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Figure S1. Over-expressed clathrin light chains are incorporated into clathrin triskelions and do not affect CME, 
related to Figure 1 (A) Clathrin heavy chain (CHC) was immunoprecipitated from cells overexpressing either N- or C-
terminally EGFP-tagged rat CLCa from tet-regulatable adenoviral vectors. The fluorescently-tagged light chains are 
incorporated into clathrin triskelions at a much higher stoichiometry than endogenous CLCa in uninfected control cells or 
in genome-edited enEGFP-CLCa cells. Unincorporated CLCa is partially degraded as can be seen in western blots of the 
whole cell lysate (total). * indicates a non-specific band and ** indicates degradation products. (B) N-terminally tagged 
CLCa is more efficiently incorporated into triskelions than C-terminaly-tagged CLCa, although both are co-precipitated with 
CHC. (C) CLCa from monkey and rat are equally efficiently incorporated into CHC in monkey BSC1 cells. (D) Transferrin 
uptake is unaffected in HeLa cells over-expressing CLCa or CLCb at either low or high levels, as determined by western 
blots (top). LC: loading control. (E) Transferrin uptake in HeLa cells over-expressing untagged CLCa, or CLCa fused to 
EGFP at the N- or C-terminus (error bars: s.d. from 3 experiments). (F) Transferrin uptake in stably transformed BSC1 
cells over-expressing either rat or monkey CLCa or genome-edited to express monkey CLCa-RFP from its endogenous 
locus, as indicated (error bars: s.d. from 3 experiments). 
  

Uptake (min)

 

 

0 2 4 6 8 10
0

25

50

75

100

125

150

175

200
 Control
 rat EGFP−CLCa O/X
 mk enCLCa−RFP
 mk CLCa−RFP O/X

Uptake (min)

 

 

0 2 4 6
0

25

50

75

100

125

150

175

200
 Control
 Untagged CLCa O/X
 CLCa−EGFP O/X
 EGFP−CLCa O/X

LC

CLCa/b
ѥl/lane

Con
tro

l

CLC
a l

ow

CLC
b l

ow

CLC
a h

igh

CLC
b h

igh

Uptake (min)

 

 

0 2 4 6 8 10
0

25

50

75

100

125

150

175

200

 Control
 CLCa, high O/X
 CLCa, low O/X
 CLCb, high O/X
 CLCb, low O/X

Tf
n 

up
ta

ke
(%

 o
f s

ur
fa

ce
-b

ou
nd

)

Tf
n 

up
ta

ke
(%

 o
f s

ur
fa

ce
-b

ou
nd

)

Tf
n 

up
ta

ke
(%

 o
f s

ur
fa

ce
-b

ou
nd

)

EGFP-CLCa/
CLCa-RFP

CH
C 

IP CHC

To
ta

l

EGFP-CLCa/
CLCa-RFP

CHC

_-CHC

_-CHC

_-CLC

_-CLC

WT mk enCLCa-RFP

mk CLCa-RFP O/X

rat EGFP-CLCa O/X

[tet] (ng/mL) 0 5 2.5 5 2.5

CH
C 

IP
To

ta
l

_-CHC

EGFP-CLCa

EGFP-CLCa

_-CHC

_-CLC

_-CLC

CHC

CHC

virus O/X EGFP-CLCa CLCa-EGFPnone
CH

C 
IP

To
ta

l

_-CLC

EGFP-LCa

enCLC

*

EGFP-LCa

enCLC

_-CLC

virus O/X EGFP-LCa LCa-EGFP
stable O/X

none none none none
none none

EGFP
-CLCa

EGFP
-CLCa

**

_-CHC

_-CHC

CHC IP n.s. IgG IP

[tet] (ng/mL) 2.5 1.5 2.5 1.5

15 5 15 515 515 515 5

E

D

F

A B

C



 
 
Figure S2. Model-based detection of diffraction-limited fluorescence signals, related to Figure 1 (A) Flow of spot 
detection algorithm on simulated noisy data. Input image is filtered with two separate filters, one based on the detection 
model to identify pixels with significant signal (see Supplemental Experimental Procedures), and a Laplacian-of-Gaussian 

De
te

cti
on

 se
ns

itiv
ity

0

0.2

0.4

0.6

0.8

1.0

1 10 100
0

0.2

0.4

0.6

0.8

1.0

PSNR

Fa
lse

 d
isc

ov
er

y r
at

e

1PSNR 3 6 10 30 100

Distribution of the background
(residual of the fit)

Uncertainty of the threshold
(by standard error of the variance)

Uncertainty of the fitted amplitude
(by error propagation)

t-test

_ (significance threshold)

Input image Significant local maxima
Localization of

significant signals

Mask of significant pixels

Laplacian-of-gaussian filtered

De
te

cti
on

 se
ns

itiv
ity

0

0.2

0.4

0.6

0.8

1.0

1 10 100
0

0.2

0.4

0.6

0.8

1.0

PSNR

Fa
lse

 d
isc

ov
er

y r
at

e

1PSNR 3 6 10 30 100

Support of fit

In
te

ns
ity

 (A
.U

.)

x (A.U.) Probability

A

B

DC

This work

u-track
Wavelets
Imaris

Localizer

_ = 0.05
_ = 0.1
_ = 0.2
_ = 0.5



to identify local maxima. Local maxima at significant locations are used to initialize model fitting, which determines 
estimates of fluorescence signal amplitude, local background, and sub-pixel location (see Supplemental Experimental 
Procedures). (B) Selection of significant spot signals, illustrated for a 1-D cross-section of a diffraction-limited signal. A 
Gaussian function approximating the point-spread function (PSF) of the microscope (blue) is fitted to the raw intensities 
(black), with amplitude, local background, and position as free parameters. The spread of the Gaussian approximation is 
defined by the PSF. Residuals of the fit yield the noise distribution and, by error propagation, the uncertainty on the fitted 
amplitude (blue shaded area). The amplitude is considered significant if it lies above a threshold value in the noise 
distribution, shown here for the 95th percentile. The uncertainty on this threshold is calculated from the standard error of 
the variance (red). Significance is determined with a one-tailed, two-sample t-test. For details, see Supplemental 
Experimental Procedures. (C) Performance of the detection as a function of the significance threshold α defined in Panel 
B, calculated on simulated noisy data containing Gaussian-shaped signals of varying amplitude with additive white 
Gaussian noise, corresponding to a PSNR ranging from 1 to 100 (PSNR was defined as max(signal)!/MSE and MSE is 
the mean squared error between the true and noisy signal). Detection sensitivity is the proportion of correctly identified 
signals, and the false discovery rate is the ratio of false positive detections to total detections. (D) Comparison of detection 
performance between the proposed algorithm and several state-of-the-art methods. Performance was assessed on 
simulated noisy data containing Gaussian-shaped signals of varying amplitude with additive white Gaussian noise, 
corresponding to a PSNR ranging from 1 to 100. All algorithms were tested using their default, automatic settings unless 
otherwise noted. The standard deviation of the Gaussian spots was set to 1.4 pixels. Wavelets denotes an approach using 
wavelet multi-scale products previously used for CCP and endosome detection (Loerke et al. 2009, Olivo-Marin 2002); 
Imaris denotes the DetectSpots2 function included in the Imaris 7.5 software package, where a spot diameter of 5 pixels 
was selected. This method was used by (Doyon et al., 2011) for CCP detection based on endogenously labeled CLCa and 
dynamin; u-track denotes the u-track software package (Jaqaman et al., 2008); Localizer denotes the Localizer software 
package designed for STORM/PALM applications. The method relies on a generalized likelihood ratio test to assess 
significance (Dedecker et al., 2012), with ‘glrt’ parameter set to 15 (at the default value of 25, its performance is slightly 
inferior to u-track). 
  



 
 
Figure S3. Lifetime distributions generated by single-step and regulated multi-step processes, related to Figure 
3 (A) An unregulated process driven by a single rate constant k generates exponentially distributed lifetimes. (B) A 
process regulated by transitions through multiple states yields lifetime distributions that display a characteristic rise and 
decay. The distributions become more spread and are shifted towards longer lifetimes as the number of steps increases. 
Processes with variable rates among the different steps generate distributions with shapes comparable to those shown. 
(C) For a fixed number of steps, changes in the rate constant(s) produces a scaling effect. Limited to the models 
described here, the lifetime distribution of CCPs that recruited dynamin (Figure 5, Panel E) is best reproduced by a three-
stage process. This is consistent with the statistical decomposition of lifetime distributions in (Loerke et al., 2009), which 
revealed three populations of CCPs. 
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Figure S4. Measurement of dynamin recruitment, related to Figure 5 (A) Average traces of dynamin fluorescence 
intensity in SK-MEL-2 cells with endogenously-tagged enDyn2-EGFP and overexpressing tdTomato-CLCa. Trajectories 
were selected for CCPs that recruited detectable enDyn2-EGFP. Averages were calculated for each indicated lifetime 
cohort from trajectories interpolated to the mean cohort lifetime, and were subsequently aligned by their first (left) or last 
time point (right). (B) Lifetime distributions of all CCSs classified as a function of enDyn2-EGFP recruitment and the 
intensity threshold described in Figures 2 & 3. 
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Supplemental Movies 

 
Movie S1. Model-based detection of clathrin-coated structures in EGFP-CLCa over-expressing cells imaged by 
TIRFM, related to Figure 1. The movie corresponds to the EGFP-CLCa O/X frames shown in Figure 1, Panel A. Red 
patches indicate pixels detected as significant by a wavelet-based method and green circles indicate the positions of 
CCSs detected with the model-based algorithm proposed in this work (see Supplemental Experimental Procedures). 
False-positives (orange circles) and false-negatives (white circles) of the wavelet-based method are in reference to the 
model-based detections. Scale bar: 2 µm. 
 
 
Movie S2. Model-based detection of clathrin-coated structures in genome-edited enCLCa-RFP cells imaged by 
TIRFM, related to Figure 1. The movie corresponds to the enCLCa-RFP frames shown in Figure 1, Panel A. Red 
patches indicate pixels detected as significant by a wavelet-based method and green circles indicate the positions of 
CCSs detected with the model-based algorithm proposed in this work (see Supplemental Experimental Procedures). 
False-positives (orange circles) and false-negatives (white circles) of the wavelet-based method are in reference to the 
model-based detections. Scale bar: 2 µm. 
 
 
Movie S3. Master/slave detection of CCSs by µ2-EGFP in genome-edited enCLC-RFP cells, related to Figure 4. 
CCSs were detected in the µ2-EGFP “master” channel (green circles); fluorescence intensities in the enCLCa-RFP “slave” 
channel were measured by sub-pixel localization at the detected µ2-EGFP positions (red circles). The small shifts 
between the positions in the master and slave channels (overlay) are due to the effect of noise on the individual 
localizations and the motion of CCSs between acquisitions of the two channels. Scale bar: 2 µm. 
 
 
Movie S4. Master/slave detection of early dynamin recruitment in genome-edited enDyn2-EGFP cells 
overexpressing tdTomato-CLCa, related to Figure 5. CCSs were detected in the tdTomato-CLCa “master” channel 
(red circles); fluorescence intensities in the enDyn2-EGFP “slave” channel were measured by sub-pixel localization at the 
detected tdTomato-CLCa positions. Color code: green, independently detectable enDyn2-EGFP; blue, significant enDyn2-
EGFP fluorescence relative to enDyn2-EGFP fluorescence outside of CCSs; gray, undetectable enDyn2-EGFP. The small 
shifts between the positions in the master and slave channels (overlay) are due to the effect of noise on the individual 
localizations and the motion of CCSs between acquisitions of the two channels. Scale bar: 2 µm. 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Cells and cell culture 

RPE (retinal pigment epithelial) cells stably expressing EGFP-CLCa were generated through infection with retroviruses 
(described in (Liu et al., 2008)) coding for EGFP-CLCa in a pMIEG3 vector, followed by FACS sorting. SK-MEL-2 (Human 
Skin Melanoma) cells, expressing CLCa-RFP and/or Dyn2-EGFP under the endogenous promoter were kindly provided 
by D. Drubin (University of California, Berkeley). As indicated, these cells were transiently transfected with dtTomato-
CLCa (kindly provided by T. Kirchhausen, Harvard Medical School) or the µ2 subunit of AP2, tagged with EGFP that was 
inserted between residues 236 and 237 of an internal disordered loop (kindly provided by S. Sorkin, University of 
Pittsburgh Medical School), using Lipofectamine 2000 (Life Technologies, Carlsbad, CA) according to the manufacturer’s 
instructions. RPE cells stably expressing full-length (FL) or ΔAD α-adaptin were generated as follows: cDNA encoding the 
FL or truncated ΔAD α-adaptin, kindly provided by M.S. Robinson (Motley et al., 2006), were subcloned into the pMIEG3 
retroviral vector. cDNA encoding mTagBFP (Subach et al., 2008) was subcloned into an IRES downstream of the α-
adaptin sequence within the pMIEG3 vector. Each α-adaptin pMIEG3-mTagBFP construct was used to generate 
retroviruses. RPE cells stably expressing EGFP-CLCa were infected with each resulting retrovirus, followed by FACS to 
sort cells into nearly homogenous BFP expression cohorts. Note that BFP expression is proportional to the expression of 
each α-adaptin protein. Expression of α-adaptins within each stable cell cohort was determined by Western blotting with 
α-adaptin antibodies; the cohort with the expression level closest to endogenous α-adaptin was chosen for further 
experiments. Cells infected with similar retroviruses expressing only BFP served as the BFP control. All cells were grown 
under 5% CO2 at 37°C in DMEM/Ham’s F12 medium supplemented with 20 mM HEPES, 10 mg/ml streptomycin, 66 
μg/ml penicillin and 10% (v/v) and fetal calf serum (FCS, HyClone). 

siRNA transfection 

RPE cells were treated with a previously established siRNA sequence (Motley et al., 2006) using RNAiMAX (Life 
Technologies, Carlsbad, CA) to silence endogenous α-adaptin following the manufacturer’s instructions. Briefly, 110 pmol 
of α-adaptin siRNA and 6.25 µl of RNAiMAX reagent were added in 2 ml of OptiMEM in each well of a 6-well plate of RPE 
cells for 4 hours. Transfection was performed twice, 72h and 48h prior to experiments. Note that exogenous FL or ΔAD α-
adaptin (Motley et al., 2006) harbor mutations that confer resistance to siRNA silencing.  

Transferrin receptor internalization 

Transferrin (Tfn) internalization was performed as previously described (Yarar et al., 2005), using either biotinylated Tfn 
(BSST) or biotinylated anti-TfnR mAb, B-D65, as ligand. Briefly, RPE cells grown on 15-cm dishes were detached with 
PBS supplemented with 5 mM EDTA and resuspended in Tfn assay buffer (PBS supplemented with 1 mM MgCl2, 1 mM 
CaCl2, 5 mM glucose, and 0.2% bovine serum albumin). Suspended cells were incubated with either 5 µg/ml BSST or B-
D65 at 37ºC for indicated times followed by immediate cooling to 4ºC to arrest internalization. Following washing to 
remove unbound ligand, surface bound ligand was quenched by sequential incubation with free avidin (0.05 mg/ml) and 
biocytin (0.05 mg/ml). Cell lysates were prepared by solubilization in blocking buffer (1% TX-100, 0.1% SDS, 0.2% BSA, 
50 mM NaCl, and 1 mM Tris, pH 7.4) and plated onto ELISA plates coated with anti-transferrin (Scottish Antibody 
Production Unit, Carluke, Scotland) or anti-msIgG (Sigma-Aldrich) and assayed for protected/internalized B-ligand using 
streptavidin-POD (Roche). Internalized ligand is expressed as the percent of the total surface bound at 4°C (i.e., not 
quenched with avidin), measured in parallel. 

Clathrin heavy chain immunoprecipitation 

RPE cell lines either stably expressing CLCa/b fusion proteins or infected with adenoviruses encoding EGFP-CLCa/b or 
CLCa/b-EGFP were lysed in 250-400 µl buffer containing 50 mM HEPES, pH 7.4, 300 mM NaCl, 5 mM EDTA and 1% TX-
100 and protease inhibitor cocktail (Sigma-Aldrich). Cell lysates were passed through a 27.5 gauge syringe 5 times and 
cell debris was removed by centrifugation at 12k rpm for 15 min. X22 anti-clathrin antibodies were pre-bound to Protein G 
Sepharose 4 (GE Healthcare) and then incubated with the cell lysates for 4h under constant rotation. Subsequently, 
unbound proteins were removed and beads were washed 5 times by sequential centrifugation and resuspension in wash 
buffer (50 mM HEPES, pH 7.4, 300 mM NaCl, 5 mM EDTA and 0.1% TX-100). Immuno-precipitated proteins were 



resolved by SDS-PAGE followed by immunoblotting with either anti-clathrin heavy chain (TD.1) or an anti-CLC rabbit 
polyclonal generated in the Schmid lab. 

Immunoblotting  

Whole cell lysates were prepared from cells grown on six-well plates as previously described (Antonescu et al., 2010). 
Briefly, cells were lysed by adding 300 μl of 2× Laemmli sample buffer (2× LSB: 0.125 M Tris, pH 6.8, 2% SDS (wt/vol), 
5% glycerol (vol/vol), and 7.5% β-mercaptoethanol (vol/vol), supplemented with protease inhibitor cocktail (Sigma-
Aldrich). Equal amounts of total protein of each sample were resolved by SDS-PAGE followed by immunoblotting using 
the following antibodies: anti-endogenous α-adaptin (100/2, Sigma-Aldrich), anti-exogenous α-adaptin (Motley et al., 
2006), anti-β1/2 adaptin (100/1, Sigma-Aldrich), µ2-adaptin (AP-50, BD Transduction Labs). Anti-HSP40 (Enzo Life 
Sciences) was used as a loading control. 

TIRF microscopy 

Total internal reflection fluorescence (TIRF) microscopy was performed as previously described (Loerke et al., 2009). 
Briefly, RPE cells expressing EGFP-CLCa were imaged using a 100× 1.49 NA Apo TIRF objective (Nikon) mounted on a 
Ti-Eclipse inverted microscope with equipped with the Perfect Focus System (Nikon). During imaging, cells were 
maintained in DMEM lacking phenol red and supplemented with 2.5% fetal calf serum. Time-lapse image sequences from 
different cells were acquired at a frame rate of 1 frame⋅s-1 and exposure time of 100-120ms using a CoolSNAP HQ2 
monochrome CCD camera with 6.45×6.45 µm2 pixels (Photometrics, Tuscon, AZ). Similarly, nearly simultaneous 2-
channel (e.g. 488 nm epifluorescence/TIRF or 488nm/561nm TIRF) movies were acquired at 0.5 frame⋅s-1 with exposure 
times for epifluorescence excitation of 50-100 ms (overexpressed EGFP-CLCa), and for TIRF excitation of 100-200 ms 
(overexpressed EGFP-CLCa or tdTomato-CLCa) or of 900 ms (CLCa-RFP and Dyn2-EGFP under the endogenous 
promoter). 

Image and data analysis 

All image and data analyses were carried out in Matlab (MathWorks, Natick, MA), using custom-written software. The 
software is available for download as Supplementary Software. This version constitutes a snapshot of the software at the 
time of publication and will not be maintained. Up-to-date versions of the software will be made available at 
http://lccb.hms.harvard.edu/software.html. 

Automated detection of clathrin-coated structures 

Diffraction-limited fluorescence signals are most accurately measured by fitting with a model of the microscope point 
spread function (PSF), which is equivalent to deconvolution of the position and intensity of the fluorescent source. This 
approach has been widely applied to single molecule tracking (Jaqaman et al., 2008; Sergé et al., 2008) and super-
resolution microscopy based on localization of fluorescent emitters such as PALM and STORM (Patterson et al., 2010). In 
practice, the PSF for in-focus signals is well approximated by a 2-D Gaussian function, which renders the numerical fitting 
of millions of individual signals computationally tractable. 
 Algorithms for Gaussian-based detection and localization of fluorescent point sources generally comprise three 
sequential operations: 1) identification of locations with sufficient probability of containing a point-source signal; 2) 
estimation of the intensity and sub-pixel localization of these signals by numerical fitting with a 2-D Gaussian; 3) selection 
of signals considered statistically significant. Step 1) typically consists in selecting the local maxima of a denoised or 
smoothed version of the input image. The robustness of the criteria applied during Step 3) directly influences the 
sensitivity and selectivity of the approach. In super-resolution applications where SNR is generally high due to the 
absence of a strong background signal, a hard threshold on the amplitudes of the fitted signals relative to the estimated 
variance of the background noise is generally applied (Henriques et al., 2010; Holden et al., 2011; Wolter et al., 2012). As 
an alternative to such thresholds, which become arbitrary at lower SNRs, an approach testing for the presence of a 
significant signal by means of a generalized likelihood ratio test has been proposed and shown to improve detection 
performance (Dedecker et al., 2012). 
 In this work, we show that by taking into account the uncertainties of the fitted amplitude and local background 
when individually testing for the significance of each candidate signal, detection sensitivity and selectivity can be 
significantly increased over existing single-molecule detection methods. This constitutes the key innovation of the 
proposed detection approach. 



In the derivation of this framework, we make the assumption that the fluorescent signals measured from CCSs 
can be described by a Gaussian PSF function and by an additive white Gaussian noise term. For the signal and noise 
levels observed on our experimental setup this is a valid approximation, confirmed by testing for normality with the 
Anderson-Darling test on areas of homogenous background and the residuals of individual fits (note that for photon counts 
greater than ~20, the Poisson distribution is statistically indistinguishable from a Gaussian, up to a shift in mean). We also 
assume that the background fluorescence signal beneath each CCS can be locally approximated as constant.  
 To maximize computational efficiency, the proposed approach was implemented in two steps: a first pass where 
the amplitude and background are estimated at each pixel by fitting a Gaussian centered on the pixel; this is achieved via 
linear combinations of three filtering steps and yields a mask of candidate locations for fitting. In the second step, local 
maxima of the smoothened input image that coincide with this mask are used for initialization of a 2D-Gaussian PSF fit 
that yields sub-pixel localization and precise estimation of the fluorescence intensity emitted by each CCS. 
 The image of a CCS was modeled as 

 
ℎ 𝒙;𝝁,𝐴, 𝑐 = 𝐴𝑔 𝒙;𝝁,𝜎 + 𝑐 + 𝑛[𝒙] 

 
where 𝒙 = [𝑥!, 𝑥!] are discrete pixel coordinates, 𝐴 is the fluorescence amplitude, 𝑐 is a constant representing the local 
background intensity for this CCS, and 𝑔 𝒙;𝝁,𝜎 = exp(−( 𝑥! − 𝜇! ! + 𝑥! − 𝜇! !)/(2σ!))  defines the Gaussian 
approximation of the microscope PSF. The standard deviation 𝜎 is a fixed parameter and will be omitted from the notation 
for simplicity. The estimation of 𝜎 is described at the end of this section. Noise was assumed to follow a Gaussian 
distribution with standard deviation 𝜎! over the support of the CCS, i.e., 𝑛[𝒙] ∼ 𝒩(0,𝜎!!). The parameters 𝝁, 𝐴 and 𝑐 of the 
model were estimated around a candidate location 𝒌 = [𝑘!, 𝑘!] in an image frame 𝑓[𝒙] by sub-pixel localization through 
the minimization of 
 
 𝑣 = (ℎ 𝒙;𝝁,𝐴, 𝑐 − 𝑓[𝒌 − 𝒙])!

𝒙∈!

 (1) 

 
The spatial support for this minimization was defined as 𝑆: 𝒙   ∈ (− 4𝜎 ,…    , 4𝜎 )×(− 4𝜎 ,…    , 4𝜎 ) centered on 𝒌. CCS 
fluorescence was considered significant and retained for further analysis if the estimated amplitude 𝐴 was above a defined 
threshold level of the local background noise distribution (see below). 

Step 1) Pixel-level identification of statistically significant signals 

 Candidate positions for Gaussian-shaped signals may be obtained as the local maxima of a Laplacian-of-
Gaussian-filtered (LoG) version of the input image. In noisy data containing sparse signals such as CCS fluorescence, 
most of the positions returned by this approach correspond to small fluctuations in the background rather than true signal 
positions. Performing a Gaussian fit at each position to determine signal strength is computationally inefficient and 
becomes intractable when applied to the >107 of positions detected in the frames of a typical time-series. This can be 
circumvented by first calculating estimates of 𝐴  and 𝑐  at the pixel locations of 𝑓  to generate a pixel-level mask of 
significant signal positions. Sub-pixel localization can then be performed for the LoG local maxima that fall within this 
mask (see Figure S2). A pixel-level mask of significant signal positions is obtained by minimizing 
 

𝑣 =    (ℎ 𝒙;𝟎,𝐴, 𝑐 − 𝑓[𝒌 − 𝒙])!
𝒙∈!

 

 
at each pixel 𝒌 in frame 𝑓, i.e., by minimizing 
 

𝑣[𝒌] =    (𝐴𝑔 𝒙 + 𝑐 − 𝑓[𝒌 − 𝒙])!
𝒙∈!

 

 
where 𝑔[𝒙] denotes 𝑔[𝒙;𝟎]. Specifically, estimates of the amplitude 𝐴 and local background 𝑐 for the Gaussian centered 
at each pixel 𝒌 are obtained by solving the system 
 

𝜕𝑣 𝒌
𝜕𝐴

= 2𝑔[𝒙] 𝐴𝑔 𝒙 + 𝑐 − 𝑓 𝒌 − 𝒙
𝒙∈!

= 0 

 
𝜕𝑣 𝒌
𝜕𝑐

= 2 𝐴𝑔 𝒙 + 𝑐 − 𝑓 𝒌 − 𝒙
𝒙∈!

= 0 



which yields 

𝐴 𝒌 =
𝑓 𝒌 − 𝒙𝒙∈! 𝑔 𝒙 −   1𝑛 𝑔 𝒙𝒙∈! 𝑓 𝒌 − 𝒙𝒙∈!

𝑔 𝒙 !
𝒙∈! − 1

𝑛 𝑔 𝒙𝒙∈!
!

 

 

𝑐 𝒌 =
𝑓 𝒌 − 𝒙𝒙∈! − 𝐴[𝒌] 𝑔 𝒙𝒙∈!

𝑛
 

 
where 𝑛 is the number of pixels in 𝑆. By defining 𝛾! = 𝑔 𝒙𝒙∈!  and 𝛾! = 𝑔 𝒙 !

𝒙∈!  (this is numerically more accurate 
than using the corresponding analytical values), the above equations can be rewritten as  
 

𝐴 𝒌 =
𝑓 ∗ 𝑔 [𝒌] −   1𝑛   𝛾! 𝑓 ∗ 𝑢 [𝒌]

  𝛾! −
1
𝑛   𝛾!

!
 

 

𝑐 𝒌 =
𝑓 ∗ 𝑢 [𝒌] −   𝛾!𝐴[𝒌]

𝑛
 

 
where ∗ denotes convolution and 𝑢 𝒙  is a summation filter defined over 𝑆, i.e., 𝑢 𝒙 = 1  if  𝒙 ∈ 𝑆;   0  otherwise. 

To identify pixels with a significant value of 𝐴 by means of a statistical test, estimates of the uncertainties on 𝐴 and 
the background noise, given by the residuals of the fit, are needed. At each pixel 𝒌, the residual sum of squares (RSS) of 
the fit is given by 
 

RSS 𝒌 = 𝛾!𝐴 𝒌 ! − 2𝐴 𝒌 𝑓 ∗ 𝑔 𝒌 − 𝛾!𝑐 𝒌 + 𝑓! ∗ 𝑢 𝒌 − 2𝑐 𝒌 𝑓 ∗ 𝑢 𝒌 + 𝑛𝑐[𝒌]! 
 
and the variance of the residuals is calculated as 
 

𝜎!! 𝒌 =
RSS 𝒌 − (𝛾!𝐴 𝒌 + 𝑛𝑐 𝒌 − 𝑓 ∗ 𝑢 𝒌 )/𝑛

𝑛 − 1
 

 
The uncertainty (standard deviation) on 𝐴[𝒌] is obtained by error propagation: 
 

𝜎! 𝒌 =   
RSS[𝒌]
𝑛 − 3

[(𝐉𝐓𝐉)!!]!,! 

 
where 𝐉 = [𝐠  𝟏] is the Jacobian matrix (identical for all pixel positions), and 𝐠 is the column-vector representation of 𝑔[𝒙] 
and 𝟏 is the unit vector. The probability densities of the fluorescence amplitude and noise in support 𝑆 at each pixel are 
thus 𝒩(𝐴 𝒌 ,𝜎!! 𝒌 ) and 𝒩(0,𝜎!! 𝒌 ), respectively. 
 An estimated amplitude was considered significant if its value was above a threshold value 𝜅𝜎! of the noise 
distribution, where 𝜅 =    2erf!!(1 − 2𝛼) and 𝛼 is the significance level (i.e., 𝛼 = 0.05). Significance was determined using 
a one-sided, two-sample t-test with 𝐻!:𝐴 ≤   𝜅𝜎!, yielding the statistic  
 
 

𝑇 𝒌 = 𝑛   
𝐴 𝒌 −   𝜅  𝜎! 𝒌

𝜎!! 𝒌 + 𝜅!𝑠!! 𝒌
 (2) 

 
where the uncertainty on 𝜎! was calculated using an estimator for the standard error of the variance: 
 

𝑠! 𝒌 ≈
𝜎! 𝒌
2(𝑛 − 1)

 

 
A mask of significant pixels was then defined as 𝑚 𝒌 ≔   𝑝[𝒌] < 𝛼, where 𝑝 is the p-value of the test.  

 

 



Step 2) Sub-pixel localization and amplitude estimation 

 Candidate locations for 2-D Gaussian fitting were identified by selecting the local maxima of the Laplacian-of-
Gaussian filtered input image that coincided with the mask 𝑚 𝒌  (see Figure S2). The standard deviation of the underlying 
Gaussian kernel was 𝜎. 
 At each candidate location, a Gaussian fit was performed by minimization of Eq. 1, yielding estimates of 𝐴, 𝑐	
   and 
𝝁 at sub-pixel resolution. The significance of the resulting amplitude estimate 𝐴 was then tested using Eq. 2. 

In areas of high CCS density, individual local maxima occurring within the same mask region were either localized 
individually, or through a mixture-model extension of the proposed approach replacing the single Gaussian in Eq. 1 with a 
sum of Gaussians. In the latter case, automated selection of the optimal number of mixture components was performed 
based on iterative F-tests incrementally identifying the statistical justification for additional components. In all instances, 
each estimated amplitude was individually tested for significance based on the criterion of Eq. 2. 

The algorithm was implemented as a C/MEX function for Matlab (MathWorks, Natick, MA) using non-linear 
optimization routines from the GNU Scientific Library (http://www.gnu.org/software/gsl/). These routines provide a robust 
and efficient implementation of the widely used Levenberg-Marquardt algorithm. 
 The standard deviation 𝜎 of the 2-D Gaussian PSF was calculated either by fitting a Gaussian to a physical PSF 
model (Aguet et al., 2009), or by running the fitting step of the algorithm on a limited set of frames with 𝜎 as a free 
parameter, and selecting the most probable value. On the imaging setup used, the two approaches yielded values in 
agreement within <10% of each other.  

Automated tracking of clathrin-coated structures 

CCS trajectories were calculated from the detections obtained in individual frames using the u-track software package 
(Jaqaman et al., 2008). Tracking was performed using positional information only (ignoring amplitude values), and 
merging and splitting of tracks was enabled. CCSs forming in close vicinity (i.e., within the search radius used for linking 
individual detections) were thus identified as compound tracks. Examples of such tracks include dense and intersecting 
clusters of CCSs, or larger structures from which multiple CCPs bud off. Compound tracks can contain a combination of 
splitting events (branching of two trajectories from a parent trajectory) and/or merging events (fusion of two trajectories 
into a single trajectory). 

The principal tracking parameters used were: maximum gap length: 2 or 3 frames; minimum track length: 1 frame; 
minimum/maximum search radius for CCSs between consecutive frames: 3/6 or 5/10 pixels. The complete set of 
parameters is given in the table below. 

 
gapCloseParam  
 timeWindow 3-4 or larger 
 mergeSplit 1 
 minTrackLen 1 
 diagnostics 0 
costMatrices(1) 

 funcName costMatLinearMotionLink2 
 linearMotion 0 
 minSearchRadius 3-5 
 maxSearchRadius 6-10 
 brownStdMult 3 
 useLocalDensity 1 
 nnWindow timeWindow 
 kalmanInitParam [] 
 diagnostics [] 
costMatrices(2) 

 funcName costMatLinearMotionCloseGaps2 
 linearMotion 0 
 minSearchRadius 3-5 
 maxSearchRadius 6-10 
 brownStdMult 3*timeWindow 
 linScaling [1 0.01] 
 timeReachConfL timeWindow 
 maxAngleVV [] 
 gapPenalty [] 
 resLimit [] 

 



For detailed information on these parameters the reader is referred to the Supplementary Materials of (Jaqaman 
et al., 2008). 

 
Gap closing accuracy 
 
At the SNR levels obtained in EGFP-CLCa O/X cells, the gap-closing mechanism of the u-track software package is 
capable of identifying and filling in occasional detection misses, which typically last 1 (~60-70% of gaps) or 2 (~20% of 
gaps) frames. We validated closed gaps by ensuring that intensity levels always exceeded those of true background. 

The maximal duration of potential gaps is constrained by the density of CCPs and the existence of hotspots 
(Nunez et al., 2011). In both cases, individual events occurring in close vicinity may be erroneously linked together. To 
avoid a high rate of false positive gaps, the duration limit for gaps was therefore set to 3 frames. 

Post-processing of tracks 

The trajectories returned by the u-track software were further analyzed and processed to identify signals corresponding to 
complete observations of assembling CCSs, as opposed to partial tracks, or compound tracks arising from ambiguities in 
tracking overlapping detections in areas with a high density of CCSs. This was achieved through the following steps: 

1. Conversion of simple compound tracks 

Compound tracks that consisted of a primary track from/to which short track segments (<5 frames) split/merged were 
converted into regular tracks consisting of the primary segment alone. This simplification was conditional on the last 
time point of each splitting segment occurring before the end of the primary track, and on the first time point of each 
merging segment occurring after the start of the primary track. The segments discarded in this process corresponded 
to transient, abortive CCSs assembling in close vicinity to a longer-lived CCS. 

2. Calculation of gap values 

Gap intensities and positions were calculated by numerically fitting the 2-D Gaussian model used for detection at gap 
locations. Initializations for the fits were obtained by linear interpolation of the values preceding and following each gap. 
To avoid random localizations in noise at gaps without a trace signal, the fits were constrained to a radius of 2𝜎 pixels 
(~200 nm). 

3. Calculation of CCS fluorescence preceding and following the detected trajectories 

CCS fluorescence prior to the first detected time point and following the last detected time point was estimated for a 
fixed number of “buffer” frames (typically 5), using sub-pixel localization of the 2-D Gaussian model described above. 
For each frame of these buffer readouts, the localization was initialized with the values of the signal at the first or last 
time point of the track, respectively. The localization was considered valid if the resulting position was within 2𝜎 pixels 
(~200 nm) of the initialization; otherwise, the amplitude and background values were estimated by least squares using 
the position of the first and last detection, respectively. 

4. Categorization and selection of valid CCS trajectories 

Tracks were categorized as a function of whether they represented complete, partial (truncated at the beginning or end 
of the acquisition), or persistent (present throughout the entire acquisition) CCS trajectories, and as a function of gap 
length relative to the length of the track segments bounding each gap. Only trajectories for which the pre- and post-
detection buffers could be fully calculated were considered complete. In order to avoid the inclusion of tracks 
containing sequences of gaps and frames resulting from the linking of independent short-lived events, tracks were 
classified based on gap properties in two sequential steps. First, tracks with gaps were considered valid if all gaps 
either consisted of a single frame, or were bounded by track segments of more than one frame. The maximum intensity 
distribution of these tracks was then calculated for a range of lifetime cohorts (typically [10-19], [20-39], [40-59], [60-
79], [80-124], [125-150] s). In the second step, the remaining tracks with gaps were classified as valid if their maximum 
intensity was above the 2.5th percentile calculated for the respective lifetime cohort. 
 Next, tracks were further categorized as a function of the pre- and post-detection buffer intensities. Due to the 
high densities of CCSs observed in some cells and the limited search radius employed during the tracking step to avoid 
erroneous linking of independent CCS trajectories, some trajectories were truncated. These trajectories were filtered 
out based on high buffer intensities. Specifically, tracks were considered valid if the intensities of at least two 
consecutive frames in each buffer were below the detection threshold, and if the maximum intensity of each buffer was 
below the maximum intensity of the track. 



 A further criterion for validity was whether or not the CCSs corresponded to diffraction-limited structures. This was 
established by testing the residuals of the model fit performed during the detection step. For diffraction-limited objects, 
where the model is accurate, the residuals were expected to follow a normal distribution. The residuals of each fit were 
therefore tested for normality using the Anderson-Darling test. Trajectories that contained frames with non-normal 
residuals were excluded from further analysis. 

5. Distinguishing gaps from sequential events 

Using the u-track settings as described, CCSs forming in close spatial (~5 pixels) and temporal (≤3 frames) vicinity to 
the end of a preceding event were linked during the tracking process. Such trajectories were identified based on 
whether they contained gaps with intensities that were statistically indistinguishable from background. Gaps that 
occurred as a result of insufficient SNR contained residual intensity that remained statistically distinguishable from 
background. Furthermore, a spatial criterion was applied to corroborate erroneous linking. The individual positions 
corresponding to each of the two segments of a candidate trajectory were projected onto the line defined by the 
centroids of the two segments. If no overlap existed between the 95th and 5th percentiles of the resulting two 
distributions of positions, the trajectory was split into two independent trajectories. 

Multi-channel (master/slave) detection and tracking  

For multi-channel data, trajectories were obtained using the detections in the master channel containing the fluorescence 
of a fiducial marker for CCSs (i.e., clathrin or AP2). Fluorescence intensities in the secondary, or slave, channels were 
calculated through numerical fitting with the 2-D Gaussian model described for the detection step. The position in the 
slave channels was a free parameter in the fit in order to compensate both for CCS motion between the acquisitions of the 
individual channels, as well as for potential shifts due to chromatic aberration. The result of the fit was considered valid if 
the resulting position was within 3𝜎 pixels (~300 nm) of the position in the master channel, and if the intensity was larger 
than the intensity estimated by least squares at the master position. Otherwise, the fit was considered failed due to 
insufficient signal, and least squares estimates of the amplitude and background using the position of the master signal 
were used instead. At the lowest SNR levels at which CCSs were detected (SNR of ~4-5), the localization accuracy is ~50 
nm (determined theoretically using Cramér-Rao lower bounds). The median displacement between detections in the two 
channels was ~60nm and a shift of ~30 nm due to chromatic aberration and/or misalignment between the two channels 
was estimated from the CCS localizations; this shift was consistent across all experiments.  

Mapping of CCP trajectories independently tracked with µ2-EGFP and enCLCa-RFP 

The mapping of CCS trajectories independently detected using µ2-EGFP and enCLCa-RFP was performed based on 
spatial proximity and temporal overlap of the signals. Trajectories were paired if the maximal distance between the 
trajectories was <3 pixels (~300 nm), if there was at least 1 frame of overlap in time, and if the enCLCa-RFP trajectory 
started at most 5 frames before and ended at most 5 frames after the µ2-EGFP trajectory. The last constraint was used to 
minimize bias from CCSs with insufficient µ2-EGFP signal (due to the transient expression) in this analysis. 

Calculation of lifetime distributions 

Lifetime distributions were calculated from all tracks classified as valid during the post-processing described above. To 
avoid a potential bias from short tracks generated during the linking/gap closing steps but consisting of independent 
appearance of CCSs, tracks shorter than 5 frames were excluded from the analysis. 
 Due to the finite length of time-lapse acquisitions, there is an inherent bias in the lifetime measurement. 
Independent of the lifetime distribution, the probability of observing a specific lifetime is inversely proportional to that 
lifetime. Specifically, for a movie of 𝑛 frames, the longest measurable track is 𝑁 = 𝑛 − 𝑏!−𝑏!, where 𝑏! and 𝑏! are the 
length of the start and end buffer, respectively, in frames. The relative probability of observing a track with lifetime 𝑡 is 
(𝑁 − 𝑡 + 1)/𝑁. The lifetime distributions were corrected for this factor, as previously described (Loerke et al., 2009).  

Threshold for intensity-based decomposition of lifetime distributions 

The time interval from the beginning of CCS assembly over which the maximum fluorescence intensity distribution was 
independent of lifetime was determined by a measure of similarity among these distributions across different lifetime 
cohorts. Statistical tests for similarity such as Kolmogorov-Smirnov or Anderson-Darling were not a sufficiently robust 
measure, likely due to heterogeneities in the long upper tails of the distributions. To avoid the influence of these tails, a 
measure of similarity based on the location of the peaks of the distributions was calculated. This was achieved by least-



squares fitting of a Gaussian function to the first mode of the distribution from each lifetime cohort (cohorts were generally 
chosen as [1-10], [11-15], [16-20], [21-40], [41-60], [61-120] s). For robustness, values larger than the mean of the 
Gaussian were excluded from the evaluation of the objective function. The distributions were classified as similar if the 
means obtained for the different cohorts were within the expected standard error, calculated from the parameters of 
Gaussian obtained for the first cohort (i.e., [0-10) s). The time interval for the threshold was chosen as the largest interval 
for which the distributions were similar by this measure. The threshold was chosen as the 95th percentile of the Gaussian 
fitted to the maximum intensity distribution for that interval, across all CCS trajectories. 

Normalization of fluorescence intensities across data sets 

To pool intensity values of CCS trajectories from 𝑛  cells with different expression levels, a scaling factor 𝑎!  was 
determined for each cell 𝑖 so that the cumulative distribution of maximum CCS intensities 𝐹! 𝑥  in cell 𝑖 was mapped to a 
reference distribution 𝐹ref 𝑥   by minimizing (𝑐! + 1 − 𝑐! 𝐹! 𝑥/𝑎! − 𝐹ref 𝑥 )! d𝑥 . The constant 𝑐! was used to estimate the 
amount of missing data between each distribution 𝐹!(𝑥) and 𝐹ref 𝑥 ; that is, between two cells the maximum intensity 
distribution of the lower-expressing cell is truncated with respect to the distribution of the higher-expressing cell due to a 
larger percentage of small, low-intensity objects falling below the detection threshold. The reference distribution 
𝐹ref 𝑥    was determined by first calculating the median distribution 𝐹med 𝑥 = median(𝐹! 𝑥 ,… ,𝐹! 𝑥 )  between the 
cumulative maximum intensity distributions of cells 1 to 𝑛. Subsequently, the reference distribution 𝐹ref 𝑥  was selected as 
the distribution among 𝐹! 𝑥 ,… ,𝐹! 𝑥   with the smallest integrated least-squares distance to 𝐹med 𝑥 . 

Calculation of average intensities as a function of lifetime cohort  

Average fluorescence intensities were calculated by interpolating all trajectories within a cohort to a length corresponding 
to the average lifetime of that cohort. Specifically, the intensities of trajectories in a cohort bounded by lifetimes [t0…t1] s 
were interpolated to the time vector bounded by [0… (t0+t1)/2)] using cubic B-splines. This enabled the point-by-point 
averaging of the intensities. The time windows chosen for this averaging (typically in 20s intervals, e.g., [0-20], [20-40], 
[40-60], [60-80], [80-100], [100-120] s) were sufficiently small to avoid averaging artifacts. 

Classification of Dyn2-positive and Dyn2-negative CCPs and calculation of the ‘slave’ significance threshold 

CCP trajectories were classified as positive for a slave signal (e.g. Dyn2-EGFP) if this signal was significant (i.e., 
detectable independently of tdTomato-CLCa) for longer than a random association. The probability of random detection of 
a significant slave signal was calculated as follows: 1) A mask of the cell outline was calculated for each time-series by 
average-projecting all images after exclusion of CCP signals based on the CCP masks calculated as part of the detection 
process. This projection contained only background signal from inside and outside the cell, and its intensity distribution 
featured two distinguishable peaks. An intensity threshold was automatically selected as the minimum between these 
peaks and applied to the projection image to generate a cell mask. 2) The Gaussian PSF model was then fitted at 50000 
random locations within the cell in the slave channel, and the significance of each fit was calculated with the t-test 
described for CCP detection. The fraction of significant fits yielded the probability 𝑝  of random detection of an 
independently significant slave signal. For robustness, this probability was averaged across 10 frames evenly selected 
from each time-series. Trajectories were classified as slave signal-positive if the number of significant slave detections 
exceeded the number predicted by random association, which for each trajectory is given by the binomial distribution with 
parameters 𝑝 and 𝑛, where 𝑛 is the number of time points in the trajectory. Since the time points with significant slave 
detections in a trajectory were typically clustered, no explicit continuity constraint was enforced in this comparison. 
 The threshold to determine the significance of slave signals relative to background locations outside of CCPs was 
calculated using a similar procedure. The Gaussian PSF was fitted at 50000 random locations within the cell, but 
excluding locations within the CCP mask calculated during the detection step. This yielded a Gaussian-shaped distribution 
of background fluorescence. The slave significance threshold was selected as the 95th percentile of this distribution. For 
robustness, this threshold was also calculated across 10 frames evenly selected from each time-series and averaged. 
Photobleaching had a negligible effect on the value of this threshold and the probability 𝑝. To determine the significance of 
slave signals relative to this threshold at individual detections within a trajectory, a t-test analogous to the test described 
for detection was applied.  

Curvature measurement by Epi:TIR fluorescence ratio 

The epifluorescence to TIRF ratio was calculated for each trajectory as the maximum intensity detected in the 
epifluorescence channel divided by the maximum intensity detected in the TIRF channel. To normalize the intensities 



between the two channels such that flat structures at the membrane yielded an Epi:TIR ratio of 1, a multiplicative 
correction factor was applied. This was calculated as the ratio between the mean intensity of the first detected frame of all 
trajectories in the TIRF channel relative to the mean intensity of the same set of detections in the epifluorescence channel, 
assuming that in the first frame of a trajectory CCSs are still flat.  
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