Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an N-terminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc during the cell cycle is constant, c-Myc's activity may be regulated at a post-translational level. We have shown previously that the N-terminus of c-Myc can form a specific complex with the product of the retinoblastoma gene, pRb, in vitro. These data suggested a model in which pRb, or pRb-related proteins, regulate c-Myc activity through direct binding. We show here that the pRb-related protein p107, but not pRb itself, forms a specific complex with the N-terminal transactivation domain of c-Myc in vivo. Binding of p107 to c-Myc causes a significant inhibition of c-Myc transactivation. Expression of c-Myc releases cells from a p107-induced growth arrest, but not from pRb-induced growth arrest. Our data suggest that p107 can control c-Myc activity through direct binding to the transactivation domain and that c-Myc is a target for p107-mediated growth suppression.

Free full text 


Logo of embojLink to Publisher's site
EMBO J. 1994 Sep 1; 13(17): 4080–4086.
PMCID: PMC395329
PMID: 8076603

Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation.

Abstract

The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an N-terminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc during the cell cycle is constant, c-Myc's activity may be regulated at a post-translational level. We have shown previously that the N-terminus of c-Myc can form a specific complex with the product of the retinoblastoma gene, pRb, in vitro. These data suggested a model in which pRb, or pRb-related proteins, regulate c-Myc activity through direct binding. We show here that the pRb-related protein p107, but not pRb itself, forms a specific complex with the N-terminal transactivation domain of c-Myc in vivo. Binding of p107 to c-Myc causes a significant inhibition of c-Myc transactivation. Expression of c-Myc releases cells from a p107-induced growth arrest, but not from pRb-induced growth arrest. Our data suggest that p107 can control c-Myc activity through direct binding to the transactivation domain and that c-Myc is a target for p107-mediated growth suppression.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211–1217. [Abstract] [Google Scholar]
  • Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA. Cell cycle-specific association of E2F with the p130 E1A-binding protein. Genes Dev. 1993 Dec;7(12A):2392–2404. [Abstract] [Google Scholar]
  • Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 1991 Jan;10(1):133–141. [Europe PMC free article] [Abstract] [Google Scholar]
  • Einat M, Resnitzky D, Kimchi A. Close link between reduction of c-myc expression by interferon and, G0/G1 arrest. Nature. 1985 Feb 14;313(6003):597–600. [Abstract] [Google Scholar]
  • Ewen ME, Xing YG, Lawrence JB, Livingston DM. Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell. 1991 Sep 20;66(6):1155–1164. [Abstract] [Google Scholar]
  • Goodrich DW, Lee WH. Abrogation by c-myc of G1 phase arrest induced by RB protein but not by p53. Nature. 1992 Nov 12;360(6400):177–179. [Abstract] [Google Scholar]
  • Graham FL, van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. [Abstract] [Google Scholar]
  • Gu W, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R. Binding and suppression of the Myc transcriptional activation domain by p107. Science. 1994 Apr 8;264(5156):251–254. [Abstract] [Google Scholar]
  • Gupta S, Seth A, Davis RJ. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3216–3220. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hann SR, Thompson CB, Eisenman RN. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature. 314(6009):366–369. [Abstract] [Google Scholar]
  • Harlow E, Franza BR, Jr, Schley C. Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J Virol. 1985 Sep;55(3):533–546. [Europe PMC free article] [Abstract] [Google Scholar]
  • Hateboer G, Timmers HT, Rustgi AK, Billaud M, van 't Veer LJ, Bernards R. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8489–8493. [Europe PMC free article] [Abstract] [Google Scholar]
  • Heikkila R, Schwab G, Wickstrom E, Loke SL, Pluznik DH, Watt R, Neckers LM. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature. 328(6129):445–449. [Abstract] [Google Scholar]
  • Hu QJ, Bautista C, Edwards GM, Defeo-Jones D, Jones RE, Harlow E. Antibodies specific for the human retinoblastoma protein identify a family of related polypeptides. Mol Cell Biol. 1991 Nov;11(11):5792–5799. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kaelin WG, Jr, Ewen ME, Livingston DM. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Mol Cell Biol. 1990 Jul;10(7):3761–3769. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kato GJ, Barrett J, Villa-Garcia M, Dang CV. An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol. 1990 Nov;10(11):5914–5920. [Europe PMC free article] [Abstract] [Google Scholar]
  • Kelly K, Cochran BH, Stiles CD, Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell. 1983 Dec;35(3 Pt 2):603–610. [Abstract] [Google Scholar]
  • Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature. 1992 Oct 1;359(6394):426–429. [Abstract] [Google Scholar]
  • Lees E, Faha B, Dulic V, Reed SI, Harlow E. Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner. Genes Dev. 1992 Oct;6(10):1874–1885. [Abstract] [Google Scholar]
  • Li Y, Graham C, Lacy S, Duncan AM, Whyte P. The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 1993 Dec;7(12A):2366–2377. [Abstract] [Google Scholar]
  • Morgenstern JP, Land H. A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res. 1990 Feb 25;18(4):1068–1068. [Europe PMC free article] [Abstract] [Google Scholar]
  • Qin XQ, Chittenden T, Livingston DM, Kaelin WG., Jr Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 1992 Jun;6(6):953–964. [Abstract] [Google Scholar]
  • Rustgi AK, Dyson N, Bernards R. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature. 1991 Aug 8;352(6335):541–544. [Abstract] [Google Scholar]
  • Schwarz JK, Devoto SH, Smith EJ, Chellappan SP, Jakoi L, Nevins JR. Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBO J. 1993 Mar;12(3):1013–1020. [Europe PMC free article] [Abstract] [Google Scholar]
  • Seed B, Sheen JY. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. [Abstract] [Google Scholar]
  • Seth A, Alvarez E, Gupta S, Davis RJ. A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression. J Biol Chem. 1991 Dec 15;266(35):23521–23524. [Abstract] [Google Scholar]
  • Shirodkar S, Ewen M, DeCaprio JA, Morgan J, Livingston DM, Chittenden T. The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell. 1992 Jan 10;68(1):157–166. [Abstract] [Google Scholar]
  • Stone J, de Lange T, Ramsay G, Jakobovits E, Bishop JM, Varmus H, Lee W. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol. 1987 May;7(5):1697–1709. [Europe PMC free article] [Abstract] [Google Scholar]
  • Thompson CB, Challoner PB, Neiman PE, Groudine M. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature. 314(6009):363–366. [Abstract] [Google Scholar]
  • van Zonneveld AJ, Curriden SA, Loskutoff DJ. Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5525–5529. [Europe PMC free article] [Abstract] [Google Scholar]
  • Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature. 1988 Jul 14;334(6178):124–129. [Abstract] [Google Scholar]
  • Whyte P, Williamson NM, Harlow E. Cellular targets for transformation by the adenovirus E1A proteins. Cell. 1989 Jan 13;56(1):67–75. [Abstract] [Google Scholar]
  • Zhu L, van den Heuvel S, Helin K, Fattaey A, Ewen M, Livingston D, Dyson N, Harlow E. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 1993 Jul;7(7A):1111–1125. [Abstract] [Google Scholar]
  • Ayer DE, Kretzner L, Eisenman RN. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell. 1993 Jan 29;72(2):211–222. [Abstract] [Google Scholar]
  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. [Abstract] [Google Scholar]
  • Barrett J, Birrer MJ, Kato GJ, Dosaka-Akita H, Dang CV. Activation domains of L-Myc and c-Myc determine their transforming potencies in rat embryo cells. Mol Cell Biol. 1992 Jul;12(7):3130–3137. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/3541077
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/3541077

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.1002/j.1460-2075.1994.tb06725.x

Supporting
Mentioning
Contrasting
4
93
0

Article citations


Go to all (69) article citations

Other citations