
normalized probe intensities in a column as z-scores, we performed a robust z-
transform on the column.

Testing stability of RBFOX1 target transcripts by qRT-PCR

To generate stable cells expressing doxycycline-inducible human RBFOX1, Flp-
in™.-293 cells (Invitrogen) were co-transfected with the pOG44 Flp recombinase
expression vector along with a modified gateway-compatible pcDNAS-FRT-FLAG
vector containing human RBFOX1 cDNA (NM_018723), using Lipofectamine
2000 (Invitrogen) transfection reagent. Stable cells were selected with 200 pg/mL
hygromycin B for roughly 2 weeks after which stably expressing colonies were
pooled.

To test the effects of RBFOX1 on transcript stability, reporter constructs
containing the CADPS (NM_003716) 3-UTR were generated. CADPS 3'UTR
sequences (MRNA nucleotide positions 4423-4773), containing either a wild-type
(UGCAUG) or mutant (UGAGUC) RBFOX1 site (nucleotide position 4472), were
cloned into the unique Xbal site of the pGL4.13 (Promega) mammalian luciferase
expression vector.

Stable cells expressing RBFOX1 were plated in 6-well plates. To reduce the
potential for RBFOX1-redundant regulators, 24 hours after plating, the cells were
transfected with 30 nM of RBFOX2-targeting siRNA (SIGMA-ALDRICH: siRNA
ID SASI_Hs01_00242056). After 18 hours, 1 pg/mL of doxycycline was added to
half of the cells to initiate RBFOX1 production. Six hours after initiating RBFOX1
expression, cells were transfected with 1 pg of stability reporter along with 250 ng
of pmCherry-C1 plasmid as transfection control. 42 hours after plasmid
transfection cells were treated with 10 yM Actinomycin D for 6 hours to halt
transcription prior to harvest.

Total RNA was extracted from cells using TRI reagent (SIGMA-ALDRICH) and
treated with DNasel (Roche Applied Science). For quantitative gqRT-PCR, cDNA
was generated using 500 ng of DNasel-treated total RNA using SuperScriptll|
Reverse Transcriptase (Invitrogen). gRT-PCR was performed in a 384-well plate
using 20ng of cDNA per reaction and FastStartUniversal SYBR Green Master
(Roche Applied Science). Levels of luciferase transcript were normalized to the
levels of mCherry transfection control. Primer sequences used for the gqRT-PCR
reactions are available upon request.
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Figure S1. Data supporting the in vivo relevance of individual RBFOX1
binding sites in transcripts.

(a) Relative abundance of RBFOX1 predicted targets in RBFOX1 RNAi data®.
Transcripts are binned according to the number of sites in the 3'UTR. Error bars
indicate 25" and 75™ percentile of the distribution. The differences between 0-1,
0-2, and 0-3 are all significant (P < 0.01, one-sided T-test). (b) Testing stability
of RBFOX1 target transcripts by gRT-PCR. Cells expressing recombinant
RBFOX1 under doxycycline control were sequentially transfected with RBFOX2-
targeting siRNAs and pGL4.13 (Promega) mammalian luciferase expression
vector encoding luciferase fused to CADPS 3'UTR containing either a wild-type
or mutant RBFOX1 site, along with a constitutively-expressed mCherry
transfection control plasmid. 6 hours before harvesting, transcription was shut off
by treating cells with 10 yuM Actinomycin D. Levels of luciferase transcript fused
to either wild-type or mutant 3'UTR (wt/mut) in the presence or absence of
doxycycline-induced RBFOX1 expression (-/+ Dox) was quantified using qRT-
PCR. Transcript levels were normalized to mCherry control transcript. Error bars
correspond to standard deviation of triplicate qRT-PCR runs performed on
samples from a single transfection experiment.
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Justification for use of top 10 7-mer procedure to define motifs

We evaluated a panel of alternative approaches to motif derivation, including
RNAcontext®?, Malarkey (HK and QDM, manuscript in preparation), MEME®®,
MatrixREDUCE®*, BEEML-PBM®®, and the same top 10 procedure using k-mers
of lengths other than 7. We tested the efficacy of the motifs in cross-validation
between the A and B probe sets, reproducibility between biological replicates,
similarity of motifs obtained between proteins with related amino acid sequences,
similarity of motifs obtained to literature motifs, and ability to predict in vivo
data. The 7-mer based top 10 motif derivation method was the only approach
that scored consistently well across all tests. The results of this analysis will be
presented elsewhere (KBC, manuscript in preparation).

Data Availability

Data are available under NCBI GEO accession GSE41235. Data are also
posted on our project website, http://hugheslab.ccbr.utoronto.ca/supplementary-
data/RNAcompete_eukarya/. The cis-BP-RNA database, which is browsable
and searchable, is at http://cisbp-rna.ccbr.utoronto.ca/.

Secondary structure analyses

This section is partially redundant with the description in online methods but
contains more detail.

We predicted the secondary structures of the probe sequences using an existing
tool called RNAplfold®®. RNAplfold considers the ensemble of all possible
structures of an RNA sequence to calculate probabilities for each base to be in
various structural contexts (e.g. hairpin loop, external loop). We modified
RNAplfold so that instead of outputting the accessibility (i.e. the probability that
the region of interest is single-stranded), it outputs the probabilities for the region
of interest to be in four possible single-stranded contexts: hairpin loop, internal or
bulge loop, external loop (i.e., sSRNA not in a loop), or multiloop (i.e., ssSRNA in a
loop containing 3 or more stems). These four probabilities sum up to the original
accessibility. We ran this modified RNAplfold with the option —u 1 and set -W
and -L arguments equal to the length of the probe. Then using the RNAplfold
output, for each probe, we computed a matrix (which we call the secondary
structure profile) where rows represent the accessibility and the four ssRNA
structural contexts (i.e., hairpin loop, internal loop, multiloop, external loop) and
columns correspond to the positions of the probe sequence. Each entry of this
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matrix represents the probability of a base to appear in a particular structural
context.

Our next step was to analyze these profiles to check whether an RBP displayed
a specific secondary structure preference in a given RNAcompete assay. To do
this, we split the probes containing one of the top 10 7-mers for each RBP into a
bottom and top half according to their intensities. If a probe is selected for both
bottom and top halves (because it was in the top half for one of the 10 7-mers
and in the bottom half for the other), we kept the probe in both sets. Then, for
each of the five structure contexts (ssRNA, and the four other contexts described
over), we computed the average probability for each 7-mer in each probe and
compared the distributions of these values among the probes in the top and
bottom halves using Wilcoxon's rank sum test (two-sided) with multiple testing
correction. We repeated this analysis separately for Set A and Set B and retained
only the preferences that were found to be significant (Bonferroni-corrected P <
0.05) both in Set A and Set B. After performing this analysis, we found that a
large number of RBPs had a preference for multiloop but this result was difficult
to interpret because the probabilities for the multiloop context were very low in all
cases — as such, we removed these preferences from further analysis but did not
modify the Bonferroni correction.

Supplementary Data 3 contains the results of this analysis. When an RBP had
multiple RNAcompete assays associated with it, we deemed an RBP to display a
secondary structure preference in RNAcompete if any of its assays demonstrated
that preference.

Success rate of multiple versus single RBD RBP constructs

As part of our assay optimization process, we evaluated how well different RNA-
binding constructs worked in RNAcompete for the same set of RBPs. We
compared full-length (FL) proteins, RNA-binding regions (RBRs) as defined
above, or individual RBDs. To perform this comparison, we generated 44
constructs from 12 Drosophila RBPs by cloning corresponding FL (12), RBR
(12), and individual RBD (20) cDNA fragments. Successful experiments for single
(e.g. RRM1, KH1, etc.) and multi-RBD (e.g. RRM x3, KH x2, etc.) containing
RBPs were determined based on the presence of clear PWM motifs—represented
in Figure 2 as well as the RNAcompete website. Success rates for the various
single and multi-RBD domain types are summarized in Table S1. Based on this
analysis, we prepared RBR constructs for most of the RBPs that we assayed.

WWW.NATURE.COM/NATURE | 8



doi:10.1038/nature12311 {2 \H{H; W SUPPLEMENTARY INFORMATION

Table S1: Comparison of RNAcompete success rates for full-length RBPs,
RNA-binding regions and individual RNA-binding domains.

Gene name Structure Construct type | Success?
aret RRM x3 FL Yes
RRM x3 RBR Yes
RRM1 RBD No
RRM2 RBD No
RRM3 RBD Yes
CG2931 RRM x1 FL Yes
RRM RBR No
CG3056 RRM x2 FL No
RRM x2 RBR No
RRM1 RBD No
RRM2 RBD No
CG4612 RRM x2 FL No
RRM x2 RBR No
RRM1 RBD No
RRM2 RBD No
CG7082 (PAPI) KH x2, Tudor FL No
KH x2, Tudor RBR Yes
KH1 RBD No
KH2 RBD No
Hrb27C RRM x2 FL Yes
RRM x2 RBR Yes
RRM1 RBD No
RRM2 RBD No

WWW.NATURE.COM/NATURE | 9



doi:10.1038/nature12311

e W SUPPLEMENTARY INFORMATION

Hrb98DE RRM x2 FL Yes
RRM x2 RBR Yes
RRM1 RBD No
RRM2 RBD No
mub KH x3 FL No
KH x3 RBR No
KH1 RBD No
KH2 RBD No
KH3 RBD Yes
Rsf1 RRM x1 FL No
RRM RBR Yes
tsu RRM x1 FL No
RRM RBR No
RRM x1,
xI6 zf CCHC FL No
RRM x1,
zf CCHC RBR No
RRM RBD No
zf CCHC RBD No
yu KH x1, Tudor FL No
KH x1, Tudor RBR No
KH RBD No
Tudor RBD No
Construct # Assayed # Successes Success Rate (%)
FL 12 4 33.3
RBR 12 5 41.7
RBD 20 2 10.0
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Compilation of in vivo datasets

This section contains some information already provided in the online methods
but describes our methodology in much greater detail.

We compiled data sets from the literature that report RNAs associated with
individual proteins using genome-wide techniques. The positive and negative
sets are posted on our project web site
(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/).
Note that in some cases multiple data sets were obtained for the same protein.
The data sources and the procedure by which we defined “bound” and “unbound”
sequences are described in Table S2.

Compilation of these data sets required us to extract the sequences that either
correspond to the mature mRNA sequence of a gene or to the genomic locus
covered by the pre-mRNA transcript of the gene. To define these sequences, we
downloaded the mouse (mm9), rat (rn4) and human genome builds (hg18 and
hg19) and their corresponding Refseq gene sets from the UCSC Genome
Browser®®. Fly (Drosophila melanogaster) genes were downloaded from Ensembi
BioMART in August 2012 and represent the BDGP 5.4 release of gene models.
When there are multiple isoforms for the same gene we used the longest isoform
to define its mature mRNA sequence and the genomic locus covered by its pre-
mRNA sequence.

To perform the ROC analyses for assessing how well RNAcompete motifs
reproduce in vivo binding data, we needed to define a set of bound and unbound
sequences. For most CLIP data sets, we applied a common procedure where we
either used all or a defined subset of the identified peaks to be the bound
sequences — often these peaks are described as “clusters of reads” in the
corresponding papers. For these datasets, we also often needed to define
‘unbound sequences” — to do so, we selected random non-peak windows of
matching length from the pre-mRNA sequence (defined as described above)
from the same set of genes. Hereafter, we call this the “random windows”
procedure. Note that although these windows are selected from the same set of
genes as the peaks, we did not require the procedure to select at least one
window from each gene and, as such, multiple non-peak windows could be
selected from the same gene as long as they are at least 300 nts away from the
ends of the peaks. We utilized the features of the BEDTools suite both for
extracting sequences that correspond to genomic locations (covered by pre-
mMmRNA sequences) and for selecting random regions to define unbound
sequences.
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RIP-based in vivo binding data typically only has transcript resolution and
measures binding to mature mRNAs. Unless otherwise indicated below, we used
the mature mRNA sequences defined as described above for the “bound” and
“‘unbound” sequences.

Note that the actual number of sequences in bound and unbound set of the
compiled data set can be lower than the selected number of sequences when the
length of a cluster is too short (<12) or the cluster does not reside within a gene
for CLIP data or the reported gene IDs do not have a matching Refseq mRNA
sequence for RIP data.

Table S2: Summary of in vivo datasets compiled and definitions of bound
and unbound sequences.

RBP Method Selection of bound and unbound | Reference | Name of in vivo
sequences (# refers to | dataset (# of
reference bound/# unbound
section) transcripts)
Vits1p RIP-chip | Bound and unbound sequences were obtained | 39 Vits1p
from the authors of a previous study13 that 121/ 1449
analyzed this data. ( )
ELAVL1%"® | CLIP-seq | we defined sequences with doRINA”® scores | ° ELAVL1_Lebedeva
70 (please see the doRINA paper for more details on (1,445 / 1,445)
the definition of peaks and the calculation of
FUS14 scores associated with these peaks) in the top five ELAVL1_MNASE
TAF1514 percentile as bound sequences. When necessary, (1000 / 1000)
71 we reduced the percentile cutoff to include a .
IGF2BP1-3 minimum of 1,000 sequences. We used the ELAVL1_Mukharjee
‘random windows” procedure to define the
PUM2’’ unbound sequences. (5,625 / 5,625)
QK|71 Note: The first four entries of the fifth column ELAVL1_Hafner
72 correspond to ELAVL1 data sets which are (1000 / 1000)
SFRS1 . 67. 68 .

73 compiled from ~; from 68doRINA ids ELAVL1- FUS (1,568 / 1,568)
TIA1 MNASE PAR-CLIP; from ®® doRINA ids ELAVL1- ' ’
TIAL1" PARCLIP; and from °° respectively. Subsequent TAF15 (1,000 /

74 entries appear in the same order as the RBPs in 1,000)

TARDBP the first column.

IGF2BP1-3 (3,799 /
3,799)
PUM2 (1,000/
1,000)
QKI (1,000 / 1,000)
SFRS1 (310/314)
TIA1 (1,000 / 968)
TIAL1 2,117 [/
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2,093)
TARDBP_iCLIP
(4,755 / 4,745)
FOX-2 CLIP-seq | We downloaded CLIP-derived clusters from UCSC | 24 FOX-2 (3,547 /
Genome Browser under ‘Regulation’ track. We 3,547)
used all the identified clusters as bound
sequences, and used the “random windows”
procedure to define the unbound sequences.
Mbnl1 CLIP-seq | We downloaded CLIP-derived clusters from the | 27 Mbnl1_B6Brain
corresponding GEO submission (GSM1226-30).
We used all the identified clusters as bound (3,477 13,177)
sequencef, and def!ned th”e unbound sequences Mbnl1_B129Brain
using the “random windows” procedure.
(11,580 /11,580)
Note: The fifth column contains five entries that
correspond to data sets compiled from GSM1226 Mbnl1_B6Heart
(B6Brain), GSM1227 (129Brain), GSM1228 645 / 645
(B6Heart), GSM1229 (B6Muscle), GSM1230 ( )
(C2C12). Mbnl1_B6Muscle
(443 / 443)
Mbnl1_C2C12
(24,191 /24,191)
LIN28 CLIP-seq | Bound and unbound sequences were obtained | '® LIN28 hES 3UTR
from the authors.
(12,399 / 3,945)
Note: Two different cell lines were used in this :
study: H9 human ES (hES) and LIN28-V5 293. LIN28_hES_coding
The four entries in the fifth column correspond to —exons
data sets compiled frqm hES. clusters in 3' UTRs, (6,461 / 1,647)
hES clusters in coding regions, LIN28-V5 293
clusters in 3'UREs and LIN28-V5 293 clusters in LIN28 v5 3UTR
coding regions, respectively.
greg pectively (6,525 / 1,582)
LIN28_v5_coding_e
xons
(3,554 / 668)
RBM4 PAR- We downloaded the list of genes associated with | 77 RBM4
CLIP the RBP from the supplementary data of the
original study. We defined the mature mRNA (824 /1000)
sequences of top 1,000 genes with highest
number of matching reads as the bound
sequences. Unbound sequences were randomly
selected mature mRNA sequences from the
remaining set of human genes (hg18 build, Refseq
gene models as described above).
Lark RIP-chip | We used the list of genes identified in the original | 73 Lark_union
study (Supplementary Table 1) as bound
sequences. We prepared two data sets; one (168 /221)
contained the union of genes identified in two
replicate experiments (Expt 1 and 2), other Lark_shared
contained the genes identified in both of the (65/80)
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experiments.

Unbound sequences were randomly selected from
the remaining set of fly genes (BDGP 5.4, as
defined above).

CPEB4

RIP-seq

We used the p-value cutoff used in the original
study to define genes whose mature RNA
sequences were used as the bound sequences
(Supplementary Table 2, p-value < 0.05). We
selected unbound sequences from the mature
mRNA sequences associated with the 942 genes
with the highest p-values.

79

CPEB4
(927 1 942)

TARDBP

RIP-seq

We downloaded the data from the corresponding
GEO submission (GSM614808). We first filtered
out the genes that have less than 10 reads
mapped. We then sorted the genes based on
either “exonic read density” or “intronic read
density” (as defined in 0), obtaining two lists. We
then found genes that appeared in the top 1000 of
both lists and used their mature mMRNA sequences
as the bound sequences. Similarly, we used the
genes that appear in the bottom 1000 of both lists
to define the unbound sequences.

80

TARDBP_RIP
(422 / 565)

MSI

RIP-chip

We downloaded the data from the corresponding
GEO submission (GSE30904). As suggested by
the authors, we used the mature mMRNA
sequences of the top 50 genes with highest
enrichment ratios as the bound sequences. We
randomly chose genes from the remaining set of
human genes (hg19 build, Refseq gene model) to
define the unbound set.

81

(MSI)
42 /50

hnRNPA1

hnRNPA2B1

CLIP-seq

Bound and unbound sequences were obtained
from the authors.

19

hnRNPA1
(433 /433)

hnRNPA2B1
(1361 /1361)

SHEP

RIP-seq

Unpublished RIP-seq data for Shep were obtained
from the authors of the referenced study. Genes
that are enriched in the immunoprecipitates
(adjusted p-value < 0.05, fold change > 1.5) were
defined as the bound genes. Unbound genes were
selected from those that have the p-values equal
to 1.

We also used a more stringent definition of
enrichment where we include only the genes with
average number of background counts greater
than 220.

Note: The fifth column contains four entries that
correspond to data sets compiled from bg3 cell
lines with default constraints, bg3 cell lines with
stringent constraints, kc cell lines with default
constraints and kc cell lines with stringent
constraints, respectively.

82

SHEP_bg3_normal
(168 / 290)

SHEP_bg3_stringe
nt

(110/221)
SHEP_kc_normal
(373 /674)
SHEP_kc_stringent
(262 /527)
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FMR1 CLIP-seq | We compiled the CLIP data sets from | 83 FMR1_table2a_top
and RIP- | Supplementary Table 2a and 2b of the original 1K
paper. We prepared two data sets from each
seq table, where we include the top and bottom 1000 (995 / 876)

or 5000 clusters based on PARalyzer peak score. FMR1_table2a_top

We prepared the RIP-seq data set from 5K
Supplementary Table 6 of the original paper. We
defined the bound sequences as the mature (4,65374,352)
mRNA sequences associated with the genes that FMR1_table2b_top
have the highest 1000 enrichment scores. 1K
Similarly, unbound sequences are defined as the
genes with lowest 1000 enrichment scores. (901 /853)
Note: The first two entries of the fifth column FMR1_table2b_top
correspond to data sets prepared from Table 2a 5K
with top (and bottom) 1000 and 5000 clusters,
respectively. The third and fourth entries (4,369/4,312)
correspond to data sets prepared from Table 2b FMR1_top1K
with top (and bottom) 1000 and 5000 clusters,
respectively. The last entry corresponds to the (1000 /1000)
RIP-seq data set.
PTBP1 CLIP-seq | We used the peaks compiled by the original study | 3% PTBP1
(GSE19323) as the bound set, and we used the
‘random windows” procedure to define the (2553 1 2547)

unbound sequences.

Learning Malarkey motif models from in vivo datasets

Malarkey is a motif finding method that infers both sequence and structure
binding preferences of an RBP from experimental binding data (manuscript in
preparation). Malarkey fits its model parameters by using multilinear regression
to maximize the agreement between Malarkey-predicted affinities and
experimental data for the input set of sequences.

Malarkey motif models are fit to in vivo data sets where bound sequences are
labeled as 1 and unbound sequences are labeled as 0. In order to make a fair
comparison against RNAcompete-derived motifs, we fitted Malarkey without the
secondary structure model and with a fixed motif length of 7. In this mode, except
for the differences described below, Malarkey’s motif finding algorithm is nearly
identical to MatrixREDUCE®. To evaluate the predictive performance of
Malarkey motifs, we used a 10-fold cross validation scheme and calculated the
average AUROC across the 10 held-out sets. Similarly, we scanned the same
held-out sets with RNAcompete-derived PFMs and compared the average
AUROC:s.
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Figure S2: Comparison of AUROCs of RNAcompete and Malarkey defined
motifs on in vivo binding data.

Plots in each scatterplot are AUROCSs for a pair of columns in Suppl. Data 6 (A)
Shows that with the exception of Fus and Taf15, there is a close correspondence
between the performance of RNAcompete motifs and Malarkey motifs obtained
from the in vivo data; (B) Shows that the slight increase in AUROC obtained from
Malarkey in (A) is not due to the Malarkey algorithm, but instead due to factors
present in vivo but not in vitro. (C) Shows that the RNAcompete motifs generally
perform comparably or better than literature motifs for the same protein. (D)
Direct comparison of Malarkey motifs in vivo and in vitro.
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Analysis of Drosophila post-transcriptional data sets

This section contains information also presented in the online methods but
provides greater detail.

We used previously published Drosophila post-transcriptional regulation (PTR)
datasets (i.e. the flyFISH website and supplementary data from references** *"
%5.%8) to define a set of 112 categories of post-transcriptional fate and for each
category defined two sets of transcripts: a “positive set” and a “negative set”. The
positive set consisted of those transcripts with the post-transcriptional fate
described by that category and the negative set consisted of those transcripts
that were expressed under the same conditions as the positives but were not
annotated as having the given fate. These sets and further details of their
definition will be provided in a forthcoming publication (XL, HDL, and QM, in
preparation). For each compiled dataset, we performed a likelihood ratio test to
assess whether any of the motifs from our collection could better distinguish the
positive set from the negative set when provided to a regression algorithm that
also had access to a control set of features that consisted of all the dinucleotides
contained within the corresponding motif as well as the length of the target
sequence; the construction of these regression models is described below. The
comparisons between the motif and the control features were restricted to either
the 3° UTR or the coding region of the transcripts. We scored each 3’ UTR or
coding region using a given motif by summing the accessibility of all the target
sites, where a target site was defined as a perfect match to the IUPAC
representation of the motif (see Supplementary Data 8 for IUPAC motifs used in
these analysis) and the accessibility of a target site was defined as the average
single base accessibility of the bases in the site. A score of zero was assigned to
those transcripts whose 3’ UTRs or coding regions did not contain a motif match.
The single base accessibility was assessed using RNAplfold> as described
previously’ and in the “Secondary Structure Analysis” section above. We
used the parameters with W=80, L=40 and U=1. Although the analysis was
applied in the 3° UTR or the coding region, the entire transcript was input into
RNAplfold to ensure correct folding of the bases close to the start codon and stop
codon. We used the gimnet.R package (version 1.8) ® to apply Lasso penalized
logistic regression to predict the particular PTR dataset using the feature sets
containing the score calculated for one motif and the relevant control features. In
the Lasso regression, the hyper-parameter lambda (i.e. the regularization
strength) was selected through a five-fold cross-validation procedure, from the
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lambda sequence computed by glmnet using the default settings of nlambda and
lambda.min.ratio. The final value for lambda was the one (from the sequence)
with the smallest average generalization error across the five folds. We then
used this value of lambda with the ‘glmnet.fit object on the entire dataset to
compute the weights for the features. The features with non-zero weights were
selected as contributing most to the prediction. After the non-zero weight features
were defined, we trained two standard logistic regression models: one using all
non-zero weight features (including the motif) and one that contained only the
non-zero weighted control features, and then assessed whether there was a
significant difference in predictive power between these two nested models using
a log-likelihood ratio test (as per the procedure recommended in ). We then
used these P-values to compute a false-discovery rate using the Benjamini-
Hochberg procedure. The motifs, RBPs, and categories that with FDR < 0.1 are
provided in Supplementary Data 8.

Assessing tissue alternative splicing levels using RNA-Seq data

This section expands on methods presented in online methods.

Information on intron-exon structures was extracted from Ensembl annotations
(release 65) for the human (hg19) genome. This information was used to
generate a Bowtie library of non-redundant exon-exon junction (EEJ) sequences
by combining every possible (forward combination) splicing donor and acceptor
within each gene. For each EEJ sequence, we determined the effective number
of unique mappable positions for a given read length (k). We extracted the L-k+1
(L being the EEJ length) k-mers from each EEJ sequence and then aligned the
full set of k-mers against the EEJ library plus the respective genome using
Bowtie®’, allowing for a maximum of two mismatches along the entire length of
the read. The number of k-mers with one unique alignment was counted; this
corresponds to the junction’s effective number of unique mappable positions for a
given set of RNA-Seq k-mers.

RNA-Seq reads from the different samples were then mapped to the EEJ
libraries using Bowtie with —-m 1 —v 2 parameters. Reads were trimmed to 50
nucleotides, if longer, and reads that had full-length mappings to the genome
were discarded because EEJs should not exist as contiguous sequences in the
genome. A minimum of eight mapped nucleotides was required for each of the
two exons forming a given EEJ. Next, the outputs were parsed to identify
cassette exons — exons that are either included or fully excluded from the
transcripts — by identifying exons that have associated reads mapping to (i) both
EEJs supporting the inclusion of the exon (constitutive upstream exon (C1)-
cassette exon (A) and A-constitutive downstream exon (C2), or C1A and AC2)
and (ii) the EEJ for the exclusion of the exon (i.e. C1C2).
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The inclusion level of an exon was defined as the percentage of gene transcripts
in which a given exon is spliced in (PSI). This was estimated using read counts
mapping to EEJs. The initial read counts for each EEJ k (EEJicoun:) Were
corrected for mappability (i.e. the uniqueness of the EEJ among the
transcriptome) as follows (EEJi corrected = EEJkcount / MAPy ¥ MAPMAX) where MAPy
is the mappability for the EEJ for read length k& as described above, and
MAPMAX is the maximum mappability for a EEJ for a given read length (e.g.,
MAPMAX = 35 for k = 50nt). After correction, we renamed each corrected EEJ
count according the position of the EEJ relative to the alternative exon under
consideration, and computed the PSI as follows:

PSI =100% * EEJ Reads Supporting A/ EEJ Reads Mapping to A or Adjacent Exons,
where EEJ Reads Supporting A = [3; C,A] + [2; AC,] and
EEJ Reads Mapping to_A_or_Adjacent Exons =[%; CA] + [3; AC;] +[2; C.C2] + [3; CIC)]

where C; is any possible splicing donor upstream of the alternative exon
(including C1); C;is any possible splicing acceptor downstream of the alternative
exon (including C2) and Ci4, AC;, C;C2, and CIC; represent the corrected read
count mapping to the indicated EEJ (EEJi coreciea @S defined above). Alternative
exons were only included when a minimal transcript coverage requirement was
met of (i) 215 corrected reads mapping to the exclusion EEJs, or (ii) 215
corrected reads mapping to one of the sets of inclusion EEJs (CiA or AC;), and
=210 to the other set of inclusion EEJs. For alternative exons with multiple
acceptor/donor splice sites, we used the splice site combination with the highest
read support. When several putative C1 and/or C2 exons could be defined, we
used the one with the highest read support as reference.

Associating motifs with alternative splicing regulation

This section repeats and expands on methods presented in the online methods.

We processed a collection of 34 RNA-seq experiments from diverse human
tissues and cell lines (listed in Table S3) to measure the expression level of
genes as well as abundance of splicing events in each sample. In particular, we
downloaded the raw read data from GEO and reprocessed the data using an in-
house pipeline described in detail in the previous section. This pipeline computed
percent-spliced-in (PSI) of alternatively spliced cassette exons for a previously
defined set of alternatively spliced cassette exons across the 34 experiments, as
well as corrected RPKM (cRPKM) profiles (reads per kilobase per million
mapped reads corrected for mappability as described in the previous section) for
each gene across the 34 experiments. The PSI value is an estimate of the
proportion of transcripts that include the alternative exon in a particular tissue or
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cell line, and cRPKM is a measure of the abundance of transcripts from a given
gene in a tissue or cell line. We hypothesized that if RBP x is involved in
regulating splicing, the cRPKM profile of its gene should be either correlated with
the PSI profiles of its target exons (indicating a role of RBP x in promoting exon
inclusion), or anti-correlated (indicating a role in promoting exon exclusion),
where its target exons were identified based on matches to one or more motifs
associated with that RBP x within a defined splicing regulatory region associated
with the target exon.

We associated each target exon with 32 different possible regulatory regions;
these regions were defined based on their positions relative to splice boundaries
of the target exon or its neighboring exons. In the following definitions, the target
exon is called “exon A” (because it is Alternative), its upstream exon (i.e. ' to
exon A) is called “exon Cy”, its upstream intron (i.e. lying between C; and A) is
called “intron /;°, its downstream exon is called “exon C;”, and its downstream
intron is called “intron /,°. We removed from consideration any cassette exon
event for which any of Cy, A, or C, were less than 100nt in length or either /1 or >
were less than 300nt in length. We then defined eight regulatory areas (i)-(viii) as
follows: (i) the 100-nucleotide exonic region upstream of the 3’ end of the exon
Cy, (ii) the 300-nucleotide intronic region downstream of the 5’ end of the intron
11, (iii) the 300-nucleotide intronic region upstream of the 3’ end of the intron /4,
(iv) the 100-nucleotide exonic region downstream of the 5’ end of exon A, (v) the
100-nucleotide exonic region upstream of the 3’ end of exon A, (vi) the 300-
nucleotide intronic region downstream of the 5’ end of the intron /5, (vii) the 300-
nucleotide intronic region upstream of the 3’ end of the intron /,, and (viii) the
100-nucleotide exonic region downstream of the 5’ end of the exon C,. Each of
the eight regulatory areas was divided into 50-nucleotide-long bins, resulting in a
total of 32 regulatory regions. We analyzed each of these region types separately
as described in the following paragraph. The sequences for regulatory areas (i)-
(viii) were retrieved from the hg19 assembly of the human genome based on
Ensembl annotations (release 69).

To identify whether an RBP x may promote inclusion or exclusion of its target
exons by binding in regulatory region r, we first sorted all alternatively spliced
exons by the descending order of the Pearson correlation of their PSI profiles
with the cRPKM profile of RBP x, resulting in the sorted list Ly. We then
determined whether exons with significant matches to one or more motifs
associated with RBP x in region r were significantly enriched at the top of list Ly
(indicating that binding of RBP x in r promotes inclusion) or at the bottom of list Ly
(indicating that binding of x to r promotes exclusion). We used a two-tailed Mann-
Whitney U test of ranks to measure enrichment of exons with binding sites at the
top or bottom of list Ly. The test produces a normalized splicing z-score that
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follows a standard normal distribution, based on which a p-value can be
calculated. Benjamini-corrected p-values were used to identify significant
associations at a false discovery rate (FDR) <0.1.

To determine target exons that contained a significant match in region r to a motif
associated with RBP x, we first identified all motifs associated with RBP x by
collecting all motifs (either RNAcompete-derived or literature-derived) from our
cisbp-rna database that had at least 70% sequence identity and matching RBD
domain patterns to this RBP. We then transformed the position-specific
frequency matrices provided by cisbp-rna to position-specific affinity matrices
(PSAMs) by dividing each column by its maximum element. To determine
whether a particular regulatory region r in a particular exon was significantly
enriched for matches to a motif, we calculated the “regulatory region affinity
value” of that motif to region r using the PSAM as described previously®® — in
brief, we summed the PSAM scores of each k-mer in the regulatory region,
where k is the width of the PSAM. We then transformed these affinity values to z-
scores by subtracting the mean of these values in region r of all cassette exons
in our dataset and divided by the standard deviation of this distribution.
Empirically, the distribution of these z-scores was similar to a standard normal
distribution, so we associated p-values to z-scores using a one-tailed Z-test, and
deemed that a region r in a particular target exon had a significant match to the
binding site of RBP x if the Benjamini-corrected false discovery rate of its affinity
z-score was less than 10% (where the multiple test correction was applied based
on all p-values calculated for region r for a given motif).

Table S3: List of 34 tissues and cell lines used in human post-
transcriptional regulation analysis

Sample Sample Platform | GEO Series Notes
Type Name
. GEO:
H1 (a) llumina GSE23316 GSM591680
H1 (b) [llumina GSE16256 PMID: 20944595
ESC H9 (a) llumina GSE30992 PMID: 21924763
H9 (b) llumina GSE22666 PMID: 21324177
hESC2 SOLID GSE25842 PMID: 22042643
iPS (a) [llumina GSE32625 PMID: 21915259
iPS . . GEO:
iPS (b) SOLID GSE16256 GSM706050
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Fibroblast | llumina | GSE30554 PMID: 21890647
. GEO:
HNEK llumina | GSE30567 aSM765401
. GEO:
celline | HUVEK | llumina | GSE30567 CSM758563
. GEO:
MCF7 llumina | GSE30567 CSM765383
. GEO:
GM12878 | llumina | GSE23316 eSME91664
Whole llumina | GSE30611 Human  Body
Brain Map
Cortex llumina | GSE30352 PMID: 22012392
Cerebellum | llumina | GSE30352 PMID: 22012392
Liver (3) | llumina | GSE30611 Human  Body
Map
Liver (b) | llumina | GSE30352 PMID: 22012392
Kidney (a) | llumina | GSE30611 Human  Body
Map
Kidney (b) | llumina | GSE30352 PMID: 22012392
. Heart(a) | llumina | GSE30611 Human  Body
Tissue Map
Heart (b) | llumina | GSE30352 PMID: 22012392
Muscle llumina | GSE30611 Human  Body
Map
Testis (a) | llumina | GSE30611 Human  Body
Map
Testis (b) | llumina | GSE30352 PMID: 22012392
Adipose | llumina | GSE30611 Human  Body
Map
Adrenal | llumina | GSE30611 Human  Body
Map
Breast lllumina GSE30611 Human Body
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Map

Colon lumina | GSE30611 | uman  Body
Map

Lung llumina | GSE30611 | Human  Body
Map

LymPh - yumina | GSE30611 | Human - Body

node Map

Ovary llumina | GSE30611 | Human  Body
Map

Prostate | llumina | GSE30611 | uman - Body
Map

Thyroid | llumina | GSE30611 | uman  Body
Map

WBC llumina | GSE30611 “HA‘;f;‘a” Body

Defining the exons that are regulated by each splicing-related RBPs using
leading-edge analysis

This section repeats and expands on methods presented in the online methods.

Here, we sought to connect RBPs to the exons that they regulate. Some RBPs
were associated with more than one recognition motif (e.g. from multiple
experiments, or by inferring multiple motifs through similarity of RBDs). In the
previous section, we analyzed each recognition motif separately. After grouping
motifs by RBP, we found that in general different recognition motifs of each RBP
resulted in similar conclusions regarding the role of the RBP in regulating splicing
as well as the regulatory region that the RBP binds (Figure S3). Therefore, for
each RBP, we combined the set of exons that had at least one significant match
— in the inferred relevant regulatory region(s) — to one of the motifs with
significant splicing z-scores. This resulted in a list of exons Ex for each RBP x.
Re-analysis of PSI profiles of exon set E, using Mann-Whitney U test of ranks as
in the previous section showed that this combined set invariably obtains higher
scores than exon sets defined based on any of the individual motifs of RBP x.
We further refined the exon set E, by analyzing the list L, as described before®®
whereby, in brief, we identified a new, stringent correlation or anti-correlation
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threshold by finding the threshold that maximized the modified KS-test p-value
described in . This refinement resulted in a high-confidence “leading-edge” list
of exons that (i) have a binding site for RBP x in the relevant regulatory region
based on at least one of the significant splicing-associated motifs of x, and (ii)
have PSI profiles whose correlation or anti-correlation with the expression profile
of x is above or below the stringent threshold depending on the inferred role of x
in promoting inclusion or exclusion, respectively. The splicing network that this
procedure produced is provided in Supplementary Data 7.

Defining human RBP motifs involved in regulating mRNA stability

This section repeats and expands on methods presented in the online methods.

Using the same set of 34 tissues and cell lines as described above, we identified
RBPs that are involved in regulating mRNA stability. We employed similar
methods as described above, with the main difference that we used log-
transformed cRPKM profiles instead of PSI profiles. In other words, we examined
whether the binding sites of RBP x are enriched in 3’ UTRs of genes whose log-
transformed cRPKM profiles are correlated or anti-correlated with the log-
transformed cRPKM profile of RBP x, suggesting a role of x in stabilizing or
destabilizing its target genes, respectively. We used log-transformed cRPKM
values because the logarithm of mMRNA abundance is presumed to have an
inverse linear relationship with the logarithm of mMRNA decay rate at steady-state
conditions®. We used a Mann-Whitney U test of ranks to identify significant
motif-stability associations, similar to the motif-splicing association analysis
described above. RBP binding sites were examined in the 300-nucleotide region
immediately downstream of the stop codon of the longest isoform of each gene.
Only genes whose 3' UTR consisted of a single exon were considered for this
analysis, in order to rule out the possibility of erroneous identification of splicing
factors as stability factors. Note that this rule should exclude exons with
annotated 3' UTR alternative splicing sites. The sequences of all of the
transcripts associated with each gene were downloaded from the UCSC genome
browser based on the hg19 annotation of the human genome.

Unlike alternative splicing, we found that mRNA abundance/stability is greatly
influenced by the GC content of the 3° UTR. To filter out RBPs whose inferred
role in regulating stability was confounded by differences in dinucleotide bias
among 3’ UTRs, we randomly shuffled the 3’ UTR sequences 100 times, each
time calculating the Mann-Whitney U z-scores of all RBP motifs for association
with stability. This procedure created a null distribution of z-scores for each motif,
to which we compared the original z-score of the motif (i.e. the score that was
obtained using real 3' UTR sequences). Specifically, we used the random scores
to calculate the mean and standard deviation of the null distribution for each
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motif, which was used to transform the original z-score to “z-of-z”. Similar to the
z-score, we observed that the z-of-z score appears to follow a standard normal
distribution, so we used a two-tailed Z-test to compute a new p-value for z-of-z
score. A motif is deemed significantly associated with stability if (i) the p-value
associated with its original z-score is significant (Benjamini correction, FDR
<0.1), (ii) its z-score has the same sign as its z-of-z score, and (iii) the p-value
associated with its z-of-z score is significant (Benjamini correction, FDR <0.1).

Similar to the procedure described for splicing, we combined the set of genes
that had binding sites based on different significant motifs of each RBP, creating
the union set G, for each RBP x. The set G4 for each RBP was further refined
using leading-edge analysis as described in the previous section, resulting in a
high-confidence stability network that is provided in Supplementary Data 7.
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Figure S3: The binding profile of RBPs that are involved in regulating
splicing and/or stability.

Red indicates that binding of the RBP to the corresponding region promotes
inclusion of the alternative exon or, in the case of binding to 3" UTR, stability of
the mRNA. Blue indicates promoting exclusion/instability. The z-scores are
based on Mann-Whitney U test of enrichment. For 3" UTRs, z-of-z as defined
above is indicated. Motif IDs without RNCMPT prefixes are motif IDs from
RBPDB (http://rbpdb.ccbr.utoronto.ca/).
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Figure S4: Gene Ontology (GO) enrichment analysis of human RBP motifs
in 3’ UTRs

For each RBP with an inferred role in regulating mRNA stability, we examined
the enrichment and depletion of GO terms among genes in their region target
sets. In this figure, each column is an RBP, and each row is a GO term. Red
indicates significant enrichment of the GO term among target genes of the
corresponding RBP, and blue means significant depletion (Fisher's exact test,
Benjamini correction, FDR < 0.1). The color gradient shows the logarithm of p-
value of enrichment or depletion.
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Figure S5: Information content of motifs versus conservation of bases in
motif matches

Bases at degenerate positions of motifs are less conserved than bases at
positions with high information content. In this figure, the relationship between
conservation and information content is shown for the non-redundant motifs that
are represented in Figure 4. The information content (2 — entropy of the column
measured in bits) and aggregated conservation score (-log10(P-value)) of each
column of each motif were calculated. The resulting pairs of values were then
sorted by ascending order of entropy, and running average of conservation was
calculated for every 100 instances.

WWW.NATURE.COM/NATURE | 28



doi:10.1038/nature12311

A TH W SUPPLEMENTARY INFORMATION

Table S4: Motifs used to represent human RBP families in Figure 4. Non-
RNCMPT motif IDs are RBPDB motif IDs (http://rbpdb.ccbr.utoronto.ca/).

Text in Fig. 4 Protein(s) Motif ID
EIF2S1 EIF2S1 RNCMPTO00273
MEX3B/C/D MEX3B, MEX3C, MEX3D RNCMPT00129
RBM24/38 RBM24, RBM38 RNCMPT00184
ACO1 ACO1 1213_8021254
RBMS8A RBMS8A RNCMPTO00056
FXR1/2 FXR1, FXR2 RNCMPT00020
RBM5 RBM5 RNCMPT00154
SRSF4/5/6 SRSF4, SRSF5, SRSF6 RNCMPT00134
RBMA45 RBM45 RNCMPT00241
PABPC5 PABPC5 RNCMPT00171
SART3 SART3 RNCMPT00064
HNRNPC/CL1, RALY HNRNPC, HNRNPCL1, RALY RNCMPT00025
TARDBP TARDBP RNCMPT00076
PABPN1/1L PABPN1, PABPN1L RNCMPT00157
EIF4B EIF4B 350_8846295
RBM6 RBM6 RNCMPT00170
CPEB2/3/4 CPEB2, CPEB3, CPEB4 RNCMPT00126
ANKHD1, ANKRD17 ANKHD1, ANKRD17 RNCMPT00002

QKI QKI 149_16041388
PTBP1/2/3 PTBP1, PTBP2, PTBP3 RNCMPT00268
PABPC1/1L/3/4 PABPC1, PABPC1L, PABPC3, PABPC4 RNCMPT00153
HNRNPF/H1/H2 HNRNPF, HNRNPH1, HNRNPH2 RNCMPT00160
SF3B4 SF3B4 RNCMPT00224
ENOX1/2 ENOX1, ENOX2 RNCMPT00149
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SRSF2/8 SRSF2, SRSF8 953_7543047
KHDRBS1/2/3 KHDRBS1, KHDRBS2, KHDRBS3 RNCMPT00169
PCBP1/2/3/4 PCBP1, PCBP2, PCBP3, PCBP4 RNCMPTO00044
ZC3H10 ZC3H10 RNCMPTO00085
CNOT4 CNOT4 RNCMPT00156
HNRNPK HNRNPK RNCMPT00026
MBNL1/2/3 MBNL1, MBNL2, MBNL3 RNCMPTO00038
HNRNPA1, HNRNPA1L2, HNRNPA1P7,
HNRNPA1/1L2/1P7/2B1/3 RNCMPT00022
HNRNPA2B1, HNRNPA3, RP13-923023.5
SRSF1/9 SRSF1, SRSF9 RNCMPT00110
FMR1 FMR1 RNCMPTO00016

HuR, ELAVL2/3/4

HuR, ELAVL2, ELAVL3, ELAVL4

784_7972035

RBFOX1/2/3 RBFOX1, RBFOX2, RBFOX3 37_16537540

ESRP1/2 ESRP1, ESRP2 RNCMPT00150
NONO, SFPQ NONO, SFPQ 488_9001221

SAMD4A/B SAMDA4A, SAMD4B RNCMPTO00063
LIN28A/B LIN28A, LIN28B RNCMPTO00036
RBM4/4B/14 RBM14, RBM4, RBM4B RNCMPT00113
MATR3 MATR3 RNCMPTO00037
HNRNPL HNRNPL RNCMPT00027

CSDA, YBX1/2

CSDA, YBX1, YBX2

114_7499328

CELF6 CELF6 RNCMPT00122
RBM28 RBM28 RNCMPTO00049
SNRPA/B2 SNRPA, SNRPB2 RNCMPT00145
ZFP36/36L1/36L2 ZFP36, ZFP36L1, ZFP36L2 951_12324455
PUM1/2 PUM1, PUM2 RNCMPT00104
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Figure S6: 2-D hierarchical clustering analysis (Pearson correlation,
average linkage) of E-scores for all experimental data, with the two halves
of the array kept as separate columns.

The 3,954 7-mers with E>0.4 in at least one experiment are included. To
emphasize higher E-scores, the data were transformed to E’ = 10'°F prior to
clustering. This figure is identical to that in Figure 1C, with the axes transposed
for display. The following pages show segments of the heatmap and
dendrogram of experiments, from left to right, with individual experiments
labeled. Note that a smaller version of the figure is shown above and a multi-
page blow-up of the figure follows this legend and the clustered E-scores are
available in Supplementary Data 5.
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